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Ultimate Response of Composite
Cylinders Under Flexural Load

Composite cylinders are generally used as primary load carrying structures. Their con-
. stitutive behavior up to failure is crucial for a critical design. This paper focuses on the
Zhe“g'Mmg Huang ultimate flexural strength of a polymer based composite cylinder subjected to bending. In
Professor such a case, the outmost filament of the cylinder subjected to the maximum bending stress
School of Aeronautics, fails the first. The complexity, however, lies in the fact that the failure of this outmost
Astronautics &”Mec.ham.cs, filament generally does not correspond to the ultimate failure. Additional loads can still
TO”QJ'.U,”'Vers'ty' be applied to the cylinder and a progressive failure process will result. To deal with such
1239 Siping Road, a problem in this paper, the cylinder is discretized into a number of lamina layers with
, Shanghgn 200092' different widths. The bridging micromechanics model [Huang, Z. M., Composites Part A,
_ People’s Republic of China 2001] combined with the classical lamination theory has been applied to understand the
e-mail: huangzm@mail.tongji.edu.cn progressive failure process generated in the cylinder. Only its constituent fiber and matrix
properties under bending are necessary for this understanding and reasonably good
accuracy has been achieved. However, the ultimate failure of the cylinder cannot be
figured out only based on a stress failure criterion, as one cannot know a priori which ply
failure corresponds to the ultimate failure. An additional critical deflection (curvature)
condition must be employed also. By using both the stress and the deflection conditions,
the estimated ultimate strength of the cylinder agreed well with an experimental
measurement.DOI: 10.1115/1.1867990

1 Introduction buck performed a stress analysis for laminated composite cylin-
ggrs under nonaxisymmetric loading and derived a closed-form

The use of composite cylinders as primary-load carrying stru . ; ) X
tures has been tremendous in many engineering fields suchj_fgmon for the cylinder responses up to the first-ply faill6e

aerospace, automobile, chemical and energy, civil and infrastr owever, limited work on the simulation of the ultimate flexural
ture, sports and recreation, and even biomedical engineering. ure Ofl comtposflte cyhndz;rs Cotl)“d be fotl;]ndﬂm thel I|terr;1tu_re. f
biomedical applications, for example, composite cylinders ha er :edevan re _etrenctc)sst ave ee_nlo? € dexura;handay&ls N
been proposed for spine rods, dental posts, total hip replacem inated composites, but wereé mainly focused on thé develop-
stems, etd1]. An orthodontic archwire can be best developeH]ent of linear and ge(_)metncally nonhne(dmrg_e deflgcﬂohtheo_-
using a continuous fiber reinforced polymer matrix composite r 35[7\;/#2'] ?'SO apt))pl)llcable before the Iifmlnatle f'rSt'Ely Lgnure
[2—4]. This is because the polymer matrix material, which is avails-3: While favorable comparison in stiffnesglastic bending
able from numerous candidates, can offer the aesthetic featurotﬂdmus with experimental data with those theories was reported,
the archwire comparable to the patient's teeth, whereas its varic8s® aglreement in ultimate bendmi strﬁngth ha.slbeerll. found in
mechanical properties at different using stages can be achievedfjperal7,10-13. A main reason is that the material nonlinearity
choosing suitable fiber material, fiber content, and fiber arrang&®> Not been taken into account or has not been well addressed.
ment pattern. The composite archwire is generally produc st studies used the elastic moduli of the laminae to define the

through pultrusion of a resin-impregnated fiber yarn bundle into'@minated beam stiffiness up to failure. The failure status of a
curing die[2—4]. An optimal design for the composite archwirel@Mina in the laminate was detected in terms of a phenomenologi-
will depend on a complete understanding for its structure-propef§@! Stress failure criterion such as the maximum stress—strain or
relationship. As the composite archwires, and further most othié¢ Tsai-Wu criterion based on the critical strength parameters
composite cylinders, are mainly subjected to flexural loads, théfleasured from an individual lamina. It is known that the single-
bending behavior especially their ultimate bending load-carryi@Y®r lamina during measurement of the strength parameters is
ability must be well understood. gdenerally statically determinate. However, the lamina becomes
Several attempts have been made to obtain the effective prégatically indeterminate in the laminate. As most composites can
erties of composite cylinders. Bhattacharyya and Appiah considddergo nonlinear deformation before failure especially when
ered a singlésofte) fiber cylinder embedded in an annular matrixsubjected to bending, the use of the constant-stiffness elements up
cylinder subjected to lateral load and obtained its exact elastoplé@failure would cause errors in the determination of the stresses
tic response solutiof5]. Their results, however, are not directlyshared by each lamina involved. Additional complexity lies in the
applicable to the present case. The reason is that in a real apiﬁ[:t that the failure of the outmost layer subjected initially to the
cation many fiber filaments are gathered together and the failur@ximum bending stress does not imply the ultimate failure of the
of the outmost filament subjected to the maximum bending stregole laminate, nor the central ply failure implies such ultimate
does not mean the ultimate failure of the composite cylinder. Stdailure. Indeed, a laminated beam generally attains its ultimate
bending strength at the failure of an intermediate [dlg]. After
_— ) o this intermediate ply failure, which is defined as the ultimate fail-
o by e e e Ok o UE AUEFCAM SOCETYur,the being o2 sustined by e amina owers doun. The
PLIED MECHANICS. Manuscript received by the Applied Mechanics Division,t)(:"r‘d_'ng str_ess of the Iamlnate_corresponc_ilng to the last-ply fail-
April 21, 2002; final revision, October 28, 2003. Associate Editor: B. M. MoranUre, if any, is lower than the ultimate bending strength. However,
Discussion on the paper should be addressed to the Editor, Prof. Robert M. McMetiie stress failure criterion can only detect an individual ply failure.

ing, Journal of Applied Mechanics, Department of Mechanical and Environmen ; i ; it A ; ;
Engineering, University of California, Santa Barbara, Santa Barbara, CA 931l t%y mcorporatlng the stress failure criterion with an incremental

5070, and will be accepted until four months after final publication in the paper isgpolution strategy, the predicted strength_ of a latter ply failure i_s
in the ASME JOURNAL OF APPLIED MECHANICS. always greater than or equal to the predicted strength of an earlier

Journal of Applied Mechanics Copyright © 2005 by ASME MAY 2005, Vol. 72 | 313



‘ply failure. This means that the predicted progressive failure b,
strengths after the ultimate failure cannot be correct if only a
stress failure criterion is used. As one does not know a priori Z ST N il
which intermediate ply failure corresponds to the ultimate failure,

an additional controlling parameter, which should be a deflection a,
related quantity, must be employed to characterize the ultimate

[
{ |
failure. This is different from an in-plane load situation where the
ultimate failure of the laminate generally occurs at its last-ply \qu
et At
\ A

Y

failure, thereby the ultimate failure positidne., the last ply has
already been characterized no matter how much load will be ap-
plied, and hence only a stress failure criterion is sufficient. This
also suggests that the determination of the ultimate bending
strength of the beam depends on an accurate calculation of its
deflection. Fig. 1 A composite cylinder consisting of multilayers of

In the present paper, the composite cylinder is discretized intd@&inas
number of parallel laminae along its axis direction with different
widths. In this way, the analysis of the cylinder is converted to
that of a laminated composite beam. The classical lamination t=d/N=d/(2n) @
theory is applied to determine the stresses shared by each lamitiered is the cylinder diameter. Referring to Fig. 1, the width of
in the laminate, whereas the lamina local analysis is performed e ith layer, b;, is determined from
using the bridging modgIL5]. This is because the bridging model ‘
can provide the lamina instantaneous stiffness matrix up to failure b= Vd?-4a’=Vd®-4[(n-t+0.8% i=1,...n (2
and can explicitly give the internal stresses in the constituent fibQeyy, the composite cylinder can be regarded as a laminated com-
and matrix materials of the lamina at every load level. Thus, gsjte subjected to an extern@h-plane or out of planeload.
stress failure criterion applied to the constituent rather than to tR@yte that in the present case, the longitudinal directions of all the
composite level will suffice: The lamina is considered to fail oNCRminae coincide with the global direction, whereas the other
a constituent has failed. This is important for applications, as only,, transverse directions of the laminas can be chosen along the

constituent properties are required, which are easily obtainabjgy7 girections, respectively. Thus, the global coordinate system
(either taken from a material data source such as for fiber matetialgincident with the local Systems of all the laminas.

or measured from monolithic material specimens such as for ma-
trix materia). 2.2 Classical Lamination Theory. After the discretization,

As aforementioned, the laminate subjected to bending generdlie classical lamination theory is applicable to the overall analy-
attains its ultimate strength after the first-ply and before the lastis. Corresponding to the present load condition, only the in-plane
ply failures. This is also true for a composite cylinder. The loadstress and strain incremen{sig}={doxx,dovyy,doxy}" and{de}
deflection curve is downward after the ultimate failure. In order to{deyy,deyy, 2dexy}", are retainedrefer to Fig. 2. The averaged

figure out which discretized ply failure corresponds to the ultimatgress increments on theh lamina can be determined frofh5]
failure, we must provide an additional controlling parameter, i.e.,

the critical deflection or curvature condition. The critical deflec- {dai =[(Cyj)iH{de}i ()
tion or curvature is that at which the ultimate bending load ighere
measured.

[(Cd=([Sl™ (4.9
2 Global Analysis and

2.1 Discretization.For a specific purpose, the composite cyl-
inder under consideration is circular, consisting of continuous fi-
bers arranged in the same direction and the surrounding polymer T
matrix. However, the analysis procedure thus developed can be +(Z+ Z )il 4.2)
equally well applicable to other cross-sectional shapes. When the kT HeUEEXY '
cylinder is subjected to an axial load, it can be regarded as .
u%idirectional cjomposite the analysis of which is relgtively eaéigx’ dng’ a_ndde‘))w and ng)(X' d"gY' anddx‘fw are the laminate
[15,16. However, when the cylinder is subjected to a laterdl-Plane strain and curvature incrementg.and Z,-, are theZ
(bending load, the problem becomes much more complicated. fpordinates of the top and the bottom surfaces ofkthelamina.
such a case, the stress distribution on the cylinder cross sectiohds IS the lamina instantaneous compliance matrix in its local
not uniform. The outmost filament subjected to the maximurdystem as given subsequently. From the condition that the result-
bending stress fails the first. The complexity is due to the fact th@fits of the internal stresses given by E8). should be balanced
the failure of this outmost filament generally does not correspoidth the overall applied loads on the cylinder, we obtain the fol-
to the ultimate failure. Additional higher load can still be appliedoWing equation15]
Thus, a progressive failure process, somewhat similar to that gen-
erated in a laminate, will result. This has to be understood before
the ultimate bending strength of the composite cylinder can be
obtained. o > don >

In order to track the progressive failure process in the unidirec-
tional composite cylinder, let us imaginatively separate it into a =
number of lamina layers along the axial direction. A cross-
sectional discretization is shown in Fig. 1. Take a global coordi- !
nate system(X,Y,Z), whereX is along the cylinder axis and,Z ! i
is the plane on which the bending load is applied. Suppose that the A Y
cross section of the circular cylinder is discretized iNe2n
layers of an equal thicknesk,given by(see Fig. 1 Fig. 2 Analysis of a lamina layer taken from the cylinder

2+ 72y Zy+ 2y

{de}y = {dsgx+ drdy, dedy + didy, 2de%y,

41

do
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Internal stresses
in fiber

Internal stresses
in matrix

<> | (dom=lAKdo}-

T 3
I I I I I I 0
dNxx 11 Qi Qs Qu Qp Qis dexx
I I I I il 0

dNyy 12 Qp Qs Q Q Qs deyy

{ dNyy - I13 les QI33 !3 I2|3 |3!3 ¢ 2d3§)<Y >

Bridging
matrix

Il 1 1 11 11 1l 0
dMyx ﬁl ﬁz Qﬁs ﬁ|l ﬁ|2 Qﬁ? dKé(x [ 19or=(vinp v, ) day=i8) tdott |
dMyy 12 Qo Q3 Qp Qxp Q|| dryy [ (dom=1A1VIN+V, (A "der=lAlIB] (det* |
(OMxv | | Q15 Qz Qs Qfs Qs Q3 L2dK§yJ [SI=(VAST+V,ISTIAN VA ValA) " |

( 5) ! [S?=Instantaneous compliance of fibers
! [S™)=instantaneous compliance of matrix
[11=unit matrix

N 1

[ -
Qjj = gl b Ci(Zc = Zi-0), Fig. 3 Schematic of the bridging model for a UD lamina
1 N
Q” = _E bk(Cij)k(Zﬁ—Zﬁ-l), only subjected to a bending load. This is because the ultimate
2o bending strength is attained generally before the last-ply failure
[14]. After the ultimate bending load, which occurs at an interme-
1 N diate ply failure, the predicted load-deflection using the above
Q!}' = 52 bk(Cij)k(ZE_ z) (6) procedure is incorrect. In fact, under only the bending condition,
k=1 the middle plane strain increment&ix etc., are negligibly small.

In Eq. (5), ANy, dNyv, and dNyy and dMyy, dMyy, and dM The remain_ing_bending curvature_will have very small, if any,
are, ?eép)ectiv)é)l(y, tthappIied total in-plar)w(é force and moment {iress contribution to the last ply failure, according to Egsand
crements on the laminate cross section. 4). For instance, if the Iam_lnate consists of odd-numfeeg., 5,
Under a simple bending condition, the only nonzero quantity fg %) Of Plies each of which has the same global property and
the bending moment incremedMyy. The middle plane deflec- the same thickness, the central ply will not carry any load no

PN : ; matter how much a pure bending is applied to the laminate. Thus,
tion incrementdw’, can be integrated from the equation the last ply will not fail at all, but the deflectiowurvature can be
A(dwP)

_ 0 increased unlimitedly as with the increase of the bending moment.
Y = drcxxs @) The predicted deflection is, of course, not correct.

together with proper boundary conditions. The total deflection is )
updated froma®=wP+dwP. 3 Local Analysis

The local analysis deals with an individual UDnidirectiona)
e!Q_mina, with three purposes. First, we need to provide the lamina
tantaneous compliance matrix as required in(Ed). Second,
e internal stresses in the constituent fiber, and third, in the ma-
x materials of the lamina must be identified, because without
e knowledge of those stresses the lamina instantaneous compli-
ance matrix cannot be defined. Furthermore, having known those

2.3 Post-Failure Analysis.Apparently, different layers in the
laminate carry different load shares. With the increase of the
ternal load, some layers fail first before the others. Once so
koth lamina layer fails, it can hardly sustain any additional load, if.
general. The additional external load must be shared by the E
maining un-failed laminae. For example, we will have

a2 N Z internal stresses, the lamina ultimate load carrying ahiféilure
dMyy = f bdoyxZdZ= E by f (doxx)ZdZ  (8) status can be assessed by checking the ultimate strengths of the
-di2 k=1 Zet constituent materials. Thus, a pre-fabrication design can be
kKo achieved for the composite only based on the information of the

constituent properties. All three purposes can be achieved by us-
ing the Bridging micromechanics Model, which is briefly summa-
rized below(see Fig. 3. For more details refer to, e.g., R¢L5].

Thus, the post-failure analysis is still based on E5), but with
reduced overall stiffness elements given by

N
| — G 3.1 Lamina Compliance Matrix. Using the constituent com-
= b (Ci(Zy = Zy-1) . X ; : .
Qi k} MCPKZi= 20 pliance matrices and volume fractions, the instantaneous compli-
ance of the UD lamina in its local coordinate system is given by

ke {ko} [15]

[SIV) = (VST + V,[STI[A][B] (10

where the superscrift stands for the local system aiid andV,,
are the volume fractions of the fiber and matrix materials in the
composite, respectivelyS] and[S"] are, respectively, the instan-
1 N taneous compliances of the fiber and matrix materials, whose
”' == E bk(Ci?)k(Zﬁ—Zﬁ-l) (9) components are given subsequerithy] is a bridging matrix and
31 [B]=(V{[11+V,[A]) L, whose elements are expressed E5

N
1
Q=5 X (CHUZ-Zy),
k=1

ke {ko}

ke {kot
In the above{ko} ¢I;0 Il those lami hich h Iread an 812 413 b1y b1z bis
n the above{k,} represents all those laminae which have already _ B
failed. Continued in this way, the ultimate failure strength of the [Al=| 0 a; &s|and[B]=| O by by (1D

laminate can be determined incrementally. The ultimate tensile 0 0 ag 0 0O bsy
strength would correspond to the load level at which all of thghere
layers fail. ]
It must be realized that the above stiffness reduction process, or, a1 = En/Eyy
in other words, the incremental solution steps, should be stopped ;
in general before reaching the last ply failure when the laminate is A= 0.51+Ey/Ep)

Journal of Applied Mechanics MAY 2005, Vol. 72 | 315



G do"lnl doyy

T T B do, ( =[Al[B]} doz, (12.2
--------------------------------------- 7 d(TTZ d0'12
ay = yleld strength where[A] and[B] are given by Eqgs(11). It is noted that in the
E =tan(a)=Young's modulus present case, the local and the global coordinate systems coincide,
E;=tan(Bi=hardening modulus ie., “1"=“X" and “2"="Y". The stress increments calculated
from Eqg.(3) can be directly substituted into the right hand sides of
a Egs.(12.1) and(12.2.
£ The total stresses in the fiber and matrix are updated through

f1 =g f _
Fig. 4 An elastic—plastic stress—strain curve together with {o}={o}+{do} and {07} ={c"} +{do”} (13
definition of material parameters When the composite is fabricated at or near to room temperature,
the thermal residual stresses can be neglected. Both of the initial
internal stresses in the fiber and the matfi<} and{c™}, are set
zero. If high thermal residual stresses are involved, the method

_ f
ag3= 0.1+ Gy/Cyp) provided in Ref[17] can be used to calculate the init{at’} and

_JE™ whenog'< o {o™}.
m= ET, wheno® > o 3.3 Constituent Compliance Matrices.The fiber instanta-
neous compliance matrix can be defined using Hooke's law,
0.5E™/(1 + ™), whenol < o whereas that of the matrix is specified using Prandtl-Reuss theory.
Gn=9 _ m ¢ Thus, the constituent instantaneous compliance matrices are given
ET/3, whena > o§ as[15]
o=\ (0T)2 + (092 = (0T (o) + 3(0)? SH S Sis VEy  -vifEL O
[Sf'] = S, S |= 1E; 0
—(cf f i
ap= - ay;— an)/(Sy - . .
127 (S~ S12) (@11~ 2/(S10 = ) symmetric  Si;| | symmetric 1/Gf,
doB11— diBn
= —
e B11B22~ B12Bo1 (7= S gz 33 B {[Sm]e, wheno}' < off
i 2 =23 (T e p ms, M
. d; 82, —dyfB12 symmetric s [T+ (S, whenae™> oy
311322 - ﬁlZBZl B T
1
D13 = (Vi + Vin@22) (V + Vidga)/C,  b1o= = (Viyar) (Vi + Vipaga)/c EM =0
by = [(Virs2) (Vros) = (Vi + Vo) (Vs I, Se= L
[ ] Em
by = (Vi + Vi) (Vi + Vinaga)/c 1
symmetric —
D23 == (Vidpad) (Vi + Vig)/C, D3z = (Vi + Viyda)) (Vi + Vg /e L G i
¢ = (Vi + Vindg) (Vi + Vi@ (Vi + Virasa) 9 0101y 0901 201,07
[S"P=—r—r3 092055 201505,
d, = a;— & AM™ (™2
= S0~ 2 77| symmetry 401201 J g o
i~
dy = S35(Vs + Virdy1) (82— 33) + S{3(Vs + Vidisa)ay .
EME
m_ T
Bui=Sh-Sl Br=Sh-Siu B=(Vi+ Vi) (S-S Mt = EM-ET
B21= Vin(S1o= SDase = (Vi + Vi ) (S~ S5 .
Here E!,, Eb, and G}, are the longitudinal, transverse, and in- o = 0y = 30kdy,  hIk=1,2.

plane shear moduli of the fibeE™, G™, and »™ are Young's

modulus, shear modulus, the Poisson’s ratio of the maifxand 3.4 Failure Criterion. As the composite consists of only two
ET are the matrix's yield strength and hardening moditasgent constituent materials, i.e., the fiber and the matfig. 3), its
to its stress—strain curve at the plastic region, see F}igS{l4and failure can be considered to occur as long as any of the constitu-
S} are the instantaneous compliance matrix elements of the filgats fails.
and matrix materials, respectively. To detect the constituent failure, one of the most successful and
) ) simplest criteria is the maximum normal stress criterion of homo-
3.2 Constituent Internal StressesSuppose that arbitrary ex- geneous materials. According to this criterion, the fiber or the

ternal stress incrementlo}={do1y,do,, do5}", are applied 10 matrix failure is attained if either of the following conditions,
the UD lamina(Fig. 2). The internal stress increments generated

in the fiber and matrix materials are calculated frgth] (Tf11+ ng +}
2 2

f Vol = 05 + 401 = o), (14.3
do-ll dUll
do, [ =[Bydoz, (12.9 ol +oh,

dO’;_z d(le 2

l |
SVl T AP < - o, (142
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....

w

Load (N}
[

~—— Measured data
—o— Predicted data (up to 13t-ply feilure)
4 Predicted dats (up to 2nd-ply failure)
—o— Predicted date (up to 3rd-ply failure)
= Predicted data (up to 4th-ply failure)
data (up to 5th-ply fail une)
------ data (up to Gth-ply foil

-

1 15 2 25
Middle-span displacement {(mm)

Fig. 5 Measured and predicted load-deflections of a compos-
ite cylinder (d=0.5 mm and V;=0.45)

averaged measured mechanical parameters are summarized in
Table 1. Standard deviations are also shown in the table. These
results can be used as the benchmark to check the correctness of
the developed theory.

4.2 Constituent Properties.In order to apply the theory sum-
marized in the previous sections to simulate the 3-point bending
response of the composite cylinder, its constituent fiber and matrix
properties must be specified. Both the E-glass fiber and the epoxy
matrix used in the present example can be considered as isotropic
materials. Further, the fiber is taken as linearly elastic until
rupture.

In general, it is difficult to measure directly the mechanical
properties of the fiber material. From the material data sheet pro-
vided by the supplier, the fiber used has some comparable me-
chanical parameters to those of the Silenka E-glass 1200tex given
in Ref. [18]. Thus, the elastic properties of the fiber were taken
from Ref.[18] and are listed in Table 2. These parameters are

considered to be the same until rupture at both tension and com-
pression. The fiber tensile and compressive strengths, however,

m m
ontoyp 14 2 my2 were retrieved from the uniaxial tensile and compressive strengths
+ = - + = . : : : H
2 2" (073 = 039" + Ao)* = o, (14.3 of a UD composite provided in Rgf18]. The retrievals have been
done in Ref[19], and are given in Table 2.

m . m ) ) - .
ontoy 1 In contrast to the fiber properties, the monolithic matrix prop-
— 5 - EV(Ulml_ o)+ 4o’ < -0, (144  erties are easily measurable. Pure matrix panels of 6(nami-

nal) thickness were made through resin-casting method and were

is satisfied, where, UL,C andoy], oy are the ultimate tensile and cured at the 100°C oven as in curing the composite cylinder. The
compressive strengths of the fiber and the matrix materials, fganels were then cut to required specimens according to the rel-
spectively, which can be obtained, e.g., through uniaxial tensiegyant ASTM standards using a water-cooled diamond saw. As in
and compression tests. It is noted thétand UL,C are the quanti- the present case the composite cylinder is subjected to a flexural
ties along the fiber axis direction. load, the bending behavior of the pure matrix must be understood.
Four-point bending tests were carried out, and a typical load-
deflection curve of one loading point is plotted in Fig. 6. In order
. . to differentiate the mechanical properties of the pure matrix at

4.1 Experimental wo_rk. Experiments ha\_/e been made Qension from those at compression, strain gauges have also been
fabricate a UD composite cylinder. The reinforcement was deq and the stress—strain data from their measurements are
bundle of f|ye E-glas§ fiber yarns, ea(;h containing 200 fiber f"@hown in Fig. 7. Unfortunately, the bending strains of the matrix
ments(the filament diameter=2m, Unitica Glass Fiber, Japan <hecimen during the test exceeded the measurable range limitation
A mixture consisting of 68 wt% of an epoxy resin, RS0, and¢ he strain gauges used and the data shown in Fig. 7 are not
32 wt % of a hardener, H64, provided by Chemicrete Enterprl%mpbte
Pte, Ltd(Singaporg¢was used as the matrix material in the present o jinear segments were used to approximate the stress—strain
study. A tube-shrinkage method was applied. Namely, the resiRy load-deflection responses of the matrix materiéfig. 6 as

impregnated fi_ber bu_ndle was introduced into a polyolefin tulgell as Fig. 7. Based on these representations, the matrix hard-
which has an inner diameter larger than that of the fiber bund@ming modulus at any load level was found to be

Once heated with an electronic soldering iron, the tube shrank and

4 Simulation Example

pushed the extra resin out of the tube ends. The tube was then putg, = (EP)i, when(oP)iy < ol'< (a¥);, with (6])g=0
into an oven of 100°C for complete curing. After removing the
tube carefully, the composite cylinder resulted, with a diameter of En=(EM, wheno"= (oM,

about 0.5 mm. The fiber volume content of the cylinder was mea-
sured through a combustion method and an averaged valuewdfere the tangential moduli and the critical stresses corresponding
45% was obtained. to tension and compression are summarized in Table 3. The re-
Three-point bending test was performed for the fabricated cyhaining question is how to define the matrix tensile and compres-
inder, with a span size of 14 mm following the load condition o$ive strengths under bending. The bending test only determined
an archwire[3]. A total number of seven specimens were testedne of these two strengths. To resolve the problem, uniaxial ten-
Typical load-middle span deflection is plotted in Fig. 5, whereasle and compressive tests have also been performed for the pure

Table 1 Measured properties of composite cylinder under 3-point bending test

Diameter, Fiber volume Bending modulus Maximum
Materials d (mm) fraction, V; E,(GPa loadN)
GF/epoxy 0.5 0.45 31.78.1) 3.03(0.29"
()" =standard deviation
Table 2 Mechanical properties of E-glass fibers  [18,19]
El, (GPa v, E), (GPa Gi, (GPa vy o' (MPg ol (MPa)
74 0.2 74 30.8 0.2 2093 1312
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Fig. 8 Stress—strain responses of R50/H64 under uniaxial

Fig. 6 Load-deflection of R50/H64 pure matrix material under load
oads

4-point bending

matrix specimens and typical testing curves are shown in Fig. 8. It
was found that the matrix has a uniaxial tensile strength !

42.6 MPa and a uniaxial compressive strength of 63 MPa. . A o £
other words, the uniaxial compressive strength of the matrix mic cylinder diameter was assumed to be 0.5 mm and a 45% fiber
terial is about 20 MPa higher than its uniaxial tensile counterpa}’t(.)lur.ne. fraction was l.Jsed' From this figure, it IS seen that .the
Thus, the bending strength of the matrix, 67.8 MPa, measur%ﬁdlctlons for tht_a initial parts of the Ioad_—deflectlon curves with
erently discretized layers were essentially the same. Discrep-

from the 4-point bending test must be_ the matrix tensile streng cies among them existed only for the later parts of the curves. It
under bending. The matrix compressive strength under bendi gems that the prediction with 16-laydid=16 in Eq. (1)] of

was simply set to: 67.8+20=87.8 MPa, as indicated in Table 3: e - X .
The Poisson’s ratio of the matrix. 0.414. was obtained from me Lspretlzatlon was close t_o those with even more layers of discreti-
y ' tions. Thus, the following results are all based on the 16-layers

sured longitudinal and transverse strains under the uniaxial t o . -
Iscretization for the cylinder cross sections.

sion. Some additional words deserve mentioning regarding the pre-
4.3 Number of Layers in Discretization. A suitable number dicted load-deflection curves shown in Fig. 9. As mentioned pre-
of lamina layers should be chosen to discretize the cross sectiorvimfusly, the deflection will be increased unlimitedly before the
the composite cylinder. This can be done through comparison ast-ply failure if Eq.(4.2) is used to calculate the strain incre-
the discretization dependent predictions. The predicted loatents of each lamina. In order to resolve this problem, the strain
increments were calculated in the present paper not necessarily
using Eq.(4.2), but according to the following rule.

aximum moment—deflection curves by using different num-
rs of discretized layers are plotted in Fig. 9. In the predictions,

Zy+ 7y Ze+ Zy
o Let {da}ﬂo) = {da?(x+ kaldK?(X, da$Y+ kaldK\O(Yv 2ds§<Y
E T
) . +(Z+ Z)dily (15.9
g ol
g 7 {deld’ = {degx + Zi1dry, Aoy + Z1diy, 2025y
5 “
é 20 & ‘ --o-- Measured data (at tensile side) . ‘ + O.EK_ld K?(Y}T (152)
--&--Measured data(at compressive side) ‘
© o Linearseament pprorimation | and{de}? = {de%y + Z,drdy, dey + Z,diSy, 2dedy + 0.52,drd )T
—a— Linear pp!
o (15.3
] 0.5 1 15 2 25

Bending strain (%)

Fig. 7 Stress—strain data of R50/H64 pure matrix under 4-point
bending (not complete due to limitation in the strain gauge
measurement range )

Table 3 Mechanical properties of R50 epoxy matrix under bending

The absolute values of the sums of the first two linear strain in-
crements from Eqgs(15.1)—15.3 were calculated. Suppose that
amongst the largest absolute value corresponds(wdich is ei-
ther 0, or 1, or 2 Then, the strailﬁds}(k') was set tdde}, and used

(¥"=0.414)

Tensile properties
(strength=67.8 MPa

Compressive properties
(strength=87.8 MPa

i 1 2 3 4 1 2 3 4
(o)), 28.8 48.9 63.4 67.8 35.8 52.9 68.4 87.8
(MPa)

ED), 2.98 2.48 1.45 0.56 331 2.73 1.72 0.66
(GPa

Note: E,=(ET);, when (a¥)i-1 < ag'< (a¥);, with (a7)9=0, Ey,= (ET)4, whenog'= (o),
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Fig. 9 Comparison between the predicted results of different lamina layers used in discretizing the cross-section of the com-
posite cylinder (d=0.5 mm & V,=0.45)

in Eg. (3). For instance, if|de%y+0.5Z+Z1)(dx%,+dxl,)  the cylinder structure-property behavior until its ultimate failure.
+d£$\,| is greater than b0t||'d8?<x+zk—1(dl<9<x+df<$y)+d83y| and After the ultimate failure, the load-carrying ability of the cylinder

0 0 0 0 _ (0) lowers down quickly as shown in Fig. 5 by the measured curve
|dexsct Zddroctdieyy) +deyyf, then {deh={de} . The load- although the cylinder may have not completely fractutbden
deflection curves thus obtained were slightly different from tho 9 Y Y Pty

. . ! oken into segmenksThe figure also shows that the theoretical
throughout using Eq(4.2) only before the last few plies failed. odeling by using independent constituent mechanical properties

mzv‘(ggﬁglthfzimfed'ded deflection in such way was finite even %ltreasonably accurate. Some discrepancy between the predicted
y : and the measured load-deflection curves may be attributed to the
4.4 Simulation Results.Using the material parameters givenuse of inaccurate fiber modulus. It is seen that the predicted curve
in Tables 2 and 3 as input data, the load-deflection curve of th@s slightly stiffer than the measured one. In the present paper,
composite cylinder, with a diameter of 0.5 mm and a 45% fibdhe glass fiber modulus was directly taken from R&g], which
volume fraction, was estimated up to the sixth-ply failure, and i®ay be somewhat different from that of the fibers used in situ.
graphed in Fig. 5 for comparison. It is noted that the cylinder h#s1other source of the error may come from the neglection of the
been descritized into 16 lamina layers of equal thickness. Frdfiermal residual stresses involved. The present composite was
the figure, we can clearly see that the failure load correspondingfépricated at an elevated temperat(@80°C), whereas the mea-
the fifth-ply failure should be regarded as the maximum load susdrement was performed at room temperat@®&°C), although
tainable by the composite cylinder under consideration. This tise moderate temperature variation from the fabrication to the
because the predicted deflection at the fifth-ply failure is in th®om temperatures does not bring significant influence on the pre-
nearest close to but greater than the critical deflection, which adieted result§20], and indeed has not.
curred when the cylinder was three-point bending loaded to theFurther study was carried out with respect to some different
maximum, on the measured curve. As mentioned previously, tgeometric parameters. As the same constituent materials and the
predicted even larger deflection after the fifth-ply failure would beame number of discretization layers are used, it is reasonable to
incorrect, and is in fact not necessary as we are only interestecagsume that the ultimate bending failure of a UD composite cyl-

€0
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Fig. 10 Bending modulus of GF/R50 composite cylinder versus fiber volume fraction
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Fig. 11 Strength of GF/R50 composite cylinder versus fiber volume fraction under bending

inder occurs at its fifth-ply failure even if a different fiber volumemeasurement. It has been found that the bending stiffness and the

fraction is assumed. The predicted bending moduli and the ultitimate bending strength of the composite cylinder is essentially

mate bending strengths of circular composite cylinders made mfoportional to its fiber volume fraction.

GF/R50 material system varied with fiber volume fractions are

plotted in Figs. 10 and 11, respectively. The first-ply failure

strengths of the cylinders are also shown in Fid). From these

figures, it is seen that the bending stiffness and strength are essen-

tially linearly dependent on the fiber volume fraction of the cylReferences
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g-mail: yangq@tsinghua.edu.cn In this paper, a homogeneous type of kinetic rate laws of local internal variables and its
corresponding macroscopic behaviors, are explored within the framework of “normality
L. G. Tham structures” by Rice. Rice’s kinetic rate laws of local internal variables, with each rate
Rick Enginesring Research Center, being stress dependent onI_y via its con_jugat_e thermodynamic _force, are corner stones of
The University of Hong Kong, the normality structure. It is revealed in this paper that nonlinear phenomenological
Hong Kong, China equations and Onsager reciprocal relations emerge naturally if each rate is a homoge-
neous function of degree q in its conjugate force. Furthermore, the nonlinear phenom-
G. Swobhoda enological coefficient matrix is identical to the Hessian matrix of the flow potential
Faculty of Civil Engineering and Architecture, function in conjugate forces only scaled by g. It is further shown that the refined version
The University of Innsbruck, of Griffith criterion proposed by RicgG —2y)a=0, can be derived from the normality
Innsbruck, Austria structure with the homogeneous rate laws. Finally, some issues related to damage evo-

lution laws have been discussed based on the remarkable properties.
[DOI: 10.1115/1.1867991

1 Introduction wide range of physical phenomena see, e.g., De Groot and Mazur

As an internal variable approach, the normality structure prg]. The linear theory is restricted to linear thermodynamic pro-

posed by Ricé1,2] has been an appealing constitutive framewor
for solids undergoing irreversible thermodynamic processe;
Rice’s kinetic rate laws of local internal variables, with each ratg
being stress dependent only via its conjugate thermodyna&t|

esses or else the derivation from equilibrium have to be sufficient
mall that a linear approximation is valid, and can not be applied
" phenomena which represent large nonlinear deviation from
uilibrium states. The nonlinear generalization of the linear
ory includes the normality structure of RiE& 2] briefed in
&t. 2, the maximum dissipation rate of Ziedlét and the On-
; . . . . _sager fluxes of Edelefv,8] briefed in Sec. 6. These generaliza-
_In .th's paper, we are interested in a SP?C'a' Cl.ass of R'Ceti%ns all lead to certain normality structures. Especially, significant
kinetic rate laws and its remarkable properties. It is revealed ogress has to be achieved following the line of Zieg@r see
Sec. 3 that nonlinear phenomenological equations and Onsa ed Ziegler and Wehri[9], Rajagopal and SrinivasELO—lZ’
reciprocal relations emerge naturally from the normality structuqsuz’rin and Houlsby13]. ' '
if each rate is a homogeneous function of degréeits conjugate | gec. 6, it is revealed that the homogenous property of Rice’s
force. Furthermore, the phenomenological coefficient matrix j§netic rate laws is consistent with the principle of maximum dis-
identical to the Hessian matrix of the flow potential function IRipation rate of Zieglef6], and the kinetic rate laws of Ridé,2]
conjugate forces only scaled oy and the homogeneous propertyg just certain specific Onsager fluxes of Edel@8].
transfers exactly from local internal variables to global average |, continuum damage mechanics, damage evolution laws have
internal variables. _ N been the most elusive parts owing to their complex tensorial and
Rather than the more usua!ly cited condition t@any.fo.r the high-degree nonlinear properties see, e.g., Krajcinti# and
onset of crack extension, Ridet] proposed the restriction on | emajtre et al[15]. In fact, it is the main drive force behind this
quasi-static extension or healing of Griffith crack§,~2y)a=0, research. In Sec. 7, the revealed remarkable properties help us
at any local crack front, wher& is the Irwin energy release rategain a deep insight into the structures of anisotropic damage evo-
andy is the surface free energy. Although inspired by the requir@ition laws.
ment of the second law of thermodynamics, the restriction is not
an essential thermodynamic requirement. It is shown in Sec. 5 that
the restriction becomes essential within the normality structure
with the homogeneous kinetic rate laws. Furthermore, it is indi-
cated that the widely used power laws for cracking are just t .
simplest forms of homogeneous kinetic rate laws. Ee Normality Structure
Linear irreversible thermodynamics or phenomenological equa-Consider a material sample of sizelntroduce the specific free
tions along with OnsagéB] reciprocal relations where thermody-energy¢ and its Legendre transforg with respect to strain
namic fluxes and forces are assumed to be linear dependent and
related by a symmetric phenomenological coefficient matrix, have o
provided access to both the understanding and the analysis of a ¢=¢(e,9,H), ¢=i(o,9,H)= e:g -3¢ 1)

force, are corner stones of the normality structure and represe
wide class of inelastic behaviors.

Iauthor to whom correspondence should be addressed. Telephone: seydiered denotes temperature;denotes any strain tensor, objec-
6279487£l1); Fa:jx:IO 86%0-627?2&59. ) f tive and symmetric, that measures deformation from an arbitrary
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY i i
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF AP- referepce stateyr denotes the symmetric conjugate stress such
PLIED MECHANICS. Manuscript received by the Applied Mechanics Division,that o:de is the work per unit volume of the adopted reference
August 13, 2002; final revision, July 21, 2004. Associate Editor: K. R. Rajagopatate in any virtual deformationeg H denotes symbolically the
Discussion on the paper should be addressed to the Editor, Prof. Robert M. McMegkirrent pattern of microstructural rearrangement of constituent el-

ing, Journal of Applied Mechanics, Department of Mechanical and Environmen : ! P _
Engineering, University of California, Santa Barbara, Santa Barbara, CA 9310 lments of the materials. At fIde’ variations ofo and ¢ neces

5070, and will be accepted until four months after final publication in the paper itsearily indu_ce a purely elastic response. Then the first law of ther-
in the ASME JOURNAL OF APPLIED MECHANICS. modynamics leads to the stress—strain relations,
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dd(g,9,H) (o, 9, H) 2.1 Introduction of Averaging Internal Variables ¢. The set
o= P v &S Py : ) & generally contains numerous elements. One set of much reduced

) ) ] i internal variables{ can be introduced as the average measure-
Consider two neighboring patterns of microstructural rearranggrents ofg

ment denoted b, H+dH. It is assumed that a set of incremental
scalar internal variableség, d&,. .. ,d&, characterize the specific £={{1,{2, . &b §u=Lu(é0.& . 6 V) (=1,2, ... m<n)

local rearrangements, which are represented collectivelyHyyad (14)
sites throughout the material sample. Thgsdind H are related o ) )
by whereV indicates averaging over the volume. The thermodynamic
forces acting on the averaging variableareg,,g,, ... ,0n, (col-
lf dé, = - dPp =Py 3) lectively g). Only if the £ is one set of explicit state variables, the
Ve conjugate forces can be determined as
wheré ap )
=—=-— = 9 = %¢0. (15
dPp= (e, 0,H + dH) - (e, 9, H) o, Tw, ? He DDy 19
= Yo, 9, H + dH) - Yo, 9, H) 4) The equivalence that the averaging variahfesan describe the

) i ) thermodynamic system characterized&ys achieved by requir-
Equation (3) also defines the scalar thermodynamic forcemg the equality for allog

fq1,fo, ..., , (collectively f) conjugate to the variables,
1
f=f(o,9,H) or f=f(g,J9,H) (5 9,.9¢, = vfaaga, (16)

The corresponding set of total internal variables, o ) ]
which just the requirement of equal entropy production rate at

£={&,6, ... &) (6)  micro- and macro-levels. Due to E(1.4), one obtains
generally are not state variables in the sense that thermodynamic o
state functions are not direct functions&fbut instead depend on 8,= —L5E, 0,=LEN). (17
the path history ofé. Only if the & is one set of explicit state P&,
variables, the conjugate forces can be determined as Substituting Eq(17) into Eq. (16) leads to
J 1%
o=Vl o v e o0, U= e 0.8 () t=vg, ZeEV ¢ s myp ZuEV) 1df4(g,9.H)
€ 9o a” VST e 9% i, NV a,
Following the second law of thermodynamics, the entropy pro- (18)
duction rate should be always non-negative,
1. Therefore,
=—f&,=0 8
o NV aé‘a ( ) g :gﬁg :lg (9fa(g,19,H) - ﬁQ(g,ﬁ,H) (19)
In the normality structure, a key assumption is that the kinetic rate bt v My e
laws of the internal variables take the form where
.ga: .ga(fmﬁ!H)i (a: 1121 e n) (9) f(g.9.H) .

Therefore, the kinetic rate laws can be related to a flow potential Q(g,9,H) = Vj &ty 9, H)df, =Q(F, 9,H) (20

Q and be recast as 0

]
ot

1 (" 2.2 Incremental Dependence ot on &. Direct relations do
Q=Q(f,9,H) = v Elf 3 H)Af,  (10)  not always exist betweehand£ like in Eq. (14). However, since
0 the set of incremental internal variable§ determines fully the
where the integration is carried out at fixédandH, and defines internal rearrangementj a proper set of incremental averaging
a direct functionQ of f since each term in the integrand is a totalnternal variables & can also describektl with sufficient accu-
differential. The inelastic part of a strain increment is, due to EqaCy- Thus, it is reasonable to assume such a linear dependence
(2)—4), between @ and &,

aPy) _ 14t d{=R-df or df,=R,.dE, (21)

Vo = which implies that the sef depends not only on the sétbut also

(11 its path history. Here it is only assumed that B@xists uniquely
for a given internal rearrangemeht Evidently, the direct rela-
tions Eq.(14) can also be written as EqR1) with

&=V

dPe=g(o,9,H+dH) - (o, 9,H) =

Therefore, the following normality structure holds, notirig

=f(o,9,H),
L
% =2 9=que,0.H)=011,0.1) (12 Rue™ %e. @
ag

No matter what the relation betweérand & are, the dissipation
relation Eq.(16) should always hold. Therefore, the following
dQ _L1df,: relations are obtained, similar to E{.8)

. 13
do Vo™ (13

wheret denotes time, since, due to E4.0)

_1d,

fe=Vg,R.,, 0 R, = Vg
w

(23)
Yn this paper, Einstein’s summation convention is adopted for repeated indexxﬁ1

However, if an index range is listed likein Eq. (9), the index is considered as a free erefore, with .the potgptial TunCtiOQ(g’ﬁ'H) F’eﬁ“ecj in Eq.
index without the summation convention. (20), the normality condition similar to Eq19) still holds,
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3.1 Nonlinear Phenomenological EquationsDifferentiating
Eq. (27) by g,,, it follows that

a®(g,9,H) _ dQ(g,9,H) . #Q(g,9,H)
99, 39, © 09,09,

§ith the summation convention far («k=1,2,... m). Using Egs.
(19) and(31), one obtains

S 1t
g/.L_Rp.aga_vga

o(9:H) _ 9Q(g,9,H)
99, 99,

In the following discussion, the incremental relations like &1)
are generally assumed betweémnd &, and the direct relations
like Eq.(14) are just considered as a special case of the increm
tal relations with Eq(22).

(29)

(33

3 Normality Structures With Homogeneous Kinetic

12Q(g, 9,H)
Rate Laws =- =

(=3, 0 = =J
gp, ;u(gK MUK q 19g#(?g;<

Let us define the dissipation functions at both the microscopjghich are exactly the phenomenological equations and Onsager

and macroscopic levels, reciprocal relations. The phenomenological equations can be writ-
ten in matrix form

o . . . Z:‘]gl Z:{Zl!ZZv vgm}Tv g:{gLQZv vgm}T (35)
In fact, ®/9 is just the entropy production rate. The |ntroduct|or\1Nhere the nonlinear phenomenological coefficient malriss a

of the Rice[1,2] kinetic rate laws implies that the dissipationm><m ; -

. . . - square matrix, and its element ath row andxth column
_functlonfb(f,ﬂ_,H) is well-defined. _On the o_ther_hgnd,_E(Qﬁ) S s J .« Note that the Hessian matrix of the flow potent@in g is
just the requirement that the microscopic dissipation funcm&bnoted byH(Q,g) and defined as

should be equal to the macroscopic one, i.e.,

J (34

K

1 - .
PO H) = Sluber POOH) =0, (25

2,
®(f,9,H) = d(g, &, H) (26) ‘?2_? 7Q 7Q
Due to Egs(10) and(19), the dissipation and flow potential func- M 90190, &gljgm
tions are related by #Q  #Q Q
2
AQ(F, 9, H 9 H H(Q,9) =| 992001 9% 09209 |. (36)
ot 9,H) = 1,200 g 5 ) = g, AL : : :
df 99, : : :
27) QA A
2
In view of Egs. (3), (11), and (13), we have the following L Mm?91 HImIG2 M
relations, Evidently, the matrix] is identical to the Hessian matrix scaled by
Pp  dPy 1/q, i.e.,
T @ 29 1 L
J=-H(Q,g) orJ= H(®,9) (37
The Rice[1,2] kinetic rate laws of the internal variables, H§), q aq+1)

with each rate being stress dependent only via its conjugate theire to Eq(31). Since Hessian matrices are always symmetric, the
modynamic force, are corner stones of the normality structurensager reciprocal relations are incorporated implicitly.
However, they should be thought of only as an approximation andSimilarly, Eq.(29) directly leads to the phenomenological equa-
not as a physical law, as remarked by Rji2¢ In this paper, we tions at the microscopic level,

are interested in a special type of kinetic rate laws that each rate

¢, i1s a homogeneous function of degrgén its conjugate force §a=Jafa, = 19¢, - }32_(2? (@=1.2...7) (39
fo qdf, qodf,

ok (f OH . or in matrix form

%u:qwmm (@=1,2,...1) (29 o ]
J “ ngf! g={§1:§21 e ,§n} Il f:{fl,fz, - ,fn} (39)

where Euler’s Theorem on homogeneous functions is adopted as
definition. It is emphasized that all kinetic rate laws possess tﬁ’
same homogeneous degieaNith the homogeneous property Eq.

fre the nonlinear phenomenological coefficient malris a
n square matrix and associated with the Hessian matri® of

(29) and integration by parts, the flow potentf@ldefined in Eq.
(10) can be recast as

1 f f qé, df

V 0 a a
which leads to

®(f,9,H) = (q+ DQ(f,9,H) O ®(g,4,H) =(g+1)Q(g,%,H),

(fﬂH)—ljf' df,=2es -
Q s U _V Ofa a_Véaa

=d(f,9,H) - qQ(f,9,H) (30

(3D
due to Egs.(20) and (26). This equation along with Eq(27)
indicate that both ®(f,9,H), Q(f,d,H) and &(g,d,H),

Q(g,9,H) are homogeneous functions of degeeel in f andg,
respectively,

oD
o,

xQ

o,

J
f,= g =(g+10Q.

0P
fo="—0,=(q+ 1P,
a9, " 09,

(32
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or ® by

J= éH(Q,f) = H(®, ) (40)

qg+1)

Note that all the three square matrices are diagonal matrices since
the off-diagonal elements ¢1(Q,f) are

P _ ks _
afaafﬁ_afa_o’ (@ p). 4D

Obviously, theath diagonal element alis justJ,.

3.2 Convexity Of Dissipation.Let us discuss the restriction
of the entropy production inequality on the nonlinear phenomeno-
logical coefficient matrices, see E@). In view of Egs.(35) and
(39, it is required

P=gTIg=fTIf=0 (42
for anyg or f. Thus,J andJ should be positive semidefinite, and
thenH(Q, ), H(Q,qg), H(®,f), andH(®,g) should be also posi-
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tive semidefinite. Obviously, If any one of the six matrices is PD oD b FPD ob
positive semidefinite, the other ones are all positive semidefinite. 02 e TP, 0-——=o=(p-)_—. (50
. . . . . o Jo [ Loa Jo

Note that, if the Hessian matrix of a scalar function, §xy), is

positive semidefinite, the function is convex see, e.g., Maugi\?herefore,

[16]. Therefore, the convexity of the flow potenti@lor dissipa- 5 oD

tion function® is required by the entropy production inequality. 0270 (p- 1)015 =(p-DpP=0forp=1. (51

Note thatJ is a diagonal matrix, and it is positive semidefinite if o 5

Due to the arbitrariness of, the fourth-order tenso#?®/ jo
1PQ 10¢ must be positive semidefinite, sb is convex with respect ter.

- qof? - aaTa =0, (@=1,2,...n) (43 Thus,Q is also convex with respect t@ due tod=(q+1)Q.

a

) ) - o ) ] 4.2 Endochronic Constitutive Framework. In the formula-
which require that{, is a monotonic increasing function of thetion by use of Helmholtz free energy= (e, 9,q), a set of phe-
conjugate forcd .. The requirement can be recast, due to®8), nomenological internal variablesare used to specify the current

. . state of material internal structure see, e.g., Valagb@. The in-
= 19¢, - £a =0, (a=1,2,...7) (44) ternal variable set contaima second-order tensors,

“ qof, f
o _ g _ _ 9={0u.02 ... OGm Gp=0ff, (pP=1,2,..m) (52
which is equivalent to, in the sense of non-negativeness, The evolution equations for the internal variables are

a a

> =
fube=0, (a=12,..1) 49 9 g, %0 (g=12,...m) (53
As compared with Eq(8), it is evident that the homogeneous g dz
conditions Eq(29) require that the intrinsic dissipation inequalitywhereB; is the fourth-order dissipation tensor for thth internal
hold for each internal variable docally. variable. The evolution of the variables is with respect to a time-
Due to Egs(25) and(31), one obtains, like parameter which is often refereed to as the intrinsic time or
. the endochronic time. The intrinsic time is monotonically increas-
9.8, = P(9,9,H) = (q+ 1)Q(g,9,H) (46) ing and is defined in terms of the plastic strain. The evolution
Differentiating Eq.(46) by g, and using Eq(19), the global ho- €duations can be recast as
mogeneous conditions emerges, 4=B3f5 (B=1,2,...m) (54)
alga . L ) where qz=dqgs/dz is the rate of the internal variablgg with
ﬁ—gqu} or =5 97 a¢ (47)  respect to the intrinsic timez=—d¢/ g is the thermodynamic
9 9 generalized force conjugate tp;. In the endochronic theory, the

which shows that the homogeneous property transfers exaatiytropy production inequality is enforced for each internal vari-

from local internal variableg to global internal variableg, as able, i.e.,

compared with Eq47) and Eq.(29). It should be emphasized that iy _

all deduction in this section is fully independent of the specific fgag=0(5=1.2,... m (59

relation betweerf and £, so all results hold for both direct andlt is easy to show that the endochronic framework is exactly con-

incremental relations between them. sistent with the normality structure with homogeneous kinetic rate
laws from the following two viewpoints:

* Takingq at £ level. It is shown in Eq(54) thatqg is linear

4 Some Discussions with fg, or each rate of the internal variable is the homoge-
As mentioned before, with the homogeneous kinetic rate laws, neous function of degree one in its conjugate force.(BS).

the convexity ofQ or ® with respect to the conjugate forces is is exactly consistent with Eq45).

required by the entropy production inequality. Here the convexity * Taking g at £ level. Let’s divide £ into m groups, and the

of Q or ® with respect to strese is discussed. Bth group of local internal variables are represented only by
Unlike conventional plasticity theory, the endochronic theory of ~ one averaging variablejg. Thereforeqz is fully indepen-

plasticity proposed by Valanigl7,1§ is directly based on irre- dent of other elements af, which leads to Eq(55). Fur-

versible thermodynamics. Here it is shown that the endochronic  thermore, Eq(54) is just the direct result of Eq47) if each

theory is closely related to the normality structures with homoge-  (ate &, is a homogeneous function of degree one in its con-
neous kinetic rate laws. jugate forcef
@

4.1 Convexity With Respect To Stressln general, the con-
vexity of Q or & with respect td or g cannot be converted to that
with respect tao. Although the following parallel normality struc-
tures hold,

Therefore, it is concluded that the endochronic constitutive
framework is just a special case of the normality structures
with homogeneous kinetic rate laws.

e ST <R .
g"_afa‘ “Tag,  dt o do’ 48 g Application to Microcracked Solids

it does not imply thato: dPe is the dissipated energy increment The essential properties of the normality structures with homo-

unlike (1/V)f,d¢, or g,d¢,. Here, we consider a special case thaSN€0US kinetic rate laws have been revealed in the preceding
@ is a homogeneous function of degrgén o, i.e. sections. In this section, some further discussions are made from

different viewpoints. One of the interesting results is that the re-
ob fined normality structure directly leads to the restriction on quasi-
%10 =pd. (49)  static extension or healing of Griffith cracks by R[@8. Based on
the discussions, it may be concluded that the homogeneous kinetic
In this case(1/p)o can be understood as the thermodynamigate laws can really be considered as an intrinsic property of cer-
force conjugate taPe. Differentiating Eq.(49) by o leads to tain materials, especially for microcracked solids.
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Rice [2] has applied the normality structure to a material a=GY% or a=hGd (64)
sample containing some distribution of Griffith cracks. Let the )
locus of all crack fronts be denoted hyand let ca be a function Where h and q(=n/2) are material parameters. Except for an
of position alongL describing the amount of local advance of théideal” brittle cracking, the surface free energyis generally
cracks, and hence constituting the structural rearrangements. lfnigch smaller than the required energy release @Gte.e., y
assumed that the surfaces of cracking have continuously turnisgs G~F. Thus, the following crack kinetic rate law possesses
tangent planes, without abrupt forking or branching. Thereforg,solid physical basis,
Eq. (3) becomes

a=hF (65)
dPy=-Pp= lfa dé, — lf [F da]dL (56) Which is consistent with the homogeneous condi{iél). Insert-
\4 V), ing Eq.(65) into Eq.(57), then yields

where F denotes the thermodynamic crack extension force per h

unit length alongL. Here the discrete expression of H®) is Q= f Fa*ldL (66)
replaced by the continuous expression. Similarly, the flow poten- (@+DVJ,

tial defined in Eq(10) is rewritten as

The time-independent stable crack growth can be described by

1 F R-curve. The stable crack growth conditions are
Q:—ff adrF dL (57)
ViIiJe JdG IR
—<—, G=R (67)
The requirement by the entropy production inequality is, in view da Ja
of Eq. (8), The R-curve, i.e.,R=R(Aa), can also be covered by the power-
1 law
— | [FdaldL =0. 58
VJL[ ! 58 Aa=a-ay« R4 (68)
As pointed by Ricg2], at any local crack front, Broek[21] shows thag=3.4-5.9 for an Al-Zn-Mg alloy of dif-
ferent sheet thicknesses. The power-law can be recast as, due to
F=G-2y (59 Eq. (67,
whereG is the Irwin energy release rate ands the surface free g oy
energy. Rather than the more usually cited condition a2y a-a=hRI=hG'0 a=hqG"™'G (69

for the olnsetlof crack fextension, .Rib@] propqsed the restriction \\hereh is a scaling constant. WitlG~F, such rate laws are
on quasi-static extension or healing of Griffith cracks,

obtained
(G-2y)a=0 (60) . da
— N — -1 = -1
at any local crack front. Evidently, the inequalit§0) is only a Aa=hFi0 a=hqF™F or dF hqF (70

sufficient condition for the requirement of the entropy production

inequality, Eq.(58), but not a necessary condition for the requirewhich can be considered as the homogeneous rate laws for time-
ment. In other words, the Ride!] restriction is not a thermody- independent process, as compared with @&§). Incidently, the
namic requirement which can only take the form, E58). How- reasoning chain of this section has also been briefed by Yang et al.
ever, this inequality can be considered as the result of thé2,23.

homogeneous kinetic rate laws. The homogeneous crack kinetic

rate laws in the sense of E(R9) can be written as

oA . . Foa 6 Maximum Dissipation Rate and Onsager Fluxes
EF =gaora= EE (61) In this section, it will be revealed that the homogeneous kinetic

o rate laws can be considered as the requirement by the principle of
at each local crack front. The homogeneous kinetic rate laws legl” o vimum dissipation rate of Zieglgs]. Actually, the intro-
to the local |_ntr|n5|c dissipation inequalit#5) which, in this case, duction of the homogeneous kinetic rate laws is i’nspired by the
can be rewritten as, at any lacal crack front, comparison between the normality structures and the Zi¢gler
Fa=0 or (G-2y)a=0 (62 orthogonality condition which can be deduced from the principle
o ) o ) ) of the maximum dissipation rate.
which is just the Rice4] restriction on quasi-static growth of Based on the kinetic rate laws defined in Ef), the total

Griffith cracks. N dissipation function can be decomposed as
It should be noted that the homogeneous condition (Bd)

generally holds for cracking due to the widely used power laws. n 1 .
The subcritical crack growtha at a local crack front can often be =D 0W O@W=fs (a=1,2,...0). (71
covered by the following power-law, a=1 v

aoc KN (63 Ziegler[6] refers to thermodynamic systems or processes involv-

] ) . ing only one coherent rate @ementaryand refers to thermody-
WhereK IS the stress IntenSIty faCtOr at the Cl’ack front. For e)hamic Systems or processes invo|ving more than one coherent
ample,n=13 for the nickel-based superalloy Nimonic 80A at &ates azomplex A complex system or process is referreccton-
temperature of 650°€19]. The fatigue crack growth can also bepoundif it can be uncoupled into elementary subsystems with
described by similar power laws if taking cycle numiéas the well-defined dissipation functions like E¢71). Thus, the intro-
generalized time, e.g., the simple Paris equatiahdN=(AK)"  duction of the Ricé1,2] kinetic rate laws in reality is to define the
where the exponent can take values as high as 15 to 50 irconcerned system as a compound system. It is a very strong
ceramics[20]. For time-independent cracking, such a power-lawssumption.
can be understood @&curve. Due taG=K?, the power law can  For each elementary subsystem, the orthogonality condition
be written as should hold,
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) (a) nality condition. Indeed, Ziegld6] even suggests that the second
£, =W\ o (@=12,.. n (72 law of thermodynamics can be covered by the principle of maxi-
“ mum rate of dissipation.
whereA® s a Lagrangian multiplier, which is required by the In general, the kinetic rate laws of local internal variables take
principle of maximum dissipation rate, see Ziedlé}. In general, the form,
the orthogonality condition is not consistent with the normality .
structure with respect to a flow potenti@, Eq. (10). In other £ = E(f, 0 H), (79
words, the Ricg1,2] normality structures generally do not satisfyand Rice’s kinetic rate laws defined by E§) is just a special
the principle of maximum dissipation rate. case of Eq(79). For linear dependence gfon f, the phenomeno-

Let us examine the consistency conditions between the : : : :
: h ) o . ical equations and Onsager reciprocal relations read
normality relations. Differentiating Eq71) by f,, it follows that J q g P '

- §a=Lapfp Lap=Lpa (80)
0@ . o, plp Lap=Lp

i & faaTx (=1,2,...n). (73 wherea, B=1,2, ... n. For general nonlinear dependencetain
“« “ f given by Eq.(79), the nonlinear Onsager reciprocal relations of
Substituting Eq(72) into Eg. (73), the consistency condition is Edelen[7] read,

\Y,

obtained, . )
J 1
| oy _ Uy -
= W“l &n (@=1,2,...n) (74 ) e ) ) _
df, A wherea, B=1,2,... n. Evidently, if inserting the linear relation

Eqg. (80) into Eq. (81), the Onsager reciprocal relations E§0)

emerge. The thermodynamic fluxes, satisfying Eq.(81) is
rmedOnsager fluxedy [8]. The nonlinear Onsager relations,

—g. (81), have been shown Hy,8] to result from the requirement

that the entropy production ratedefined by Eq(8) be a nonne-

which implies that, should be a homogeneous functionfjpn As

pointed out by Zieglef6], even if the local orthogonality condi-
tion Eqg. (72) holds for each elementary subsystem, it does n
imply that the orthogonality condition also holds for the total sy

tem, i.e., . . ; e I
gative, convex function of with a minimum at the equilibrium
. oD point. Evidently, Rice’s kinetic rate laws defined by E®). satisfy
éa:V)\F' (79 the nonlinear Onsager reciprocal relatiai8d) automatically. In

other words, Rice’s restriction on the kinetic rate laws is in reality
Evidently, the total orthogonality condition can be achieved bthe requirement of the nonlinear Onsager reciprocal relations.

requiring that a"fa are of the same homogeneous degieee., With the general kinetic rate lawg9), the nonlinear Onsager
reciprocal relations, Eq81), are just the necessary and sufficient

aéa(fa,ﬂ,H)f 0t (fSH —1o ; condition that the differentiat,df , is an exact differential, i.e.,
o e GfedH) (a=12m) (78 yon g g i, so that
which require thad(®) be a constant, due to E(j4), : aQ 1 ("
§a=VaT, Q=Q(fn9,H)=V &(f,9,H)df,, (82
a 0
A = =\ =1,2,...n), 7 o _—
g+1 (o n 7" which is exactly the same as H40) but the kinetic rate laws take

the form of Eq.(79). Evidently, the normality structure given by

so the total normality condition holds due to EG&L) and(72). In Eq. (12) still holds based on Eq82)

view of Egs. (10), (19), and (31), the following relations are
evident,

JD(f,9,H
N ),

Aﬁq)(g,ﬂ,H) 7 Damage Evolution Laws
“ o, ® 99,

(79

It is usually assumed that there exists a scalar damage dissipa-
tion potentialQ in phenomenological damage models, and then
which are just Ziegler's orthogonality conditiop8] and can also the damage evolution laws are derived from it by normality
be considered as the requirement of the principle of maximugandition,
dissipation rate. Therefore, it is concluded that the homogeneous

condition on the kinetic rate law, E¢76) or Eq. (29), is equiva- Q= R (83)
lent to the requirement of the principle of maximum dissipation aY
rate. here ) denotes a damage variable and is considered as a

le\léfggﬁg dt;?é);g;egiggf ;?Ztr;hsosrfgif;ﬁwr:(lj rgr?lg%nygtehn;irgioantd@&ond-_order tensor here \(\nthout a Ios_s of generality,Yarglthe
law of thermodynamics. 'I"he constraint by the principle of max'g_;ene_rallzed th_ermodynam|_c force_con_Jugateﬂo I.f further as-
mum dissipation rate is not essential at this level and cannot Baming EhatQ is a quadratic functllon in the. °°“1“9ate fpr&’e
taken as a general thermodynamic principle. It is instead nothifigl~Q=2"'J:Y, the phenomenological equation or linear irrevers-
more than reasonable classification of behavior for certaifi® thermodynamics appears from E§3),

materials. :

Rice’s kinetic rate laws of local internal variables, with each Lt (84)
rate being stress dependent only via its conjugate thermodynamwigereJ is termed damage characteristic tensor of rank four. Chow
force, are corner stones of the normality structure. If the kinetand Lu[24] have shown that many classical damage evolution
rate laws are violated, the development of the flow potential alofgws can be covered by E(B4). The latest damage model of Soh
with the normality structures are invalid. However, even in thist al.[25] also follows this line.
case such normality structures can be obtained based on the a$h phenomenological damage models, it is usually assumed that
sumption of maximum rate of dissipation. The reason for the ithe current microstructure of the material sample is uniquely char-
consistency is obvious. As pointed by Ziegdlél, the principle of acterized by the current damage varialéle In this sense, the
maximum dissipation rate is much more general than the orthogtamage variabl€? is equivalent taH, the parameter denoting the
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Table 1 Damage evolution laws for time dependent and independent processes

Time-Dependent processes Time-independent processes
Local kinetics a=hFa Aa=hF?
Flow potentials Q= h/(q+ DV [ FidL Q= h/VfLFquL
Damage evolution laws Q=3Y 0=qJ:Y

current pattern of microstructural rearrangement of constituent éheir deduced results are just some special cases ofoBp.
ements of the materials. Therefore, the conjugate fotds de-

termined by 7.2 Time-Independent Damaging ProcessesFor time-

independent damaging processes, the local kinetics or rate laws
_ o I _ _ can be described by E@70). In this part, let us confine the for-
=0 g P7e0.Q) Y=4e,9.Q). (85 myjation only to the fully loading processes in which all crack

. fronts are propagating. In this case, a quasi flow potential can still
Evidently, the homogeneous local rate laws, E29), lead to the e calculated by Eq57) along with the rate laws Eq70),
following properties, in view of Eq¥34), (47), and(32),

F
. _Q_ _1#7Q <N, _ Q:lff adFdL:EJFquL (92
Q—W—J.Y, J—aﬁ, W'Y_(qul)Q' (86) v) J, V),
It should be emphasized that these properties are irrelevant to le/iew of Eq. (89),
specific physical meanings and tonsorial characters of the damage . I
tensor, and the quadratic assumpti@n;%Y:J:Y, is unnecessary. F=VRY O F=VRY (93

Swoboda and Yanf26] and Yang et al[27] try hard to solve Then the damage evolution law is obtained by the normality con-
the crux under what conditions the phenomenological equatidition along with Eqs(92) and (93)

(84) holds, but their answers are plausible and only confined to
second-order fabric tensors. Evidently, the essential condition is Q= 4] =gh\V f (R:Y)"'RR dL v (94)
that the local rate laws are homogeneous function, as shown in aY L

Eq. (29). Thus, this crux is concluded in this paper. or

7.1 Damage Characteristic Tensor of Microcracked Solids.
In this part, microcracks and and their propagation are considered
as the dominant microdefects and energy dissipation mechanism
in a solid. Indeed, microcracks attracted, and still attract, most
interest due to its relevance to the structural reliability and failurghere thel is the same as the one defined in E2). Evidently,
as remarked by Krajcinovigl4]. With the microcracks described the damage evolution laws for time-independent processes have
in Sec. 5, the damage tensor and microcracks are related by, sithé similar structures of the ones for time-dependent processes, as
lar to Eq.(22), listed in Table 1. It should be noted that the formulation in this
part is only valid for fully loading processes.

Q=qly, J= thJ (RIY)"RR dL (95)
L

dQ = f R dadL (87) _
L 8 Conclusion

whereR denotes the contribution to the damage tensor due to aRice’s kinetic rate laws of local internal variables, with each
unit local crack advance per unit length aldngt a certain local rate being stress dependent only via its conjugate thermodynamic
crack front. ObviouslyQ andR possess the same tensorial chaforce, are corner stones of the normality structures and certain
acters. The specific form & depends on the specific definition ofspecific Onsager fluxes of EdelEn8g]. It is revealed in this paper

Q. Here it is only assumed that there exists a definite distributiéhat nonlinear phenomenological equations and Onsager recipro-
of R along crack fronts for a given microstructure or rearrang&@l relations emerge naturally from the normality structures if

ment, i.e.,R=R(€). Then Eq.(16) can be recast as, due to Eq&ach rate is a homogeneous function of degrée its conjugate
(56) force. Furthermore, the nonlinear phenomenological coefficient

matrix is identical to the Hessian matrix of the flow potential

1 function in conjugate forces only scaled by and the homoge-
Y60 = Vv f [FoaldL 88 neous property transfers exactly from local internal variables to
L global average internal variables.
which along with Eq.(87) leads to Within the framework of the normality structures with the ho-

F=VR'Y mogeneous rate laws, the second law of thermodynamics requires
- (89) the convexity of the flow potentials and dissipation functions, and
The damage characteristic tensbis then obtained by Eq86) the second law also lead to the refined version of Griffith criterion

along with Eqs(66) and(89) proposed by Ricé4], (G-2y)a=0, for microcracked solids. Fur-
thermore, the revealed remarkable properties help us gain a deep
J= E@ - thj (R:Y)™IRR dL (90) insight into the structures of anisotropic damage evolution laws.
qadY? L The unsolved crux on the conditions of the widely used phenom-
) . enological equations in continuum damage mechanics, raised by
It is easy to verify Swoboda and Yan{6] and Yang et al[27], is also easily con-
1 cluded in this framework.
Q= quYiJiY (91 Thermodynamic systems formulated within the framework of

normality structures by RicgL,2] are certain compound systems
To pursue analytic damage characteristic tensors has been the degiegler [6]. The homogeneous property of the rate laws is
object of Swoboda and Yari@6] and Yang et al[27]. Evidently, equivalent to the constraint by the principle of maximum dissipa-
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tion rate[6]. Such a property or constraint is not essential a$11] Rajagopal, K. R, Srinivasa, A. R., 2000, "A Thermodynamic Framework for
compared with the second law of thermodynamics, but it reallglz] Rate-Type Fluid Models,” J. Non-Newtonian Fluid Meci&, pp. 207-227.
S

. . X Rajagopal, K. R., and Srinivasa, A. R., 2004, “On Thermomechanical Restric-
represents a broad class of inelastic behaviors, such tions of Continua,” Proc. R. Soc. London, Ser. AGO, pp. 631-651.
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An Efficient and Accurate
Numerical Method of Stress
Intensity Factors Calculation of a
Branched Crack

Based on the analytical solution of Crouch to the problem of a constant discontinuity in
displacement over a finite line segment in an infinite elastic solid, in the present paper, the
crack-tip displacement discontinuity elements, which can be classified as the left and the
right crack-tip elements, are presented to model the singularity of stress near a crack tip.
Furthermore, the crack-tip elements together with the constant displacement discontinuity

XIEII]gClIaO Yan elements presented by Crouch and Starfied are used to develop a numerical approach for
Research Laboratory on Composite Materials, calculating the stress intensity factors (SIFs) of general plane cracks. In the boundary
Harbin Institute of Technology, element implementation, the left or the right crack-tip element is placed locally at the
Harbin 150001, PR. China corresponding left or right crack tip on top of the constant displacement discontinuity

elements that cover the entire crack surface and the other boundaries. The method is
called the hybrid displacement discontinuity method (HDDM). Numerical examples are

given and compared with the available solutions. It can be found that the numerical

approach is simple, yet very accurate for calculating the SIFs of branched cracks. As a
new example, cracks emanating from a rhombus hole in an infinite plate under biaxial

loads are taken into consideration. The numerical results indicate the efficiency of the

present numerical approach and can reveal the effect of the biaxial load on the SIFs. In

addition, the hybrid displacement discontinuity method together with the maximum cir-

cumferential stress criterion (Erdogan and Sih) becomes a very effective numerical ap-
proach for simulating the fatigue crack propagation process in plane elastic bodies under

mixed-mode conditions. In the numerical simulation, for each increment of crack exten-

sion, remeshing of existing boundaries is not required because of an intrinsic feature of
the HDDM. Crack propagation is simulated by adding new boundary elements on the

incremental crack extension to the previous crack boundaries. At the same time, the
element characters of some related elements are adjusted according to the manner in
which the boundary element method is implemeniB®I: 10.1115/1.1796449

1 Introduction tion [13], the stress formulation with regularizatiph4|, and the

Among the different configurations of branched cracks, the siguaI boundary element meth¢fi5,1§. For each formulation, in

v branched crack. as shown in Fia. 1. has received the mo'r er to model the singularity of stress near a crack tip, options
gt{ention in the Iiteréture There havegbeén many attefipi¢Z %7 available such as building in the crack-tip stress singularity
to solve this problem for arbitrarily values afb, the ratio of the [17], using the quarter-point boundary elemti], and strategi-

X cally refining the near-crack-tip nonsingular element. Further de-
half-cra.ck lengtta O.f thg main CraCk to the.t.)ranch crack length tails on elastic crack analysis by the boundary element method are
Of particular physical interest is the limiting case akbh— o,

. . o iven in Refs[18], [19].
where the solutiofi3,4] has been used to predict the initial angleg Even thoug[h ]mEch achievement has been made in crack-

of the branching of a crack in brittle solids under mixed-modpnode"ng techniques, both simple and very accurate crack-
loading. modeling techniques still need to be developed, in particular for
The majority of the analyses on branched cracks were basedigched crack problems and crack propagation problems. The
the Muskhelishvili potential formulation and conformal mappingjisplacement discontinuity boundary element metfi2@,21 is
of the branched crack geometry. With the development of numeyiary well suited for analyzing plane crack problems because,
cal computational techniques, numerical methods, in particulgysically, one can imagine a displacement discontinuity as a line
finite element methods and boundary element methods are ugeskk whose opposing surfaces are displaced relative to one an-
extensively in solving the crack problems. It is well known thagther. Based on the analytical solutif21] to the problem of a
how to model the crack is the key issue in the analyses. Amoggnstant discontinuity in displacement over a finite line segment
several elastic two-dimensional crack modeling strategies by tfean infinite elastic solid, in the present paper, the crack-tip dis-
boundary element methods, there exist the multidomain formulgacement discontinuity elements, which can be classified as the
left and the right crack-tip displacement discontinuity elements,
" ContfibUtEdEby the Apg”e‘j '\i')?Cha}”iC_S DLViSAOQMOSEAMER'CANASOC'ETYMOF are presented to model the singularity of stress near a crack tip.
ECHANICAL ENGINEERSfor publication in the URNAL OF APPLIED ME- - -
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septem'-:,urthermore’ th_e Cra(_:k't_lp elements together with the constant
ber 16, 2002; final revision, May 5, 2004. Associate Editor: H. Gao. Discussion élisplacement discontinuity elements presented by Crouch and
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, JournaBfarfied are used to develop a numerical approach for calculating
Applied Mechanics, Department of Mechanical and Environmental Engineeri i ;
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and v\nitjlwe stress |ntenS|ty_fact0|(§IFs) .Of general plane cra}cks. In the.
be accepted until four months after final publication of the paper itself in the ASM Oundary element implementation, the left or the rlght. crack-tip
JOURNAL OF APPLIED MECHANICS. element is placed locally at the corresponding left or right crack
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l - l Fig. 2 Schematic of constant displacement discontinuity com-

ponents D, and D,

Fig. 1 A singly branched crack

discontinuity elements presented by Crouch and Staiffzdfand

tip on top of constant displacement discontinuity elements thidite crack-tip displacement discontinuity elements proposed
cover the entire crack surface and the other boundaries. Therein.
method is called the hybrid displacement discontinuity method
(HDDM). Numerical examples are given and compared with the ) . .
available solutions. It can be seen that the numerical approach i@-1 Theoretical Foundation of the Constant Displacement
simple, yet very accurate for calculating the SIFs of branchdgScontinuity Element. The problem of a constant displace-
cracks. As a new example, cracks emanating from a rhombus hBIgnt discontinuity over a finite line segment in tixey) plane of
in an infinite plate under biaxial loads are taken into account. TI & infinite elastic solid is specified by the condition that the dis-
numerical results indicate the efficiency of the present numeriddfcements be continuous everywhere except over the line seg-
approach and can reveal the effect of the biaxial load on the S|ent in question. The line segment may be chosen to occupy a

On the application of boundary element methods to crad€rtain portion of thex axis, say the portiofx|<a, y=0. If we
propagation analysis, the first attempt to automatically modepnsider this segment to be a line crac_k, we can_(_jlstlngU|sh its two
crack propagation under mixed-mode conditions was given Byrfaces by saying that one surface is on phsitive side ofy
Ingraffea, Blandford, and Liggefe2] for two-dimensional prob- =0, denotedy=0. , and the other is on theegativeside, de-
lems. They used the multiregion methftB] together with the notedy=0_ - In crossing from one side of the I|r_1¢ segment to the
maximum circumferential stress criterion to calculate the directidiher. the displacements undergaenstantspecified change in
of crack propagation. Aliabad3] pointed out that the difficulty valueD;=(Dy,Dy). L i )
with the multiregion method is that the introduction of artificial 1he displacement discontinuitids; are defined as the differ-
boundaries to divide the regions is not unique, and that thus it§§ce in displacement between the two sides of the segment:

not easy to implement it in an automatic procedure. In an incre- D= Uy (X,0_)—U,(x,0,)
mental crack extension analysis, these artificial boundaries must o * 1)
be repeatedly introduced for each increment of crack extension. In Dy=uy(x,0-) —uy(x,0,).

this paper, the hybrid displacement discontinuity method toget
with the maximum circumferential stress criteri@¥] becomes a
very effective numerical approach for simulating the fatigue cra
propagation process in plane elastic bodies under mixed-m
conditions. In the numerical simulation, for each increment

hlgécauseux andu, are positive in the positive andy coordinate
irections, it follows thaD, andD, are positive as illustrated in
. 2. The solution to the subject problem is given by Crouch
|. The displacements and stresses can be written as

crack extension, remeshing of existing boundaries is not required Ux=D,[2(1—v)F3(X,y,a)—yFs(x,y,a)]
because of an intrinsic feature of the HDDM. Crack propagation
is simulated by adding new boundary elements on the incremental +Dy[—(1-2v)Fa(x,y,8) —yFa(x,y,a)], @)

crack extension to the previous crack boundaries. At the same —D.(1-2E a)l—vF a
time, the element characters of some related elements are adjusted Uy =Dil( IFa(Xy,2) ~yFa(x.y.a)]
according to the manner in which the boundary element method is +Dy[2(1-»)F3(x,y,a)—yFs(x,y,a)],
implemented. As an example, the fatigue propagation process_of

cracks emanating from a circular hole in a plane elastic plate e}gd
simulated using the numerical simulation approach. Oy=2GD,[ 2F 4(x,y,a) + YFg(X,y,a) ]
By the way, it is pointed out here that finite element simulations
[25,26 when used to analyze crack problems have to face large +2GD,[ -Fs(x,y,a) +yFq(x,y,a)],

computational problems connected with the discretization of the _ _
continuum into finite elements, particularly when some cracks 7yy=2GD —yFs(xy,a)]
propagate, thus changing the interior boundaries of the solids. +2GD,[ —Fs(x,y,a)—yF7(x,y,a)], 3)

. . . . . nyZZGDx[fFSO(vyva)
2 The Hybrid Displacement Discontinuity Method

The numerical approach presented in this paper for calculating TYFr(xy,a)]+2GD,[ ~yFe(x.y.a)].
the SIFs of branched cracks consists of the constant displacenmemictionsF, throughF- in these equations are
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2d§ X

Fig. 3 Schematic of an arbitrary displacement discontinuity
function and its differential element

1
Fa(x,y,a)= f,ﬁm

X[Iny(x—a)2+y2—Iny(x+a)?+y?],

1 y y
F3(x,y,a)—f,y——4w(l_v) arctanx_ arctanx+a,
y y
PO T Gty ey,
Fs(x,y,@)=f =—"F,y
_ 1 X—a X+a
CAm(1-v) [(x—a)’+y?  (x+a)’+y?]
FG(vava):f,xyyz_f,xxx
1 (x—a)2—y? (x+a)’—y?
CAm(1-v) [{(x—a)?+y?? {(x+a)Z+yH?)
F?(X7yva):f,yyy:_f,xxy
B 2y X—a X+a
CAn(1-v) [{(x—a)?+y?? {(x+a)Z+y??)

where

ToN=220=0)

—(x—a)lny(x—a)’+y?+x+aln J(x+a)’+y?

y

y y
arctan———arctan——
X—a X+a

(®)

G and v in these equations are shear modulus and the Poisson’s

point (x, y) due to adifferential elementvith its length 21¢ and its
centeré (see Fig. 3can be obtained from a differential viewpoint:

du,=Dx(O[2(1-»)Ts(Xx,y,§,d8) —yTs(X,y,£,d8) ]
+Dy(H[—(1-21)To(x,y,£,dE) —yTa(x,y,§,dE) ],
duy=Dy(§[(1-21)Ta(X,y,£,d8) —yTa(x,y,£,dE) ]
+Dy(H[2(1-»)Ta(x,y,£,dE) —yTs(X,y,£,d8) ],

™

and
dog=2GDy(8)[2T4(X,y,£,dE) +yTe(X,y,£,dE) ]
+2GDy(&)[ ~Ts(x,y,£,d8) +yT7(x,y,£,d8) ],
doyy=2GD(&)[—yTs(x,y.£,d8)]
+2GDy(&)[ —Ts(x,y,£,dE) —yT7(x,y,£,d8) ],
doyy,=2GDy(§)[ ~Ts(x,y,§,d¢)

+yT7(X,y,£,d6)]+2GDy (&) —yTe(x,y,&,dE) ].
FunctionsT, and T in these equations are given by

1 X—&
TZ(Xryvfsdf)/d§:V2(X7y1§):_ 477_(1_1)) (X_§)2+y2’

(8)

1
To(XY. £6)/dE=Vs(xY. 6= ~ T =,

2y x—§&
T4(le1§1d§)/d§=V4(X1y!g)= 477(1_1/) {(X_§)2+y2}2’

)
(Xx—§)2—y?
Am(1-v) {(x— &) +y* >

TG(lelgrdg)/d§=V6(X1y!§)

Ts(X,y,£,d8)/dE=Vs(X,y,§) =

_ 2 (x—&)°
CAm(1-w) [[(x=§)2+y?P°
3(x—§)y?
[(x=&)+y*]®

T7(X,y,f,dg)/d§=V7(X,y,§)

2y 3(x—¢)°
T 4n(1-0) | [(x— 7Y
2

y
[(x=&)*+y*T°
Obviously, if the following integrals are obtained,

Ujj(x,y,a)= f_ Di(§)Vi(x,y,§)d¢ (i=23,...,7,j=12)
(10)

ratio, respectively. Equation®) and(3) are used by Crouch and
Starfield [20] to set up a constant displacement discontinuitshe displacements and stresses at a poiny) due to the whole
boundary element method. element can be written as

2.2 Basic Formulas Required to Set Up a Higher Displace-
ment Discontinuity Element. Now, consider arbitrary displace-
ment discontinuity distributions along element length, 2as
shown in Fig. 3:

Ux=[2(1=)Usz(Xy,a) —yUsx(x,y,a)]
+[=(1=2v)Uzy(X,y,a) =y Usy(Xy,a)],
Uy=[(1-2r)Us(X.y,a) = yUs(Xy,a)]
+[2(1=v)Uzy(x,y,a) —yUs,(X,y,a)],

(11

Di=Di(§) (i=12 (62)

or
and

Dyx=Dyx(§), Dy:Dy(g)- (6b)

Based on the solution of the constant discontinuity in displace-
ment given by Crouch21], the displacements and stresses at a

Tyx=2G[2U 4(X,y,a) + Y Ugy(X,y,a) ]
+2G[—Usgy(x,y,8) +yUqy(x,y,a)],
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1 Oxx= 2GHS[ZB4(X'y!a)+yBG(X!y!a)]
D, =H,(%£)? +2GH,[—Bs(x,y,a) +yB/(x,y,a)],
Oyy= 2GH{ —yBg(x,y,a)]
+2GH,[ —Bs(x,y,a) —yBs(x,y,a)], 17)
-— Oxy=2GH{ —Bs(x,y,a)

[
\* ] X +YBr(xy. )]+ 2GH,[ -y Ba(xy.a)].
It can be seen by comparing Eq46) and (17) with Egs.(2)
a

and (3) that the displacements and stresses due to the crack-tip
displacement discontinuity possess the same forms as those due to
a constant displacement discontinuity, witk(x,y,a) (i
) ) o ) ) =2,3,...,7) inEgs.(2) and(3) being replaced by;(x,y,a) (i
Fig. 4 Schematic of the left crack-tip displacement discontinu- =23,...,7), and, andD, by H, andH,, respectively. This
ity element enables the boundary element implementation to be easy.
The computation oB; (i=2,3,...,7) inEgs. (16) and (17)
will be carried out in the following from four respects.
(1) For an arbitrary poinP(x,y) (y#0), generally, the analyti-

et ————————————eeeeeeee i
2a

0y, =2G[ —yUg(X,y,a)] cal solutions of integralé15) are obtained difficultly. In this pa-
2G per, the Gauss numerical integration is used to calculate them. The
+26[ = Usy(x,y,8) —yUz(X,y,a)], (12) following transformation is made:
0xy=2G[ —Usy(x,y,a) é=at, (18)
+yU?x(Xnya)]+ZG[_yU6y(X:y:a)]- and then

The formulas(9)—(12) are the basic formulas required to set up a a (g4 £\ 12
higher displacement discontinuity element. Bi(x,y,a)= f (a_) Vi(x,y, €)dé
—a

2.3 Crack-Tip Displacement Discontinuity Elements.
Here, the basic formula@®)—(12) are used to set up the crack-tip 1
displacement discontinuity elements, which can be classified as :af Vitx,y,at)(1+)Ydt  (i=23,....7.
the left and the right crack-tip displacement discontinuity ele- -1
ments, to deal with general plane crack problems. The schematic (19)
of the left crack-tip displacement discontinuity element is shown .
in Fig. 4. Its displacement discontinuity functions are chosen ad nereforeBi(x,y,a) can be given by

12 12

até

a+é
, Dy=H,—

D,=H, <

, 13) Bi(x.y,a>=a2 Vioxy.ag)(1+ )Y (i=23,....7,

whereHg andH,, are the tangential and normal displacement dis- (20)
continuity quantities at the center of the element, respectivelyhere(; andw; are the Gauss point coordinates and correspond-
Here, it is noted that the element has the same unknowns as ithg weighed factors, respectively.

two-dimensional constant displacement discontinuity element. But(2) For an arbitrary pointP(x,y) (y=0), integralsB,, By,

it can be seen that the displacement discontinuity functions d8s, Bg, andB- in Eq. (14) can be solved analytically. For>
fined in Egs.(13) can model the displacement field around the-a,
crack tip. The stress field determined by the displacement discon-

tinuity functions(13) possesses™ 2 singularity around the crack _ 1 _ Xta |yx+a+t \/Z—a‘
: By(x,0@)= ————{ —2v2+ In ,
tip. o . 47T(1_V) a ,X-!,-a_\/z—a‘
After substituting Eqs(13) into (10), one has
a £\ 12 B4(x,02) =0,
Ujj =H,| |—] Vi d¢é=H;B;
ij(xy,a) ,Jfa( a ) i(x,y,§)dé=H;B;(x,y,a) oxom 1 { /s 1 | Ta+ Jz—a\]
5(X,0a)= n s
(i=23,...,7,j=12, (14) 4m(l-v) | x—a 2Ja(x+a) |yx+a— \/Z—a‘
where (21)
1 V2 V2
a a+§ 1/2 . _
Bi(x,y,a):f (T) Vixy,6)dé  (i=23,...,7. BeX.08)= o= | ma)? 202=aD)
—a
(15) 1 VX+a+ \/ﬁ‘
After substituting Eq(14) into Egs.(11) and(12), one can obtain N 4\a(x+a)?? n MXta— \/Z| '
uX:HS[z(l_V)B3(X!yva)_y85(x!yva)] B7(X,0,a):0.
FHA[ — (1=21)By(xy,8) ~yBa(x,y,a)], (16) While for x<—a, let r denote the distance from the crack tip
uy=HJ (1-2v)By(x,y,a) —yB4(x,y,a)] along the crack extension line, i.e.,
+Hn[2(l_ V)BS(Xryva)_yBS(xryva)]v r=|x|—a. (22)

and Then
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B,(x,08)= — ) 2\ﬁ \/za
2(X%, ‘a)—m —2V2+ aarctan rak

Table 1 Variation of SIFs for a center crack in an infinite plate
with the number of elements

Number of elements 3 5 7 10 15 25
B4(X,O,a):0,
Kylo|ma 0.9621 0.9775 0.9838 0.9885 0.9921 0.995
Bu(x.0a)= 1 V2 N 1 . 2a
sX02)= =) | Trr2a gar RN
(23) elementq 20], while the crack could be modeled by displacement
Va2 V2 discontinuity elements. This brings about a higher computational
Bs(x,02)= 5 effort.

4m(1-v) [(r+2a)" 2r(r+2a) Pan [28] pointed out that “the displacement discontinuity

method[20] is quite suitable for cracks in infinite domain where
_ 1 arctan- /2_a there is no no-crack boundary. However, it alone may not be ef-

2\/ar3? r|’ ficient for finite domain problems, since the kernel functions in

B7(X,0,a) =0.

(3) For an arbitrary poinP(x,y) (y=0), the integraB; in Eq.
(14 is

DDM involve singularities with order higher than those in the
traditional displacement BEM.” The hybrid displacement discon-
tinuity method is used by the author to calculate the SIFs of com-
plex plane cracks in a finite plat@.g., a center slant cracked
rectangular plate subjected to tension load; cracks emanating from

0, [x>a an elliptical hole in a rectangular plate under biaxial lgadisese
numerical results show that the present numerical approach is also
+—, y=0,, [x|<a simple, yet very accurate. Because of the limitation to the length
Bs(x,0a)={ 4(1-») (24)  of this paper, these results are not reported here.
By the way, it is pointed out here that the displacement discon-
- m y=0_, |[x|<a tinuity boundary element program listed in RE2Z0] has one re-

striction concerning the placement of boundary elements in a

(4) From Egs.(21) and (24), one can obtain the element self-problem involving symmetry: a boundary element cantiet
effects easily:

along a line of symmetry. Obviously, this restriction means that
the symmetric conditions about teaxis andy-axis for the crack

B,(0,08)= — C2/341n 1+v2 problems shown in Figs. 7—9 cannot be used and that the sym-
2 A7(1—v) -l metric condition about thg-axis for the crack problem shown in
Fig. 5 cannot be used also. This leads to the result that when the
1 -0 program is used to analyze the crack problems shown in Figs. 5,
+ 4(1-v)’ y=0. 7, 8, and 9, it is not much more efficient than the hybrid displace-
B,(0,0p)= ment discontinuity method, which has no such restriction.
3(0,09) 1
- ’ y207 . .
4(1-v) 3 Computational Formulas of Stress Intensity Factors
B,(0,02)=0 and Simple Test Examples
aw ’ (25) . . :
The objective of many analyses of linear elastic crack problems
Bs(0,08)= A lln 1+v2 a is to obtain the SIFK, andK,, . Based on the displacement fields
S A7(1—v) 2 11-v2 ' around the crack tip, the following formulas exist:
1 3\& 1 1+\&’ K ,=— Gy2m | D / 0.5
Bg(0,0a)= - —In az, | 4(1—v) 'm{ y(r) r }v
Am(1—v) 2 47 1-v2 r—0 (26)
= Gy2m
B+(0.08)=0. Ki=— g0 lim{Dy(r)/r°%,
For the right crack-tip displacement discontinuity element, similar (1=v) "o

formulas can be obtained and do not be given here. whereD,(r) andD,(r) are the normal and shear components of

) ) displacement discontinuity at a distancérom the crack tigs).

2.4 Implementation of the Present Numerical Approach For practical purposes, the limits in E@6) can be approximated
and Some lllustrations. Crouch and Starfief20] used Eqs(2) by simply evaluating the expression for a fixed value dhat is
and(3) to set up the constant displacement discontinuity boundaghall in relation to the size of the crack. By means of the crack-tip
element methodBEM). Similarly, we can use Eq$16) and(17)  displacement discontinuity functions defined in E¢k3), thus,
to set up boundary element equations associated with the crackjg approximate formulas of the SIRs andK, can be obtained

elements. The constant displacement discontinuity elements p§g-|etting r in Eqs. (26) be a, one-half length of the crack-tip
sented by Crouch and Starfie]@0] together with the crack-tip ejement:

elements presented in this paper are easily combined to form a
very effective numerical approach for calculating the SIFs of gen- < J27GH, J27GH,
eral plane cracks. In the boundary element implementation, the N W
left or the right crack-tip element is placed locally at the corre- 41-v) Va 41 v)\a
sponding left or right crack tip on top of the constant displacementTo prove the efficiency of the suggested approach, two simple
discontinuity elements that cover the entire crack surface and tiest examples are given here. An infinite plate with a through
other boundaries. The method is called as the HDDM. crack of length 2 that is subjected to uniform stress normal to the
The hybrid displacement discontinuity method presented in thisack plane at distances sufficiently far away from the crack, is
paper differs from hybrid boundary element cofi2g| that, when taken to compute the stress intensity fadfpr Owing to its sym-
used to analyze the SIFs of a branched crack, require the platertetry, only half is taken for the analysis. Table 1 gives the ratio of
be modeled as a finite plate of huge dimensions by fictitious streb® numerical solution to the analytical stress intensity fatas

(27)
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Table 2 Variation of SIFs for a center crack in an infinite plate with the ratio of the size of the crack-tip element to that of constant
elements

Acrack! Aconstant 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
K,/oyma 1.2048 1.1690 1.1394 1.1143 1.0928 1.0742 1.0578 1.0433 1.0303

Acrack! Aconsiant 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
K,/oJmra 1.0186 1.0080 0.9984 0.9896 0.9815 0.9741 0.9671 0.9607 0.9547

the number of elements is increased. In this calculation, the cra¢kee Table % and the other boundaries are discretized according
tip element and constant elements are taken to be equal in sizethe limitation condition that all boundary elements have ap-
Table 2 gives the ratio of the numerical solution to the analyticaroximately the same length. For the casebtd=0.01, for ex-
stress intensity factoK, as the ratio of the size of the crack-tipample, 2000 elements, which have the same saR@0, are
element to the one of constant elements is changed. Here, tligcretized on the main cradkO, and 10 elements, which have
sizes of the constant elements are taken to be equal and the ttital same sizé/10, are discretized on the branched cr&@R.
number of elements is 11. It can be seen from Table 1 that a gaddre, 2a/2000=b/10. The element number at the crack Aps
result for the stress intensity fact&; can be obtained using the denoted by 1 and the element number at the cracR tgpdenoted
crack-tip element. It can be seen from Table 2 that the ratio of thg 2010. Thus, the element 1 and the element 2010 are the left and
size of the crack-tip element to that of constant elements mustthe right crack-tip elements, respectively. The elements whose
taken to be from 1.0 to 1.3 to obtain a good result with a relativeumbers are from 2 to 2009 are all common elements.
error of less than 3%. This can be regarded as the limitation to theTable 5 shows the SIFs at the branched craciBtigbtained in
approach presented in the present article. the present article as the branched amgndb/a are changed.

An inclined crack plate with a through crack of length that For comparative purposes, Table 6 lists the analytical results ob-
is subjected to uniform stress at distances sufficiently far awégined by Kitagawa et al.6,7] (also see p. 352 in Ref29]) by
from the crack is taken as another example to compute thek§lIFsmeans of the conforming mapping method, whose conjecture has
andK, , whose exact solution is availall29]. Here, the SIFK, been proven by L¢9] through the Muskhelishvili potential for-
andK, calculated by the present study are normalized by mulation. It can be seen from Tables 5 and 6 that the present

. i numerical results are in extremely good agreement with those by
K|:F|/((T\/Esln2ﬁ), K||:F||/(0' 7Tas|nBCOSB), KitagaWa et al[6,7]

2 For a small singly branched crack/@=0.01), it can be seen
whereg is the angle between the load and the crack plane. Sog comparing the SIFs given from the present study with those by
numerical results are given in Table 3. In this calculation, thiéitagawa et al[6,7] (also see p. 353 in the Reff29]) that the
crack-tip elements and constant elements are taken to be the sagreement is, respectively, within 0.7% and 4% for the stress in-
size and the total number of elements is taken to be 20, i.e., téemsity factorsF|g andF 3 (see Table ¥
crack-tip elements and 18 constant elements. It is observed from4
Table 3 that regardless of the size of the angleetween the load
and the crack plane, the present numerical results of the ISIF
andK,, are in good agreement with the analytical results.

.2 A Symmetrically Branched Crack. Second, the

spresent numerical method is used to calculate the SIFs of a sym-
metrically branched cracksee Fig. 5 in an infinite sheet under
uniform tension. The SIFs at the main crack #pand at the

4 Numerical Examples branched crack tif8 are normalized by

From the 1970s to today, many researchers have paid attention A_
to branched crackisl—12], in particular, a singly branched crack. Fi K'A/U\/E'

The investigation approaches for these include mostly the 5 B
Muskhelishvili potential formulatiofi1,9,30, the conformal map- FP=Kig/o\mc, Fi=Kyg/omc,
ping method 6—8], the dislocation distribution methdd 2], and

numerical methods, mostly, finite element meth¢dl$,19 and Regarding the discretization of boundary elements, the number of
boundary element method46,19,31,32 Here, the present nu- elements discretized on a branched crack is varied b/fith(see
merical approach is used to calculate the SIFs of branched cra@ible 8, and the other boundaries are discretized according to the
in an infinite sheet and the present numerical results are compaliedtation condition that all boundary elements have approxi-
with the available solutions. Evidently, Bueckner’s principle camately the same length. Table 9 shows the present numerical re-
be used in these analyses. sults of the normalized SIFs at the main crack Aipand at the

. . branched crack tiB as the branched angfeandb/a are changed.

4.1 ASingly Branched Crack. First, the boundary-element £, o parative purposes, Table 9 lists also the normalized SIFs
method presented in this ar_tlcle is use_d t_o_calculate the SIFs_ of iRen by Kitagawa et al[6,7] (also see p. 374 in Ref29]) by
?é?ﬂ{earggﬁh?r%gsaﬁgi tf\lg'ba.alzc?lgéné:’r;?laﬁhieﬁlgrnnﬂglrizl:ar:jl- means of the conforming mapping method, whose conjecture has
b : ar been proven by L¢9] through the Muskhelishvili potential for-

Y mulation. It is found from Table 9 that the agreement is, respec-
Fe=Kgloyme, Fus=K,glomc (29) tively, within 1%, 2.4%, and 3% for the SIFS", F?, andFy}.

Regarding the discretization of boundary elements, the numbe4.3 A Skew-Symmetric Branched Crack. Third, the SIFs
of elements discretized on the branched crack is varied vfigh of a skew-symmetric branched crack in an infinite sheet under

(30)

Table 3 Variation of SIFs for an inclined center crack in an infinite plate with the angle B
B 5 deg 10 deg 20 deg 30 deg 40 deg 45 deg 50 deg 60 deg 70 deg 80 deg 85 deg
F 0.9895 0.9898 0.9896 0.9898 0.9898 0.9885 0.9897 0.9897 0.9898 0.9897 0.9896
Fu 0.9896 0.9897 0.9897 0.9897 0.9897 0.9885 0.9897 0.9897 0.9897 0.9897 0.9896
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Table 4 Variation of the number of elements discretized on a o
branched crack for a singly branched crack with bla T T
b/a

001 005 01 02 04 05 06 08 10 15 20
10 10 15 30 30 30 30 30 30 45 60

uniform tension(see Fig. 6 are analyzed by means of the present

numerical approach. The SIFs at a branched crack tip are normal- A

ized by

20

F|=K|/U\/%, F||=K||/0'\/E. (31) G

2c

Regarding the discretization of boundary elements, the number of
elements discretized on a branched crack is varied b/fith(see

also Table 8 and the other boundaries are discretized according
to the limitation condition that all boundary elements have ap-

proximately the same length. Table 10 shows the SIFs at the l
branched crack tip given by the present study and by Kitagawa

et al.[6,7] (also see p. 362 in Ref29]) as the branched angte

(o8

andb/a are changed. Evidently, the present numerical results are Fig. 5 A symmetrically branched crack

in extremely good agreement with those obtained by Kitagawa

et al.[6,7] by using the conforming mapping method.

4.4 A Doubly Symmetrically Branched Crack. Finally,
the SIFs of a doubly symmetrically branched crack in an infini
sheet under uniform tensidsee Fig. 7 are analyzed by means of

Table 5 Normalized SIFs at the branched crack tip B

for a singly branched crack in the present study

the present numerical approach. The SIFs at a branched crack tip
qare determined still by using formuld81). Regarding the dis-
Cretization of boundary elements, the number of elements dis-
cretized on a branched crack is varied whita (see also Table)8

and the other boundaries are discretized according to the limita-
tion condition that all boundary elements have approximately the
same length. Table 11 shows the SIFs at a branched crack tip as

the branched anglé and b/a are changed. For the comparison

b/a

15 deg

30 deg

45 deg

60 deg  purpose, Table 11 lists also the SIFs at the branched crack tip

I:IB

FIIB

I:IB

I:IIB

FIB FIIB FIB

E obtained by Vite 12] (also see p. 386 in Ref29] by means of
"8 the dislocation distribution method. It can be seen from Table 11

0.01
0.05
0.1
0.2
0.4
0.5
0.6
0.8
1.0
15
2.0

0.9654
0.9578
0.9530
0.9487
0.9448
0.9439
0.9433
0.9427
0.9425
0.9438
0.9448

0.1614
0.1938
0.2131
0.2349
0.2554
0.2607
0.2644
0.2688
0.2710
0.2729
0.2726

0.8709
0.8410
0.8234
0.8065
0.7938
0.7915
0.7902
0.7894
0.7896
0.7926
0.7950

0.2995
0.3572
0.3918
0.4314
0.4689
0.4786
0.4852
0.4929
0.4966
0.4992
0.4981

0.7309 0.3964
0.6693 0.4667
0.6332 0.5096
0.5978 0.5595
0.5725 0.6076
0.5682 0.6197
0.5661 0.6277
0.5655 0.6363
0.5667 0.6395
0.5717 0.6388
0.5761 0.6351

82(75?3 ggéllﬂi’at for the doubly symmetric branched crack the present numeri-
. . 1 3 . . 0,
0.4140 0.55@5' results are in good agreement with those by Vitek within 2.2%.
0.3573 0.6037 . .

0.3185 0.6530 Cracks Emanating From a Rhombus Hole in an

0.3127 0.66p&fini iaxi

03127 0-5Ch¥finite Plate Under Biaxial Loads

0.3120 0.6775In this section, specifically, the boundary element method pre-

8-2;28 8-22 gnted in this article is used to study cracks emanating from a
03330 0.65630mbus hole in an infinite plate under biaxial loads. The present

numerical results for this crack problem indicate further that the

Table 6 Normalized SIFs at the crack tip B for

present approach is very effective for calculating the SIFs of com-
a singly  plex plane cracks and can reveal the effect of the biaxial load on

branched crack by Kitagawa et al.  [6,7] the SIFs.
Shown in Fig. 8 is the schematic of cracks emanating from a
15 deg 30 deg 45 deg 60 deg rhombus hole in an infinite plate under biaxial loads. For this
b/a Fg Fpw Feg Fi Fg Fuis Fg Fys  problem, symmetric conditions about tkexis andy-axis can be
0.1 009540 02120 0.8245 0.3895 0.6339 0.5053 0.4106 0.5489€d. The following cases are considered:
0.2 09496 02346 0.8076 0.4307 0.5983 0.5578 0.3583 0.5996 N=01—1
0.4 0.9466 0.2556 0.7957 0.4690 0.5741 0.6072 0.3189 0.6514 i
0.6 09457 0.2648 0.7927 0.4858 0.5679 0.6283 0.3112 0.6718 B
08 09456 02694 07922 04940 05678 0.6375 0.3128 0.6770 0=15 deg, 30 deg, 45 deg,
1.0 0.9457 0.2718 0.7928 04981 0.5694 0.6413 0.3171 0.6775
15 09463 0.2737 0.7951 05008 0.5744 0.6414 0.3273 0.6682 a&/b=1.05, 1.1, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0.
2.0 0.9468 0.2733 0.7971 0.4996 0.5785 0.6377 0.3340

0'65%)egarding the discretization of boundary elements, the number of

Table 7 Normalized SIFs at the small branch crack tip

elements discretized on a quarter of rhombus hole is 100, and the
B fora Other boundaries are discretized according to the limitation condi-

singly branched crack (b/a=0.01) tion that all boundary elements have approximately the same
FIB FIIB
6 (deg Refs.[6], [7] Present Refd.6], [7] Present  Table 8 Variation of the number of elements discretized on a
branched crack for a symmetrically branched crack with bla
15 0.971 0.9654 0.156 0.1614
30 0.876 0.8709 0.296 0.2995 b/a
45 0.732 0.7309 0.389 0.3964 001 005 01 02 04 05 06 08 1.0 15 20
60 0.569 0.5665 0.431 0.4422
75 0.404 0.4000 0.420 0.4368 10 10 15 30 30 30 30 30 30 45 60
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Table 9 Normalized SIFs for a symmetrically branched crack

60 deg 45 deg 30 deg
b/a Refs.[6], [7] Present Refd6], [7] Present Refd6], [7] Present
0.01 FA 1.0001 0.9998 0.9994
Fo 0.5390 0.6499 0.7138
Fﬁ 0.3158 0.2223 0.0913
0.05 Ff 1.01 1.0054 1.01 1.0043 1.01 1.0027
Fo 0.45 0.4450 0.59 0.5918 0.70 0.6888
Fo 0.39 0.3889 0.29 0.2994 0.15 0.1575
0.1 Ff* 1.01 1.0097 1.01 1.0080 1.01 1.0057
FlB 0.39 0.3899 0.56 0.5588 0.68 0.6764
Fﬁ 0.43 0.4362 0.34 0.3479 0.19 0.1985
0.2 Ff* 1.02 1.0159 1.02 1.0135 1.01 1.0105
Fo 0.34 0.3349 0.54 0.5268 0.66 0.6651
Fﬁ 0.49 0.4923 0.40 0.4042 0.24 0.2464
0.4 Ff* 1.03 1.0248 1.02 1.0199 1.02 1.0155
|:|B 0.29 0.2944 0.51 0.5029 0.65 0.6564
Fﬁ 0.55 0.5451 0.46 0.4583 0.28 0.2938
0.5 FA 1.0298 1.0227 1.0175
Fo 0.2869 0.4982 0.6551
Fo 0.5579 0.4728 0.3074
0.6 FA 1.04 1.0355 1.03 1.0257 1.02 1.0192
|:|B 0.28 0.2829 0.50 0.4956 0.65 0.6545
Fﬁ 0.57 0.5658 0.49 0.4830 0.32 0.3175
0.8 FA 1.05 1.0487 1.04 1.0320 1.03 1.0225
FB 0.28 0.2801 0.50 0.4933 0.65 0.6544
Fo 0.58 0.5731 0.50 0.4957 0.33 0.3313
1.0 FA 1.07 1.0632 1.04 1.0387 1.03 1.0255
|:|B 0.28 0.2802 0.50 0.4927 0.66 0.6548
Fﬁ 0.58 0.5742 0.51 0.5028 0.34 0.3402

length. The present numerical results of the SIFs normalized tnjth those reported in Ref29]. From Table 12, it is found that
o/ma are given in Table 12. For purposes of comparison, Tabtke effect of the load paramet&ron the SIFs varies witl¥ and
12 also lists the numerical results in RgI9]. From Table 12, itis a/b and that the effect of the rhombus anglen the SIFs varies
found that the present numerical results are in excellent agreemeith load parametek anda/b.

2a

Fig. 6 A skew-symmetric branched crack

2c

g

6 Numerical Simulation of Fatigue Crack Propagation
Process Under Mixed-Mode Conditions

On the application of boundary element methods to crack
propagation analysis, the first attempt to automatically model
crack propagation under mixed-mode conditions was given by
Ingraffea, Blanford, and Liggeft22] for two-dimensional prob-
lems. They used the multiregion methpt3] together with the
maximum circumferential stress criterion to calculate the direction
of crack propagation. AliabadR3] pointed out that the difficulty
with the multiregion method is that the introduction of artificial
boundaries to divide the regions is not unique, and thus it is not
easy to implement it in an automatic procedure. In an incremental
crack extension analysis, these artificial boundaries must be re-
peatedly introduced for each increment of crack extension. Finite
element simulationg25,2€] when used to analyze crack problems

Table 10 Normalized SIFs at a branched crack tip for a skew-symmetric branched crack

60 deg 45 deg 30 deg
Refs.[6], [7] Present Refd6], [7] Present Refd6], [7] Present

b/a FI FII I:I I:II I:I I:II FI I:II FI FII FI I:II

0.01 0.5905 0.4120 0.5936 0.4243 0.7485 0.3686 0.7485 0.3772 0.8809 0.2780 0.8792 0.2834
0.05 0.5232 0.4610 0.5274 0.4731 0.7058 0.4184 0.7069 0.4268 0.8603 0.3182 0.8600 0.3236
0.1 0.4822 0.4920 0.4853 0.5022 0.6805 0.4507 0.6811 0.4560 0.8483 0.3436 0.8479 0.3469
0.2 0.4306 0.5350 0.4384 0.5391 0.6532 0.4888 0.6532 0.4913 0.8356 0.3727 0.8351 0.3741
0.4 0.3934 0.5794 0.3944 0.5830 0.6280 0.5284 0.6273 0.5303 0.8242 0.4021 0.8231 0.4032
0.6 0.3734 0.6031 0.3737 0.6062 0.6161 0.5491 0.6150 0.5508 0.8187 0.4176 0.8172 0.4184
0.8 0.3629 0.6170 0.3626 0.6197 0.6095 0.5617 0.6080 0.5630 0.8156 0.4271 0.8137 0.4277
1.0 0.3570 0.6253 0.3564 0.6278 0.6054 0.5698 0.6036 0.5709 0.8135 0.4335 0.8114 0.4340
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Fig. 7 A doubly symmetrically branched crack ¢ ¢ o ‘

Fig. 8 Cracks emanating from a rhombus hole in an infinite

have to face difficult computational problems connected with tHdate under biaxial loads
discretization of the continuum into finite elements, particularly
when some cracks propagate, thus changing the interior bound-
aries of the solids. propagation directiorfe.g., Sih and Barthelem}83]) except for

In this paper, the hybrid displacement discontinuity method ar@dh equation similar to Eq32). Here, the fatigue propagation of a
the maximum circumferential stress criteri@#] are combined to crack under mixed-mode conditions is assumed to satisfy the fol-
form a very effective numerical approach for simulating the fdowing conditions:
tigue crack propagation process in plane elastic bodies undeg) A fatigue crack will propagate to the direction of the maxi-
mixed-mode conditions. In the numerical simulation, for each in- mum tangential stress surrounding the crack tip.
crement of crack extension, remeshing of existing boundaries is(2) The fatigue crack propagation rate equation is
not required because of an intrinsic feature of the HDDM. Crack
propagation is simulated by adding new boundary elements on the E _
incremental crack extension to the previous crack boundaries. At AN
the same time, the element characters of some related elements
are adjusted according to the manner in which the boundary eYé2€r€
ment method is implemented. As an example, the fatigue propa- 6o
gation process of cracks emanating from a circular hole in a plane AK.= %cos?[A K (1+cos6y) —3AK, sin ], (34)
elastic plate is simulated using the numerical simulation approach.

It is well known that the fatigue crack propagation, whictwhere 6, is the crack propagation angle predicted according to
propagates in a self-similar manner, obeys Paris’s equation  condition (1), AK, and AK,, are, respectively, the ranges of the

stress intensity factor§; andK,,, andC andn are material con-
Aa/AN=A(AK)™, (32)  stants that are related to the material constArasdm in Paris’s

whereAa/AN is the fatigue crack propagation ratidandmare equation(32) by the relations
gittgrnzll .constants, andK, is the range of the stress intensity C=A. n=m. (35)

In general, the fatigue propagation analysis of a crack underAs an example, the fatigue propagation process of cracks ema-
mixed-mode conditions involves the determination of the cragikating from a circular holésee Fig. 9 in an infinite plate sub-

C(AKQ", (33)

Table 11 Normalized SIFs for a doubly symmetric branched crack

60 deg 45 deg 30 deg
FI FII FI FII FI FII
b/a Vitek Present Vitek Present Vitek Present Vitek Present Vitek Present Vitek Present
0.01 0.557 0.5664 0.292 0.2980 0.662 0.6685 0.200 0.2029 0.724 0.7240 0.073 0.0742
0.05 0.491 0.5014 0.350 0.3565 0.627 0.6348 0.262 0.2646 0.718 0.7188 0.125 0.1258
0.1 0.452 0.4615 0.394 0.3984 0.611 0.6184 0.307 0.3081 0.723 0.7240 0.162 0.1611
0.2 0.410 0.4184 0.454 0.4576 0.600 0.6074 0.368 0.3686 0.740 0.7419 0.211 0.2096
0.4 0.3830 0.5371 0.6127 0.4502 0.7839 0.2745
0.5 0.370 0.3764 0.562 0.5665 0.616 0.6208 0.481 0.4813 0.807 0.8060 0.301 0.2993
0.6 0.3736 0.5916 0.6307 0.5085 0.8282 0.3212
0.8 0.3749 0.6332 0.6532 0.5551 0.8719 0.3589
1.0 0.377 0.3810 0.663 0.6673 0.676 0.6774 0.591 0.5946 0.919 0.9144 0.393 0.3911

338 / Vol. 72, MAY 2005 Transactions of the ASME



Table 12 Normalized SIFs for cracks emanating from a rhombus hole in an infinite plate under biaxial loads

A=0 A=-1 A=+1

a/lb 6=15 deg 6=30 deg 6=45 deg 6=45 deg[29] 6#=15 deg 6#=30 deg 6#=45 deg 6#=15 deg 60=30 deg 6=45 deg

1.05 1.0146 1.0389 1.0433 1.0313 1.1208 1.2461 0.9979 0.9570 0.8405
1.1 1.0105 1.0372 1.0602 1.07 1.0237 1.1072 1.2487 0.9973 0.9672 0.8717
1.2 1.0066 1.0305 1.0639 1.069 1.0157 1.0834 1.2229 0.9975 0.9776 0.9049
14 1.0031 1.0202 1.0535 1.058 1.0081 1.0530 1.1667 0.9981 0.9874 0.9403
1.6 1.0015 1.0137 1.0423 1.046 1.0046 1.0354 1.1244 0.9984 0.9920 0.9602
1.8 1.0005 1.0095 1.0333 1.037 1.0025 1.0244 1.0941 0.9985 0.9946 0.9725
2.0 1.0000 1.0067 1.0264 1.030 1.0013 1.0173 1.0723 0.9987 0.9961 0.9805
2.5 0.9993 1.0028 1.0150 0.9998 1.0078 1.0393 0.9988 0.9978 0.9907
3.0 0.9989 1.0009 1.0087 0.9991 1.0034 1.0225 0.9987 0.9984 0.9949
4.0 0.9986 0.9993 1.0027 0.9986 1.0000 1.0079 0.9986 0.9986 0.9975

jected to uniform cycle stress in tlyedirection at distances suffi- equation, the threshold value of the stress intensity fadtir;,,
ciently far away from the hole is simulated. For this crackyclic loading parameters, the mean stress and the character-
problem, the symmetric conditions about thandy-axes can be jstic of cyclic loading,R, are as follows:

used. In this analysis, the shear modulsPoisson’s ratia, the "
fracture toughnesk ., the material constanis andm in Paris’s G=2744 kg/mni, »=0.321, K =116 kg/mni?,

A=1.039x1071°,
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Analytical Solution for Shear
o.wang | Horizontal Wave Propagation in

Mechanical, Mate_rialsI and Aerospace - u .
s f - Piezoelectric Goupled Media by
Orlando, FL 32816

s I [nterdigital Transducer

S. T. Quek An analytical solution for the shear horizontal wave propagation excited by interdigital
Department of Civil Engineering, transducer in a piezoelectric coupled semi-infinite medium is developed. This solution is
National University of Singapore, an extension of earlier work on wave propagation in a piezoelectric coupled plate with

Singapore 119260 finitely long interdigital transducer by fully taking account of piezoelectric effects in

analysis. In the current analysis, the mathematical model for a semi-infinite metal sub-
strate bonded by a layer of interdigital transducer with infinite length is first derived. The

V. K. Varadan theoretical solutions are obtained in terms of elliptic integration of the first kind and of
Department of Engineering Science and the standard integral representation for Legendre polynomial. The essential hypothesis
Mechanics, for the derivation of the analysis is investigated. Based on the solution for infinitely long
The Pennsylvania State University, interdigital transducer, an analytical solution for the wave propagation in this semi-
University Park, PA 16802 infinite piezoelectric medium excited by a finitely long interdigital transducer is obtained
Fellow ASME through Fourier transform. This theoretical research can be applied to health monitoring

of structures by interdigital transducer. It could also be used as a framework for the
design of interdigital transducer in wave excitation of smart structures.
[DOI: 10.1115/1.187641)2

1 Introduction terdigital transducer is essential for all the above applications.

élthough there has been considerable literature on the analysis of
lmerdigital transducer, improvements can still be made. One ma-
8édifficulty of the analysis lies in accounting for the full electro-

An interdigital transducer wafer comprises a thin piezoelectr
film on which electrodes in the form of two alternating set o

fingers are deposited, as shown in Fig. 1. Such wafer is surfd

o : hanical coupling in the structure. Tséfd], Coquin and Tier-
bonded onto a substrate or structure for excitation or reception FC ; : L :
waves. In practice, an interdigital transducer is finite in length. gan[iz_], and Joshin and Wh.'tél?’] studied the' analysis of the .
{gerdigital transducer by solving an electrostatic problem, substi-

Interdigital transducer was first used in surface acoustic wal TN o . .
devices, which can be found in radar communication equipm ed the distribution of the electric fields into the electromechani-

as filters and delay linefL,2], and consumer products such a§_al coupled quation, and h_ence obtained the secondary electric
pagers, mobile phones, and send@s5]. Interdigital transducer fields and the dlsplacemer_]t fields. I_n the monograph_of Parton and
has also been used for separating, amplifying, and storing Signggdryavst_el{B], the analytical _solutlons for an mte_rdlgltal trans-
as well as signal processing in acousto-electrofiss]. Great ducer which generate Rayleigh surface waves in a hexagonal
potentials have been found in using interdigital transducer as sénm piezoelectric medium was presented based on the same
sors for various physical variables, such as force, electric field§ocedure. Another popular analysis was proposed by Balakrirev
magnetic fields, temperature, and presddre Interdigital trans- and Gilinskii [14] to use Green matrix method to solve a two-
ducer is nowadays used in the area of structural health monitoriignensional(2D) problem for a half-unbounded crystal. In prac-
due to its controllability of the excited waves and its conveniendée, the method is hardly feasible for an arbitrary crystal due to
in operation. Researches and experimental works using interdigfie difficulties in constructing the Green matrix. Some recent
tal transducer to excite Lamb wave for rapid monitoring of strugrogresses are contributed through the finite element method
tures have also been attemp{&d10]. The key issue for applica- [15-17, boundary element meth¢d8], and 2D’s Green function
tion of interdigital transducer in structural health monitoring i$19]. However, the behavior of surface acoustic wave by interdigi-
how to design the size of the interdigital transducer, such as i@ transducer still cannot be accurately modeled analytically and
wavelength and finger width, so that a wave signal with highgredicted. Kino[20] looked into the theory of excitation of sur-
magnitude and less dispersive effect can be excited and sendade acoustic waves on a nonpiezoelectric material by using inter-
Therefore, a complete mechanics analysis for the effect of thegital transducer. The results were given in terms of the pertur-
interdigital transducer on the wave solution is important and ekation in acoustic wave velocity. Engai21] presented the
sential for the design of interdigital transducer in its application a@lectrostatic field with an infinite number of space harmonics with
structural health monitoring. relative amplitudes given by the corresponding Legendre polyno-
The availability of good analytical and design methods for inmials. Ogilvy[22] presented an approximate analysis for predict-
ing the generation of elastic waves by interdigital transducer in
_ ) o multilayered piezoelectric materials. However, the width of the
oAb e opledNecharce i o THE AYEICAN SOCIETY interdigital ranscucer finger is not expliity taken ino account
PLIED MECHANICS. Manuscript received by the Applied Mechanics Division@Nd Neither are the finite dimensions of the interdigital transducer.
February 19, 2003; final revision, September 1, 2004. Associate Editor: K. Raimilarly, in the analysis of interdigital transducer in health moni-
Chandar_. Discussion on the_ paper shou_Id be addressed to the Edit_or, Prof. Rol_)ert(Ming of structures, the electromechanical effects are neglected in
McMeeklng,lJourlnaI oprplleq Mechanl_cs, Department of Mechanical and Enviro he design of the structure. Hence, the wave characteristics are
mental Engineering, University of California-Santa Barbara, Santa Barbara, . .
93106-5070, and will be accepted until four months after final publication in thetill Solely based on the metal substrate materials. Wang and
paper itself in the ASME JOURNAL OF APPLIED MECHANICS. Varadan[23,24] provided an analytical mathematical solution for

Journal of Applied Mechanics Copyright © 2005 by ASME MAY 2005, Vol. 72 | 341



and cause wave propagation with a single frequency in the piezo-
electric coupled structure. The poling direction of the piezoelectric
layer is in the transversg;-direction and hence only shear hori-
zontal wave will be studied in this layered structure. Therefore,
the only nonvanishing displacement component in both host struc-
ture and piezoelectric layer is the onedadirection, which is also
independent oks. The corresponding shear stresses components
and the equations of motion in the host medium are given by

dug

A !
Typical IDT 013= Ca™ > (1a)
yp &Xl
Finger electrodes )
Ve'® —Ve'® du
¢ 0y = Chpy— (1b)
Piezoelectric wafer ﬁXz

(7013 . (90'&:% ., &Zué
X axy P

from which the propagation of shear horizontal wave excited by
interdigital transducer in the host structure is obtained by:

P

ﬁtz
wherec,, is the shear modulug, the mass density, and, is the
deflection, all of the host medium. The Laplace operatoWis

=(al dx1) +(d/ 9x,). The shear stress in the host semi-infinite me-
dium in x,-direction can be written as:

(10

X3

ch V2= (1d)

Metal substrate

dug
0pa=Cpy— 2
2= Caa 2
In the piezoelectric layer, the equation of the electrostatic field, the
constitutive relations, and the equation of motion are give as

Fig. 1 Piezoelectric coupled medium with surface bonded in-
terdigital transducer

follows:

wave propagation in a piezoelectric coupled plate with finitely
long interdigital transducer by fully taking account of the piezo- D,= e15% - Ellﬁa (3a)
electric effects in their analysis. 1291 291

As an extension of the research [i83,24], this paper is to
derive an analytical solution for shear horizontal wave propaga- D.—e Mz ¢ (3b)
tion excited by interdigital transducer in a piezoelectric coupled R
semi-infinite medium with the coupling electromechanical effects
fully modelled. Such a solution is especially essential for the ap- dD; dD,
plication of interdigital transducer in the health monitoring of ;JfX:O (30)
structures as discussed. The convergence of the algorithm is also 1 2
investigated in the current research. au o

The substrate considered in this paper is a semi-infinite metal, 013= Cag— + €5, (3d)
surface bonded with an interdigital transducer abutting the 281 281
vacuum. The dispersion characteristics of the structure are first
obtained. The mathematical solution for the wave propagation in 03 = C44% + 615% (30)
the piezoelectric medium with an infinitely long interdigital trans- Xy Xy
ducer is next presented. The solutions in terms of elliptic integra-
tion of the first kind and the standard integral representation for do13  do3 &Zug
Legendre polynomial are derived. The hypothesis for the limita- E + ?2 L (3

tion of the wavelength of interdigital transducer in the model iﬁ' . . . . . .
presented and verified. Thirdly, the analytical solution for tha®m Which, the coupling equation for the piezoelectric layer is
wave propagation in the medium with finitely long interdigita@’ven by[25]

transducer is obtained using Fourier transformation. It is hoped 5 X #us
that this paper provides fundamental contributions to understand- CagV Uz + €15V ¢=P? (4a)
ing wave propagation in piezoelectric structure by interdigital
transducer and useful for the design of interdigital transducer in —
9 g €5V~ E1,V%¢=0 (4b)

practical applications.
wherec,, is the elastic moduluss; 5 the piezoelectric coefficient,
E11 the dielectric constanf the mass density, all of the piezo-

. . . electric layer, andu; is the deflection,D; and D, the electric
_Consider a metallic half-spacg,>0) covered by a piezoelec- gigpjacement, andp the electric potential, in the piezoelectric
tric layer of thickness (-h<x,<0) with interdigital transducer |ayer. The shear stress, electric field and electric displacement in

electrodes deposited on it as shown in Fig. 1. Each “comb-likghe piezoelectric layer in the,-direction are written as,

2 Problem Description

electrode has a regular finger spacing bfahd the width of each
finger is 2. An electric voltage applied across the electrodes will
generate an alternating periodic electric field in shedirection
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dd €
Ep=-—— 6) Y=d- = U (19
Xy 11
o %+~ . g _ o . into Eq. (4b) to yield
2= 81sgy, T FRe T Gy TR V2y=0 (20

The potentiaﬂ; in the vacuum(above the piezoelectric layetan where the solution can be written as

be derived by solving Maxwell’s equation as follows: = (Bye2 + B,g2)glelt-(ka/w) (21)
VZ$=0 (8) In addition, substituting Eq4b) into (4a) gives
The . corrgsponding electric displacemelﬁt is given by the CaaV2Us = ‘92_123 (22)
relationship at
~ whereCyy=cyy+(€2/E1,). The solution of Eq(22) is given by
Peo :052 ©® Uz = (Aje70% + Aget2)e@t-(/e)  wheny <v,v’  (23)

where = is the dielectric constant of the vacuum.

. . . . = i jw(t=(kxq/w)) ’
The boundary conditions for the kinematics, traction and elec- Y3 (A1 COS)Xp + Ay SN xXo) € t whenv' >v > v,

tric fields of the piezoelectric coupled media are expressed as, at (24
X=0: where y=ky/|1—(w/kv)?, vf):EM/p for the phase velocity of pi-
Uz = Ug (10)  ezoelectric layer.
) Substituting Eqs(21), (23), and(24) into Egs.(19) and(7), ¢
023= 03 (1)  andD, can be expressed as
$=0 (12) b= [(Ble—kxz +B,e%) + S5 AV + A,e) |olt-toxo)
at X,=-h: 211
0p3= 0 (13) (25)
- D,=- : k(- B e—kxz +B e|<X2 ejw(t—(kxllw)) 26
b= (14 2 1[K(= By 2€°9)] (26)

whenv <v, v’, and

D,=D (15)
Based on the above equations, the solution for the wave excitation
by interdigital transducer in the piezoelectric coupled medium,
including the propagation dispersion characteristics, will be ob- +A, SinXxZ):|ejm(t—(kx1/m)) 27)
tained and discussed in the following sections.

e
¢= [(Ble_kxz +B,e2) + —2(A; cosyx,
=11

(=1

3 Dispersion Characteristics of Shear Horizontal D, ==~ Byl k(Bye ™2 - Beh) Je(ou/e) (28
Wave Propagation for the Close-Circuit Case whenv' >v>u),

Prior to obtaining the wave excitation by interdigital transducer SuPstituting Eqs(18) and(23)~(26) into Egs.(2) and(5) gives
in a coupled structure, the dispersion characteristics of the shear
horizontal wave propagation in the piezoelectric coupled medium
is first summarized, based on an earlier st{@}§] where the sur- T o x _ e
faces of the piezoelectric layer are fully coated with electrode T23= [(= X)Cad A€ 2~ A2) + (- K)ers(Bye™
films for closed-circuit case, i.e. the potential on electrode sur- - B,e%e)Jelelt-(ka/e) (30)

faces is equally null. onp < ' and
For the case when the piezoelectric layer is closely connect&':h USUp U

730 Ci— X VA& gl 29

the solution ofuj is given by 023= [(= X)Caa(Aq SN XX — A, COSYXo) + (— K)er5(B,e7Fe
Ué — f'(Xz)ei(wt_kxl) (16) _ Bzekxz)]eiw(t—(kxllw)) (31)
wherek is the wave number of propagating wave;is circular wheny’ >v>vp.
frequency of the motionj=-1. In the paper, the solutions for the caselvp, v’ is of main
Substituting Eq(16) into Eq. (1d) yields, concern when interdigital transducer is considered in wave exci-

e tation as will be explained later. Hence the expressions for the
4% =0 (17) deflection, shears stress and electric variables in the piezoelectric
dx% coupled medium given by Eq§23), (30), (25), and(26) will be

employed.
The boundary conditions pertaining to this closed-circuit case
are as follows. Ax,=0, Egs.(10)«(12) remain valid, but ak,=

where a?=w?/v'?=K?, v'?=c},lp’.
The solution forv=(w/k)<v’ is found to be

ué:Ke—x’XZejmt—kxl) (18 . the conditions are given as,
where y’ =k\1-(w/kv')2. Forv=v’, the solution represents re- 023=0 (32
fracted waves carrying energy away from the layer. Such a wave
system is not of significance at any distance because it loses en- ¢=0 (33
ergy quickly and will not discussed further in this paper. Enforcing these five boundary conditions yields:
The solution in the piezoelectric layer can be obtained by first _
substituting A=A +A, (34
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Table 1 Material properties

Host structure

Piezoelectric layer

(Stee) (PZT4)
Young's module E=210X 1¢° C44=8.5x 10°
(N/m?)
Mass density 7.8x10° 7.5x10°
(kg/m?)
€5 (C/mP) 10.5
931 (C/mz) _41
E, (FIm) 8.854x 10712
B/ 800
533/50 660

(= X)Cag(AL = Ag) + (- K)eys(B; = By) = (- )(')(34,14X (39
B+ Byt = (A +A) =0 (36)
11

(= X)Cas(AeX" = A + (- K)ey5(B€" - B,e ) =0 (37)

(B, + Bze‘k“)+ (Ale"h+A2e‘Xh) 0 (39)

The existence of nontrivial solutions for the coefficieAtsAl, A,,

v=v/vg
1.8
Shear wave velocity in host
2164 medium
g
R . Sty ot SRR -
4
5 - First mode
E -e- Second mode
g —&— Third mode
E -m- Fourth mode
2 -
Shear wave velocity ir|
Bleustein wave velocity piezoelectric material
0.8 T T T T
0 0.5 1 1.5 2 2.5

Non-dimensional wave number k =kh/ 27

Fig. 2 Dispersive curves for PZT 4 piezoelectric coupled plate

frequency is given byw=vk. It can be noted that at high wave
number the relationship is virtually linear. This figure will be re-
ferred to when searching for the wave number at a specific fre-
quency in the process of solving for the shear horizontal wave
propagation excited by interdigital transducer in the piezoelectric
coupled medium. Thus, the derived results for the shear horizontal
wave motion in the piezoelectric coupled medium will provide a

By, and B; is studied through the usual eigenvalue formulatiofpundation for the wave solution excited by the interdigital trans-

and briefly summarized. Firs); and A, may be expressed in
terms ofB; andB, from Egs.(34)—(36) as follows

A1 =N;B; +N,B;
Az=SB; + SB, (40)

Substituting the above two equations into E¢37) and (38)
yields the following two equations:

Q1B +Q;B,=0
RiB; +R:B,=0 (42
The variableN;, Ny, S;, S, andQq, Q,, R;, R, in Egs.(39)—(42)

(39

(41)

ducer proposed next.

4  Analytical Solution for Wave Propagation in the Me-
dium With Infinitely Long Interdigital Transducer

To provide a mathematical solution for shear wave propagation
excited by an interdigital transducer with finite length, the theo-
retical solution for the wave motion by an infinitely long interdigi-
tal transducer has to be studied preliminarily. For an infinitely
long interdigital transducer with periodic finger spacing shown in
Fig. 1, the solution ofi in the host medium may be written in
periodic form with wavelength of 14 corresponding to the finger

are listed in the Appendix. The existence of nontrivial solutionspacing in each electrode in thg-direction. Following Eq(18),

for B; andB,, and henceé\; andA,, is thus given by

A=RQ-RQ,=0 43

The dispersion curves corresponding to different wave modes will
be given for the steel-PZT coupled medium. Table 1 lists the

the deflectioru; can thus be expressed in Fourier series as

up= 2 Ee—xi’xzé(mt—kixl) (44)

material properties used in the numerical simulations. The sheehere

wave velocities for the host steel and piezoelectric materials are
Veee™ 3281 m/s,v,=2351 m/s. The Bleustein-Gulyaev surface

wave velocities in PZT4 can be determined by the equation

/ k
vg=vp\/1- (1+k5)2'

whereki =ef5/ c44= 11 [27,28. Numerically, this surface wave ve-
locity is vg=2181 m/s.

Figure 2 shows the phase velocities for the first four modes

where the nondimensional phase velocity is_takeﬁas/vg and
the nondimensional wave number is given loykh/27. For the

first mode, the phase velocity converges to the Bleustein—-Gulyaez ‘v
wave velocity for a large wave number. This is due to the fact thaw& .
the surface wave for the piezoelectric layer becomes domlnar.= Kol
when the wave number is large compared with the thickness of thZ 071 e
layer. The higher modes only exist beyond certain a wave numbe

for example, the second mode begins at approxim&tely.4. The

wave velocities of the higher modes approach the shear velocit
of the piezoelectric layer with increasing wave number. The cor-

i=iy

. ol 1

i1 =INT —,——E ,
v T

—o— First mode

n
-

onal frequency
L}
»
*»r

7 +- Second mode

4 Third mode

-
»
L

u - Fourth mode

0 T T T T
0 0.5 1 1.5 2
Non-dimensional wavenumber [ = kh /27

25

respondingw—k is shown in Fig. 3, where the nondimensional Fig. 3 Relationship between frequency and wave number
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023= 2, [(= X)Cas( A€ X2 — Aye?2) + (— ky)eyo(Bye k2
i=1
(kxgl )

- B el

whenw/ki<up,v’, and

(53

and INT[.] stands for the integer part of the number within the in
bracket. The corresponding shear stress in the metal core given By = ' [ (= y,)Ca4(Ay; SN xiX — Ay COSYiXo) + (— k;)eps(Bye %2

Eq.(2) is

023 = E Chu(— x| A X eglolt=(kxsfw)

(45

i=iy

_ B2i ekixz) ]el w(t=(kix;/w))

whenv' > w/ki>v,,.
The potentlak?) in the vacuum can be derived below by con-

(59)

The variables) andus for the piezoelectric layer following Egs. sidering Maxwell equation

(21), (23), and(24) can similarly be written as

¥= E (BliE‘kixz + By, ekixz)eiw(t—(kixllw))

i=0

(46)

0

i w
Ug= Y, (Aye e + Ayeve)elt-kx/e) when <ot
i=l i

(47

. i w
Us= >, (Ag COSYXo + Ay SiN xiXp) /@) wheny' > =

ki

> vp
=iy

(49)

where

2
w
Xk 1(7) |

. oL 1
|2=INT{———E]
v

andl=maxXiq,iy).

The expressions fop and D, corresponding to those of Egs.

(25)—(28) are shown below,

b= E |:(Bl ek + By o) g (A1|e x>

+ A2ieXiX2)] ejm(l—(kixl/m)) (49)
D, = 2, - Efki(- Bye e + Byehe) Jget-tvde)  (50)
i=l
when w/k <v,,v’, and
i
b= 2 [(Bn 2 + B e2) + = (All COSXiX;
i=iy r—fll
+ Ay sin Xixz)]ei“’“‘(ki"l""” (51)
iz
D,= E - Bqilki(- Bye %2 - Byeve) Jglet-leal) (52

i=iy
whenv' > w/k>v,,.
The shear stress in the piezoelectric layer based or{3tds

Journal of Applied Mechanics

VZ$=0 (55)

where the solution remains finite as— —. Hence,?{; andD take
the form

'('Z) - 2 Ci ekiXZej o(t=(kiX,/w)) (56)

i=0

D= E — 2 kG elglo(t-(kixy/w)

i=0

(57)

The boundary conditions pertaining to this infinitely long inter-
digital transducer set-up can be stated as followsxAt0, Egs.
(10—12) hold, whereas at,=-h,

73=0 (58)
$=9 (59)
D,= D Outside the electrodes (60)
é=¢=V Inside the electrodes (61)

whereV is the magnitude of the alternating voltage applied on the
interdigital transducer.

The analytical solution of the wave propagation excited by in-
terdigital transducer in the piezoelectric coupled medium provided
below is under the hypothesis Iof maxi4,i,)=0. This hypothesis
ensures that all the solutions of the physical variables in the pi-
ezoelectric layer follow Eq€47), (49), and(50) by proper design
of the basic wave numbdg=17/2L, i.e., the design of the wave-
length of the interdigital transducer. The validity of this hypoth-
esis is discussed hereinafter.

As an illustration, consider a steel-PZT 4 piezoelectric coupled
medium where the bulk shear wave velocity of steel and PZT 4
are about'=3281 m/sp,=2351 m/s. If the circular frequency
of the excitation voltage is used as 1.4 MHz, the hypothesis of
=0 requiresL <11.1 mm, which means the wavelength of inter-
digital transducer is 44.4 mm. Such requirement is satisfied by
most interdigital transducer designs, especially for MEMS de-
signs. Upon the above observation, the hypothesis of using Egs.
(47), (49), and (50) for the solutions of wave propagation in the
piezoelectric layer is thus reasonable and valid for most of the
designs of the interdigital transducer.

Substituting the solutions into boundary conditions by assum-
ing 1=0 results in

E AeTkx= Z (A + Ag)elkx
i=0

(62
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©

2 [(= X)) Caa(Agi = Ag) + (= ki)eys(By; — By) Je Tk

i=0
=2 (- x ATk (63
i=0
oo . |
(Bli +By =+ (Ay + Azi)>e_lkixl =0 (64
i=0 =11
E ((= Xi)Cag(Ap 2" = Aye 2" + (= k) ey5(By; "
i=0
- BZie_kih))e_jkixl =0 (65)

> ((Bliek‘h +Bye ") + % + (A e + Azie"“h)>e‘jkixl
i=0 =11
= i Cie_kihe_jkixl (66)
i=0
§ (= E1a(~ kB + kiBye ™M + Eok CieTkiMe ki
i=0
=0 a<x <L (67)
i Celiheglii=v 0<x,<a (68)
i=0

The analytical solution for all the six sets of coefficiev?ﬂ;s A,
Ay, Byj, By, andC; (i=1,2...
pressed as follows:

Agi = NyiByj + NyiBy, (69)

Agi = 5By + 5By (70

where Ny, No, Si, Sy, 1=0,1,2,...3% are shown in the

Appendix.
Substituting the above two equations into E(5) and (66)
yields

ke
(NlieXih - Syeh+ ITlsekih) Bui + (NzieX‘h - Sy
XiCa4
kie
- 'Tlsekih> By =0 (71
XiCa4

i.e. QuBy+QyBy=0 (72)

e e . _h, © ,
(ekih"' —ONget + B S X'h) By + (e kh+ —EN e
=11 Ea11 =11

=1 —

e
e Szie_Xih> By =Cie™"

f—
=

=11

(73
i.e. RyBy+RyBy=Cie™" (749

From Eqgs.(72) and(74), B;; andB,; may obtained in terms df;
as

Bj=—7— (75
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) will be determined in the same
manner as in Sec. 3. The coefficiertg, and A, may be ex-

2i %
R2| Rll
Qui
Substituting the above two expressions into E&Y) gives,
” = ih =, e kh
2 kiCie"kih EO+ =i - ——u e Tkixy
=0 Ry - &Rzi Roi = %Rli
Qqi Qui
=0 a<x <L (77
Denoting
— =P Eqen
Ci=Ce " Eo+ 11Q B llQ (78)
Ri—~"Ry Ry- 2Ry
Qai Qu
Egs.(67) and(68) may be rearranged as
S kCel=0 0<x <a (79)
i=0
S ca+F)eka=v a<x, <L (80)
i=0
Eqe4 Epehn |\t
whereF; = Ey+ llQ - llQ -1
Ri—~"Ry Ry- 2Ry
Qqi Qu

Rewriting Eqs.(79) and(80) in their real function forms gives,

%

1\— 1\ _
2(1+§>Cicos(i+§>x:0 a<x<m

i=0

(81)

©

— 1\ .
ECi(1+Fi)cos<i+E>x:V 0<x<a

i=0

(82

wherex=mx;/L, a=wal/L are nondimensional parameters.

The solutions for Eqs(81) and (82) can be obtained from an
infinite system of linear algebraic equatiofsee Bateman and
Erdelyi [27] and Parton and Kudryavtsgs)).

The set of equations is given as,

C= PO S G (=12,...7) (83
[3h(og =
i +—|K|cos=
2 2
where
where g, = <i + %)f P,(cosé)P;(cosé)sinédé  (84)
0
‘E £ CO{i + %)de
Pi(cosé) = L = (85
T

o \COSX - cos¢

Pi(cosé) in the above equation is the standard integral represen-
tation for the Legendre polynomial, and

©

¢ Pi(cos¢)
K(cos—) = '
2) =2 (]
2

is the full elliptic integral of the first kind22].
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In practice, finiteN terms are used in E¢83), whereN must be 05 o8
sufficiently large tg ensure convergence of the so.lu.tion;Thfe sys K:/>>‘/ a=05
tem of N equations to solve for the coefficient§; (i 0.0 — ; :
=1,2,...N)is \5 10 15 20 25 30
_ v 0.5 - @=03
[FKC}=———AP} (86 2
a 3
K(COS‘ 5 -1.0
2 E
3
where -1.5 -
1+F B Fofor -0 FuBa
N G I
F1Bin FaBon oo 1+FyBan 25 Number of terms
P,(cosa)/(1 +1/2) Fig. 4 The converge of the coefficient C
P,(cosa)/(2 + 1/
CRE )( ? (88
Pn(cosa)/(N + 1/2) First the electric potential in the vacquﬂ(xl,xz,t) of the
- - — 7 metal forx, <-h is investigated, where its Fourier transform with
and{C}:{Cl,Cz, - ,CN} . - respect to(l is
From Eq.(86), the solution of{C} is obtained as, 1 (" .
— V ¢(X1,X2,t) = 2_f $(§1x21t)e_1§)(1d§ (91)
{C=———=I[FI{P} (89) T
K<0059 The image functionp can be written according to E¢G6) as
Finally, the coefficient§C}={C;,C,, ...,C\}" is derived accord- B(E1) = B(,0,1)e7 (92

ing to Eq.(78) The solution of the image function of(£,x,,t) requires the

_ diag(kh — Vv e o knowledge of the distribution ab throughout the boundary. Thus,
{C} = diage""(F; + 1){C} = diag(e®™(F; + D)[F]™{P} it is assumed that?b(xl,—h,t) is given by Egs.(56) and (90),

a
K(COS;) which are obtained from the solution for infinitely long interdigi-
tal transducer in the electrodes region, and null outside the elec-

(90)  trodes region. This assumption should be realistic for sufficiently

long transducer gratings. Similar assumption was proposed by

Parton[8] when they studied the Lamb wave propagation excited

by interdigital transducer without the piezoelectric-mechanical

coupling effect considered in the model.

Hence,

where diag-) denotes a diagonal matrix.

The coefficients {B;}={B;;,B1s,....B;n}’ and {B,}
={B,1,B,,, ... B} can be derived from Eq$75) and(76), and
the Coeﬁicients, {Al}:{All,Alz, . ,A]_N}T, {Az}

={Ap1, Az, ... Ao}, and{K}:{Kl,Az, ...,Ay}T can be obtained Ly

accordingly as well. All the variables are listed in the Appendix. HE-NY) :J B(xy,— h,t)el®dx, (93
The analytical solutions of the deflection in both the metal sub- L,

strate and the piezoelectric layer, the electric potential and electéic . . . .

displacement in the piezoelectric layer and the electric potentriPStituting Eq(56) into the above equation yields,

and electric displacement in the vacuum can then be obtained N sin(k + &L, sin(k — L, .
once the results of coefficienfa}, {A;}, {As}, {B}, {B,}, and{C} dE-hty=> e‘kihci< 1y ! 1>elwt
are known. i=0 ki+& ki—¢

To illustrate the convergence of the solution in E8§9), the —Cf>(§ —h)eet (94)
solution forC; (i=1,2,...,25 is plotted in Fig. 4 whera=0.3, T
0.5, and 0.8, respectively. It can be seen that the convergencevbereC; is given by Eq.(90).
the solution of Eq(89) is assured numerically. The image functions for the Fourier transform of the variables
ug(Xg,%3,1) in Eq. (1d), ¢(Xq,X3,1) in Eq. (19), anduz(Xy,Xs,t) in
Eq. (23) with respect tox;, are uy(é,xs,t), ¥(€,xs,t), and
5 Analytical Solution for Wave Propagation in the Me-  Us(£,X3,1), respectively. Based on similar analyses in Ed$),

dium With Finitely Long Interdigital Transducer (23), and(21), the above variables can be written as follows:
In engineering applications, the interdigital transducer is usu- Uz(€,%o,1) =U§(§)e‘x'x2ei‘“‘ (95

ally (_Jf finitg Ie_ngth. The s_olutio_n _for the wave pro_pagati_on in the B B

medium with finitely long interdigital transducer will be discussed Tg(£,Xont) = (U31(§)9_XX2 + Usz(g)exxz)ejwt (96)

based on the solution for wave propagation by an infinitely long
interdigital transducer provided in the previous section. The deri-

— (i ~ 4 1 EXo\ ml 0t
vation of the solution is accomplished through the use of Fourier WExat) = (Ya(HE™2 + ()€ ©7)
transform, instead of Fourier series. The length of the interdigitihus, substituting the above variables into the boundary condi-
transducer is assumed to bke;2 tions of Egs.(10—(12), (58), and(59) yields,
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UC,’: = U3l + U32 (98) 5.0E-O4¢

(= x)Cas U31 2) + (- dens( ¢ lﬂz) (=x")cuUs (99 4.3E-04 4
—— N=5
Ynt it (U31+ Us) =0 (100 g 36E-047 -o-N=10
% - N=15
= hTT — o T < 2.9E-04 1 - N=25
(= X)Caa(U31" = Uz + (= §eys(yne — e = 0
(101) 2.2E-04
(’/’legh + ’/’ € gh) + (U?:lexh + U32e Xh) CD(§ he” o 1'5E-040.o 0.2 of4 ofe 0.8 10 1.2

Ratio of the width of IDT to the IDT wavelength g = /L
(102
— - = = — Fig. 5 Convergence of the amplitude
To solve forUj, Usy, Uy, ¢, and ¢, the same procedure in
solving Egs.(34)—(38) is adopted, that is,

s =Nyt + Natle (103 e real axis. Note that the exponential characteristia é§ the
— = — order ofe?", which ensures the integration is null along the curve
Uso= S+ S (104 i the upper half-plane aR— . The solution for the improper
Substituting the above two equations into E¢01) and (102  integration of Eq(112) is thus obtained as,
yields =
- - ’ _ ch(éSa ) = X' %ol =g (@t=Exy)
Qi+ Q=0 (109 Us(Xq, %o, t) = 2 A (A + A1)|§:§Se 2g=gel (W76
&=t
Ryt + Rothp = B(¢,~h) (106) (114
from which gives It is noted that Eq(113) is the dispersion characteristic equation
B of the piezoelectric coupled media with a pair of electrodes on the
¢1=—92q‘>(§,—h) (107) upper and lower surface of the piezoelectric layer shortly con-
A nected, which was presented in Sec. 2. The valués;afan be
9 easily obtained from the dispersion curve in Fig. 3 for a given
—_ Q= fixed frequencyw.
Vo= A (&) (1089 The deflection in the piezoelectric layer can be similarly ob-

whereA is given in Eq.(43). tained using Eqsi96) and (97)

From Eqgs.(103), (104), and(98), we have

jP(&-h) o
b b U0, % 0) = 5 (Mg + A,e09)] ., elle6)
—  ®(&-h AD(&-h 2 _ s
Us, = (§A )(Nle‘ N1Qo) = % (109 Ale=g,
(119
— P —h A —h The solution fory(x4,x3,t) is obtained through Eq98) as
Uso= (i {(5.01-5.00) = % (110 - -
‘//(Xl X t) = J_M (_ Qle—§x2 + Qze§x2)| _ ej(“’“fsxl)
— _®(-h T2 N e £k,
Us=— —(&1+4) (1121 116

The variablesiz(x;, X3, t), #(X1,X3,t), anduz(xy,Xs,t) can thus be The electric potential in the piezoelectric layer can be expressed

obtained by taking the inverse Fourier transform. As an exampféom Eq. (19)

consideruj(xy,Xs,t) where the inverse Fourier transform 0§ is Sinced(&, ~h) appears in the expressions of all physical vari-

expressed as ables discussed above and is the key term demonstrating the effect
of the geometry of interdigital transducer on the wave solutions,

, 1 e i the numerical simulations on this term will be conducted to inves-
Us(x %, 1) = Zf Us(§e e e udg tigate the design of the size of the interdigital transducer on the
w excited wave motion in the medium. In the following simulations,
" &(£,-h) _ o the length of interdigital transducer is assumed to be half wave-
(Ay+ Ap)e@te X XegiPagg length of it which means only two fingers are used in the
2m)_, calculations.

(112 Figure 5 shows the distribution ci7>(§s,—h) with respect taN

The above improper integral can be solved by the residue th ainst the finger width=wa/L for the case where=6 mm and

rem. A single pole in the complex integrand of the last equation i ‘=105'1LA It is not%d first .that.thehcon\éergenc‘e is Obtainf.'d Iébr f
& i.e. the root of the following equation, >15. Another observation is that the maximum amplitude o

_ ®d(&,-h) occurs sharply around=0.9 and decays rapidly from
A=0 (113 this value. This conclusion is important in the design of the inter-
The integration of the complex function is along a close pattligital transducer since a wave signal with higher amplitude may
which comprises a curve with radiisin the upper half plane and occur ata=0.9 in this case. Thus the design of the interdigital
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"3 of the variation inx, direction follows the functionA,e x*2
3

5.E-0: +A,e¥*2, The effect of the finger widtha, the wavelength of in-
h=05L - terdigital transducet,, and the thickness of the piezoelectric layer
4.E-03 finger, h, on the displacement all follow the conclusion derived
above from Figs. 5-7.
']
E 3.E-03 1 h=03L
5 6 Concluding Remarks
E 2.E-03 | h=02L _ ) _
< / An analytical solution for the shear horizontal wave propaga-
___—///\ tion excited by an interdigital transducer in a piezoelectric
1.6-03 1 h=0.1L coupled medium is developed. The dispersion characteristics of
/ the shear horizontal wave in this medium are first presented for
0.E+00 . . . the close-circuit case as reference for deriving the subsequent ana-
0.00 0.30 0.60 0.90 1.20 lytical solution. The solution is then shown for the case when an
Ratio of the width of IDT to the IDT wavelength @=m/L infinitely long interdigital transducer is used on the structure. The
mathematical solution is valid for the case where the wavelength
Fig. 6 The amplitude of the excited motion at different heights is assumed to be designed appropriately, true for most interdigital
of the piezoelectric layer transducer used in practice with respect to steel-PZT media. The

solution of wave propagation for finitely long interdigital trans-
ducer is obtained by assuming the distribution of the electric po-
transducer witha=0.9 is useful in the application of structuraltential in the vacuum is assumed to be the same as that obtained
health monitoring as a clearer nondispersive signal is essentiafon the case of infinitely long interdigital transducer. The solution
damage detection of structures. reveals that the wave propagation in this piezoelectric coupled
The effect of the thicknes$ of the piezoelectric layer on medium bonded by interdigital transducer follows the characteris-
= ; P _ tic equation of the dispersion curve for the same structure but with
(I:(fs’_h) 's plotted in Fig. 6 forl.=6 mm. The results show thata pa?r of electrodes sﬁortly connected. Convergence study for the
® (&, —h) increases witth which seems reasonable. This conclualgorithm used in the analysis is investigated where at least 15
sion implies that thicker piezoelectric layer is useful for producingerms are needed. Parametric studies showed that the amplitude of
a clearer wave signal, i.e. wave motion with higher magnitude.the displacement, electric displacement and potential increases as
Interesting observations on thie-dependent curves can bethe thickness of the piezoelectric layer. As for the effect of the
found in Fig. 7 forh=0.6 mm. Fora<0.5, the amplitude in- finger width, the maximum amplitude occurs aroua0.9. The
creases witha, whereas the reverse is observed or0.5. The effect of the length of interdigital transducer is complicated. For
maximum amplitude occurs at highar The maximum amplitude smallera, longer transducer is required for wave motion with
decreases abs increases until at=1 cm, no distinct maximum higher magnitude, but reverse effect is observed for bigger

amplitude ofd(&, —h) is observed. This could possibly be due tol herefore, optimal design for the geometry of interdigital trans-
the condition for assuming=0 in deriving the analytical solution dUCer is thus necessitated in engineering applications. Further ex-
for the wave propagation, where for steel-PZT medium perimental work will be conducted in the near future. These con-

<1.1 cm which is close ta=1 cm in the graph. In engineering clusions are criteria for the design of interdigital transducer in its

applications, the length of the interdigital transducer cannot be %Qgineering applications, especially in the application of structural

short as enough electrical input energy is also important in trarealth monitoring in which a nondispersive wave signal with
mitting the wave motion. Therefore, an optimal design of th igher magnitude is preferred and essential. It is hoped that the
ggairrent work could be used as a framework for the design of

length and the finger width of the interdigital transducer has to o ; o
g 9 9 interdigital transducer in wave excitation of smart structigs.

investigated according to the proposed simulation conclusions.
After the characteristics of the variabtﬁ(gs,—h) have been

derived, the physical phenomenon of other variables can theref{gpendix

be obtained easily. For example, the variation of the displacement

Us(Xq,X3,t) can be studied from Ed115). The displacement fol- _1( kes X'CuEu En

lows a wave propagation motion iq direction. The distribution B - B :

@ — —
2\XCas  XCas €15 €15
4.5E-04 - - =
S =- }(_ kels  X'CasEn + 5_11)
2\ XCau XCas €15 €15/’
(1]
B 3.6E-04 - — —
2 82__}(‘(915_)(’04,14ﬂ_1l+z_11)
a - — — )
E 2\XCss XCas €15 €15
2.7E-04 K K
Q,= Ny — S+ “25 ek 5 = Nt — S,e i — S5 gfh,
XCas4 XCas
1.8E-04 T T T T T e e
00 02 04 06 08 10 12 R, = e+ :—15N1e>(h + :—“’Sle‘xh,
Ratio of the IDT width to the IDT wavelength = /L —11 =11
Fig. 7 The variation of the amplitude at different wavelength of R,=e ™+ ENzexh + %Sze‘)(h,
IDT 511 511
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Consistent Formulations of the

Interaction Integral Method for

Fracture of Functionally Graded
Jeong-Ho Kim' Materials
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e-mail: paulino@uiuc.edu The interaction integral method provides a unified framework for evaluating fracture
parameters (e.g., stress intensity factors and T stress) in functionally graded materials.

Department of Civil and Environmental The method is based on a conservation integral involving auxiliary fields. In fracture of

Engineering, nonhomogeneous materials, the use of auxiliary fields developed for homogeneous ma-
Newmark Laboratory, terials results in violation of one of the basic relations of mechanics, i.e., equilibrium,
The University of lllinois at Urbana-Champaign, compatibility or constitutive, which naturally leads to three independent formulations:
205 North Mathews Avenue, “nonequilibrium,” “incompatibility,” and “constant-constitutive-tensor.” Each formula-

Urbana, IL 61801 tion leads to a consistent form of the interaction integral in the sense that extra terms are

added to compensate for the difference in response between homogeneous and nonhomo-
geneous materials. The extra terms play a key role in ensuring path independence of the
interaction integral. This paper presents a critical comparison of the three consistent
formulations and addresses their advantages and drawbacks. Such comparison is made
both from a theoretical point of view and also by means of numerical examples. The
numerical implementation is based on finite elements which account for the spatial gra-
dation of material properties at the element level (graded elements).
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1 Introduction compatibility (2"%=(symV)u@") and the constitutive relations
Solid mechanics problems consist of the following three reld@”"=C(x)e?), but violates equilibrium(V-¢?*+0 with no
tions: body force$. The incompatibility formulation satisfies equilib-
rium and the constitutive relations, but violates compatibility con-
« equilibrium ditions (g2 (symV)u@®). The constant-constitutive-tensor for-
« compatibility mulation satisfies equilibrium and compatibility conditions, but
« constitutive violates the constitutive relatione"*= Cyjp £ with Cyp # C(x)).
Conservation integrals based on these three consistent formula-
To determine fracture parameters, e.g., stress intensity facttigss are the focus of this paper.
(SIFs and T stress, by means of the interaction integ( This paper is organized as follows. Section 2 comments on
integra?) method, auxiliary fieldssuch as displacements®®), related work. Section 3 presents auxiliary fields for SIFs &nd
strains(£2%), and stresse&r®™) are needed. In fracture of func- Stress. Section 4 provides three consistent formulations using the
tionally graded material6FGMs), the use of the auxiliary fields |_ntera(_:t|on integral approach. Sections 5 and 6 (_establlsh t_he rela-
developed for homogeneous materials results in violation of off@nships betweeM and SIFs and’ stress, respectively. Section 7
of the three relations earlier, which leads to three independdiffvides comparison and critical assessment of the three consis-
formulations (see Fig. 1 nonequilibrium, incompatibility, and tent formulations. Sections 8 presents some numerical aspects rel-

constant-constitutive-tensor formulations. Each formulation lea§¥@nt to the formulations. Section 9 presents two examples, which
to a different final form of the resultiny! integral, and forcon- test different aspects of the formulations. Finally, Sec. 10 con-

sistency extra terms are added to compensate for the differenceGfydes this work.
response between homogeneous and nonhomogeneous materials.
Table 1 illustrates the auxiliary fields corresponding to each foy Related Work

mulation. Notice that the nonequilibrium formulation satisfies ] ) ) )
The interaction integral method is an accurate and robust

scheme for evaluating mixed-mode SIFs dnstress. The method
present address: Department of Civil and Environmental Engineering, The Uig- formulated on the basis of conservation laws, which lead to the
versity of Connecticut, 261 Glenbrook Road U-2037, Storrs, CT 06269, establishment of a conservation integral for two admissible states
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3Here, the so-calledvl integral should not be confused with tié integral of of an elastic solidactual and auxiliary. Yau et al.[5] presented

Knowles and Sternberd], Budiansky and Ricg2], and Chang and Chigi3]. Also, the intgraction imegra.l method for evaluating SIFs in homoge-
see the book by Kanninen and PopdM for a review of conservation integrals in NEOUS isotropic materials. Wang et [#@] extended the method to

fracture mechanics. ' o homogeneous orthotropic materials, and Yalused the method
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McMeeking, Journal of Applied Mechanics, Department of Mechanical and Enviro he extended finite element meth(m—FEM)' Rao and Rahman
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Fig. 1 Motivation for development of alternative consistent
formulations. Notice that ~ C(x)# Cy, for x#0. The area A de-
notes a representative region around the crack tip.

method has been employed to evaluatstress in isotropig11] F19- 2 Cartesian (x;,Xp) and polar (r,6) coordinates originat-
ng from the crack tip in a nonhomogeneous material subjected

and orthotropic[12] FGMs. In the aforementioned papers, th ! . ”

interaction integral method has been investigated by means %Facnon (0) and displacement boundary conditions

either an incompatibility formulation [8-12] or a constant-

constitutive-tensor formulatiof9]. Thus, for completeness and ) )

unification of concepts, this work introducesianequilibrium for- _ Other methods have also been used to investigate fracture of

mulationfor evaluating SIFs and stress in isotropic and ortho- FGMs (see the papers by Erdogg¥], Noda[25], and Paulino et

tropic FGMs. These three basic formulaticisee Sec. Jiwill be al. [26]). Analytical or semi-analytical approaches have been used

addressed in this investigation, which includes a critical asse$y-Delale and Erdogaf27], Erdogan(24], Erdogan and W{i28],

ment and comparison of the formulations. and Chan et a[29]. Delale and Erdogaf80] investigated a crack
The FEM has been widely used for fracture of FGMs. EischdR @ FGM layer between two dissimilar homogeneous half-planes.

[13] evaluated mixed-mode SIFs by means of the paﬂg}u and Asard31] studied a semi-infinite crack in a FGM strip.

independent], integral. Gu et al[14] evaluated SIFs using the ShPeeb et al[32,33 studied multiple cracks interacting in an

standard) integral. Anlas et al[15] calculated SIFs by using the INfinite nonhomogeneous plate. Honein and Herrmig#) stud-

path-independenfi integral. Marur and Tippurl6] investigated a !Ed cct)_nS(:r\éatlon Ia_V\_lsf_ln_tnonhorsggem_eoUfhplamtahe_la;tostatlcstand
crack normal to the material gradient using the FEM in conjund?Véstigated a semi-infinite crack by using the path-in epentien

tion with experiments. Bao and C&l7] studied delamination integral. Gu and Asarf81] studied orthotropic FGMs considering

cracking in a graded ceramic/metal substrate under mechani@gPur-point bgndlng specimen. Ozturk and Efdomm used
and thermal loads. Bao and Wand8] investigated periodic integral equations 1o invesligate mode | and mlxgd-mOQe C@Ck
cracking in graded ceramic/metal coatings under mechanical al?{&)blems inan |nf!n|te nonhomogene_ous orthot_roplc_: me_dlum with
thermal loads. Kim and Paulind 9] evaluated mixed-mode SIFs@ qrack allgngd with one O.f the principal materl.al dllrect.lons. Due
by means of the path-independe]étintegral, the modified crack to its generality, the FEM is the method of choice in this work.
closure (MCC), and the displacement correlation technique.
Moreover, Kim and Paulino investigated mixed-mode SIFs f@ Auxiliary Fields
cracks arbitrarily oriented in orthotropic FGMs using the MCC
method[20] and the path-independeﬂfg integral[21]. The nons-
ingular stresgT stress of the Williams's eigenfunction expansion
[22] has also been computed by means of the FEM. Becker et
[23] studied T stress and finite crack kinking in FGMs. They
Z?cﬁgl:t:eg-ri Ztr?(srs _ucsrln)g It?heeced:tflirelgi(rf ac;f dtgzuq%r@nﬁ]l ;rt(rfss ogeneous materials. For each formulatiamnequilibrium, in-
v e AT Py ’ compatibility, constant-constitutive tengothe selection of auxil-

posed a unified approach using the interaction integral methodigl)y fields is done according to Table 1. The auxiliary fields
evaluateT stress and SIFs in FGMs, and also investigated t%opted in this paper are described later.

effect of T stress on crack initiation angles.

The interaction integral makes use of auxiliary fields, such as
displacementgud"), strains (¢2*), and stresseso®). These
alljxiliary fields have to be suitably defined in order to evaluate
ixed-mode SIFs and stress. There are various choices for the
auxiliary fields. Here we adopt fields originally developed for ho-

3.1 Fields for SIFs.For evaluating mixed-mode SIFs, we se-
lect the auxiliary displacement, strain, and stress fields as the
crack-tip asymptotic fieldé.e., O(r'/2) for the displacements and
O(r~?) for the strains and stresgesith the material properties
Nonequilibrium Incompatibility Constant-constitutive-tensor Sampled at the crack-tip locatige.g., Ref[13]): Figure 2 shows

formulation formulation formulation a crack in a FGM under two-dimensional fields in local Cartesian
and polar coordinates originating at the crack tip. The auxiliary

Table 1 Comparison of alternative formulations

yaux ua U displacement, strain, and stress fields are chos¢#2337):
g2 A g auxl (1112 5 Af auxell (1112 g Afi
o?*=C(x) g2 2=8(x) e 02P=Cyjped™ U= Kj f(rt?,6,a") + Ki "l (rt/2, 6,a") 1
V. 0?U£Q g2 (symv)uaux C(x) # Ctip

£3%= (symV )ud™, 2
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T,
X, u

Fig. 4 Conversion of the contour integral into an EDI where
I'=Iy+I*-TI's+I'",m;=n; on I'y and m;=-n;on T’

Fig. 3 A point force applied at the crack tip in the direction

parallel to the crack surface .
J=I!|m0 ((Tijuiyl_WCSlj)qudr (9)
sYJr

P ) KPP ) @ AL BUegeree e 1 59, e eanalent o
whereK* and K{"* are the auxiliary mode | and mode Il SIFs,
respectively, andi’P denotes contracted notation of the compli-
ance tensolS evaluated at the crack tip, which is explained in
Appendix A. The representative functiori§r'/2,,a®) and

g(r~¥2,9,a") are given in Appendix B and can also be found imThe J integral of the superimposed fieldactual and auxiliary

other references, e.g., Ref87,38. fields) is obtained as

J:f (‘TijUi,l‘W51j)Q,jdA+f (ajju; 1= Wéy)) jqdA (10
A A

3.2 Fields forT stress.For evaluatingl stress, we choose the
auxiliary displacement, strain, and stress fields as those due tdsaf {(aij + 05 (U + U - 2o+ i (eq + s{'ﬁ“")&lj}qvjdA
point force in thex; direction, applied to the tip of a semi-infinite A
crack in an infinite homogeneous body as shown in Fig. 3. The
?;é(llfjay displacements, strains, and stresses are chosen as+f {(Uij + o2 (U + Y — Lo+ 0B ey + €299
: A

— ti
uH=tinr,6,7.a%) @ (s} qdA (1D
= (symV )ua (5 which is conveniently decomposed into
oW = ls(l’_l, 0,f,a“p) (6) B=J+ %+ M (12)

wheref is the point force applied to the crack tip, aath denotes \yhereJa s given by

contracted notation of the compliance ten$oevaluated at the

crack tip, which is defined in Appendix A. The representative

functionst'(Inr, 6, f,a?) andts(r~1, ¢, f,alP) are given in Appen- Jaux= f (

dix C and can be found in other references, e.g., R&8&41. A
For orthotropic materials, the auxiliary fields may be deter- _ 1 auxauxs } dA

mined by either the Lekhnitskii or Stroh formaligm2]. There is 2%k €ik 1S jd

no difficulty in determining the auxiliary fields in the case ofand the resulting interaction integra¥) is given by
isotropic materialg11].

aux aux __ ux aux aux
o Ul - WA 511)Q,jdA+f {‘Tij i1
A

. _ M= f {ojury+ oMU 1 = 5 (oyel ™+ i) 81} dA
4 M-integral formulations A

The standard integral[42] is given by L
+ {Uij U+ o U 1 - 5 (ol + ‘Tﬁuxsik)%},jqu
J=lim (Wélj ~ Ojj ui‘l)nde‘ (7) A
I's—0 I (13)
whereW is the strain energy density expressed by This general form oM integral becomes a specific form tf
_1 =1lc 8 integral for each of the three formulations, which is explained in
W= 30iii; = 3Cijueusij ®) the next section.

andn; is the outward normal vector to the contdly as shown in
Fig. 4. The portion of” with applied displacements is denotEg
and the portion of" with applied traction is denoteld,. Moreover

4.1 Nonequilibrium Formulation. The name of the formula-
tion is based on the fact that the auxiliary stress field

I'=T,+I',. Using a plateau-type weight function varying fram 0B%= G (X) 82 (14)
=1 onl'sto =0 onT,[10] and assuming that the crack faces are i kIR Sk
traction-free, Eq(7) becomes does not satisfy equilibrium because it differs from
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o™= (Cija)ipek (15

where C|Jk| (x) is the constitutive tensor of the actual FGM and

(Ciju)1ip is the constitutive tensor at the crack tgee Fig. 1 The
derivatives of the auxiliary stress field are

Cijia,j(¥)ei ™+ Cija (Xegi; = (Cija)iprl; *+ Ciia j(¥) e
+[Cijia (%) = (Cija)ipJeRi] (16

aux —
Tijj =

where the underlined term in E¢L6) vanishes. Thus this argu-

?lflj.x+ Uﬁuxull o-lke 511}q dA+f{ aux au

f {(TI]

= Ciju 18ugi] JAdA (23

where the underlined term is an incompatibility term, which ap-
pears due to incompatibility of the auxiliary strain fields. The
existence of the final form d¥! integral for FGMs in Eq(23) has
been proved by Kinj43].

ment confirms that the auxiliary stress field selected in this for- 4.3 Constant-Constitutive-Tensor Formulation. The con-

mulation (Eq. (14)) does not satisfy equilibrium, i.ec;**# 0 (no

body forces or inertia This choice of the auxiliary flellols has been=0 with no body forces and compatiblity condltlons(e

discussed by Dolbow and Go§&], but a nonequilibrium formu-

lation was not provided in their paper. The nonequilibrium in the
stress field has to be taken into account in the interaction integral

formulation, which is discussed in detail later.
Using the following equality:

aux — aux — aux —_ aux
gijei = Cia(Xeye] = oy e =0 & 17

one rewrites Eq(13) as

f {O'u

+ 05U 1 — oyeelc Oy} jadA= My + My (18

The last term of the second integkdll,) in Eq. (18) is expressed
as

LaYx
i1 + Ul]

i1 0|k3|k 5lj}q dA+f {0'” aux

(oieic 8y) = (gueic ) 1= (0™ 1= (Cijagwgi ) 1

- aux aux aux
=G 18weij + Ciew,ieij + Cijeweij 1

= Cij,18xieq "+ 0§ "eij 1 + 0y T (19
Substitution of Eq(19) into Eq.(18) leads to
f (Ulj ]ul 1 “+ ajj |a|‘1];(+ ajj JXUI 1t 0'” |,1j)qu
‘f (Cij.a8ue + off i 1 + 0y PAdA (20
A

Using compatibility (actual and auxiliary and equilibrium(ac-
tual) (i.e., oy; =0 with no body forcg one simplifies Eq(20) as

Mz = J {o5Ui 1~ Cija 180 "HqdA (21)
A

Therefore the resulting interaction integf&) becomes

J{U|J aux+ o_awnll Ulk8|k 511}q1dA+J{

= Ciju 16 "1qdA (22

stant-constitutive-tensor formulation satisfies equilibriuaf'

dik

=(uf™+ U™ /2), but violates the constitutive relatlonsh(pj“"
ux

C|Jk|)t|p8aux with (C,Jk|)t|p¢C,]k|(X)) Notice that 0ij&j;
&% due to the violated constitutive relationship. Thus Eq.

aux

(13)I becomes

M:L{‘Tu
o o

aux aux aux
+ojiei 1t 0 185 T O] Sij,l)}qu

aux Aaux

U+ 05U 1 = 5 (ol ™+ o 8uk)5lj}Q,jdA

aux

aux
“+ aijUi 1t 03

J)ul 1t Uu Xul,lj z(Ulj 18|]
(29)

Using equilibrium and compatibility conditions for both actual
and auxiliary fields, one obtairld as

M :f {Uij ?Lix"' O,aum 2(0'|k8|ell<ux+ Uiuxalk)‘slj}qjdA
A

1 aux aux aux. aux,
"'f olojeii—oij e + oy e 1~ of 1e}qdA - (25)
A

Notice that the resultingVl involves derivatives of the actual
strain and stress fields, which arises due to the material mismatch,
and may cause loss of accuracy from a numerical point of view.
The existence of the final form &fl integral for FGMs in Eq(25)

has been proved by Kir#3].

5 Extraction of Stress Intensity Factors

For mixed-mode crack problems on orthotropic materials, the
energy release ratgs andg,, are related to mixed-mode SIFs as

follows [37]:
_ K |(,Uv“p tlp)+K||
S - s I
K
Gy =—raf Im[Ky (1P + i) + K (uPuP)] (2D

2 1
where Im denotes the imaginary part of the complex function.

where the underlined term is a nonequilibrium term, which aF;[hus

pears due to nonequilibrium of the auxiliary stress fields. The

existence of the final form df! integral for FGMs in Eq(22) has
been proved by Kinj43] and Paulino and Kinj44].
Incompatibilty Formulation. The incompatibility formu-

4.2
lation satisfies eqU|I|br|un@cra}”]X—0 with no body forcesand the

constitutive relationshife ;=
blity condltlons(sa“"vé (ua”X+ ua“X)IZ) Thus Eq.(20) is also valid
for this formulatlon Usmg equmbrlunﬁactual and auxiliaryand
compatibility (actua), one simplifiesM, as

f {O-IJ(U?L]J.JX_ &ij, - Ciju, 18k|8|1 “}adA
Therefore the resulting interaction integf&l) becomes

354 / Vol. 72, MAY 2005

=Sju () ofy™, but violates compati-

—n— _ 2 2
Jioca= G = G + G = CriK[ + C1 KKy + €K (28)
where
B iipI /'an+ /Ltlp
Cu=- 2 m tip  tip
M1 Mo
tip tip
a3 1 ) A1 tip i
Co=——==Im| ——— | + = Im(u}P s’
12 2 (Mgplugp 2 (#1 M2 )
tip
11 i i
2= Im(uf® + u5?) (29

For two admissible fields, which are the act(al e, o) and aux-
iliary (ud¥ g3 g% fields, one obtain$6]:
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Thcar= Cra(Ky + K92+ coo(K) + K™ (Kyy + K™ + Con(K

+ Kﬁu 2= Jlocal + Jﬁ)l::él + Mlocal (30)

aux
local

Jvoer= C1a(KPP9? + ¢y KK+ oo K192 (31

and My is given by

whereJjocq is given by Eq.(28), Jipcy iS given by

Migcar= 2011K K+ cqo K K™+ KK ) + 265K K™
(32

The mode | and mode Il SIFs are evaluated by solving the fol-
lowing linear algebraic equations:

Ml((}t):alz 2cy4K + ¢ Ky, (KP*=1.0K{"™=0.0 (33

MiZa= CiK| + 265Ky, (K1**=0.0K{™=1.0 (34
L) . . o Fig. 5 Crack geometry in a nonhomogeneous material, which
where the superscript id, ., (i=1,2) is used just to indicate that js graded along the x; direction
the values are distinct in each case. For isotropic materials, the
off-diagonal terms of;; drop, and Eqs(33) and(34) become

2
Mioea= g K1 (KI"= 10200 (35 1o %p' @1
11
@ _ 2 aux_ aux_ where a} is a material parameter at the crack tip location for
Miocal= Et_*-K”’ (Ki™=0.0Ki"=1.0 (36)  plane stress, and is replaced ] for plane strain(cf. Eq. (65)).
P For isotropic materials, Eq41) becomes
respectively, whereEy,=Ey, for plane stress andy,=Eqp/(1 -
- vﬁp) for plane strain. The relationships of E¢33) and(34), and T="2Mca (42)
Egs.(35) and(36) are the same as those for homogeneous ortho- f

tropic [6] and isotropid 5] materials, respectively, except that, forwhere E; =Ey, for plane stress ang; :Etip/(l_,,t?i ) for plane

FGMs, the material properties are evaluated at the crack-tip 10Ggrain. P P P

tion. Notice that, for the orthotropic case, there is no need for

Newton’s iteration, which is needed with other approaches such as

the path-independerd integral[21] and the MCC integral20]. . .

Herg the SIFspfor mgtéle [ a%d mode Il are naturally degcoupiéd 7 Comparison and Critical Assessment

Egs.(33) and(34)). The three formulations presented earlier aomsistentin the
sense that extra terms are added to account for the difference in
response between homogeneous and nonhomogeneous materials.

. However, each formulation has an independent final fdsee
6 Extraction of T Stress Egs.(22), (23), and(25)) due to the different characteristics of the
T stress can be extracted from the interaction integral by nulbwuxiliary fields. The final form of th&/ integral for each of these
fying the contributions of both singuléie., O(r~+9) and higher- formulations is compared and assessed from a theoretical point of
order (i.e., O(r'/?) and higher terms. The derivation is explained view later.

in detail by Kim and Pauling11,12 and Paulino and Kinj44]. The nonequilibrium formulation results in the simplest fival
From the earlier derivation of E413), theM integral in the form integral thus requiring the least computation and implementation
of line integral is obtained as effort among the three formulations. This is observed by compar-

ing Egs.(22), (23), and(25). Moreover, the nonequilibrium for-
. aux aux au mulation is equivalent to the incompatibility formulation, because
Miocal= r“m {owei "oy — oyjuiy = of U tmdl (37)  poth formulations involve the same constitutive relations and cor-
N L responding material derivatives. This equivalence is observed in
Here we can consider only the stress parallel to the crack dirdBe numerical examples of Sec. 9. However, the constant-

tion, i.e.: constitutive-tensor formulatiof8] requires the derivatives of the
actual stress field, which may introduce accuracy problems with
0 =Téy 6y (38)  standardC® elements commonly used in the displacement-based
I . . FEM.
Substituting Eq(38) into Eq.(37), one obtains In order to further compare the three consistent formulations,
) let's consider an exponentially graded material in which Poisson’s
Migcar= = lim f of Py 1dl = Talf lim f o "mydld ratio is constant and Young’s modulus varies in any directime
s g =0 T Flg 5)
39 E(xq) = Eg exp(8X;) = Eg exp(B1Xy + B2X5) (43
Because the forcéis in equilibrium(see Fig. 3 L= constant (44)
=i 2w 4 (40) whereX=(Xy,X,) refers to a global coordinate systery, is the
= rlTo . aij 1 direction of material gradatiotinclined by ¢, with respect to the
s X; coordinate, and the nonhomogeneity parametérg;, and 3,
and thus the following relationship is obtained: are related by

Journal of Applied Mechanics MAY 2005, Vol. 72 | 355



B1=6c0s6y, Bp=5sinb, (45  for the nonequilibrium formulation, because both formulations use

. . . R the same constitutive tens@(X).
This selection of material property leads to simplification of the a(x)

resultingM integrals and allows one to better assess and compare7.3 Constant-Constitutive-Tensor Formulation. The de-

the characteristics of the formulations. Moreover, exponentiallivatives of interest, with respect to the global coordinate system,
graded materials have been extensively investigated in the tectarie (m=1,2):

cal literature, e.g., Ref$8,15,19,21,24,27-36,45-#8& he result-

ing M integrals corresponding to the three formulations are deijm= Cija.m(X)& + Cija (X)&11,m = BrCija (X)era + Cija (X)81m

rived later in the global coordinate system, which is used in the = By + Cija X m (53
numerical implementatiofsee Sec. 8 latgr

7.1 Nonequilibrium Formulation. The derivatives of inter- Uﬁl,j:w: (Ciikl)tipsﬁllfr); (54)
est, with respect to the global coordinate system,(arel,2) The global interaction integrdMy,)giopai (M=1,2) is given by
5= Cija j(X)ei™+ Cija (X) 8= B;Cigia (X) g™+ Ciga (X)2ig f g ganty _ Ly pan s 409
;i U; g U m— = (oE; T € (o
:ﬁjcijkl(x)silux"' ap(Cijkl)tipsﬁﬁjX:Bjo'ﬁux (46) A ij¥i,m ij “i,m 2 ik€ik ik ©ik/ “mj ﬂxj
= - 1
Cljkl,n'j IBmCukI(X) . (47) + f E{Uijsﬁe:r(\_ O'ij,meﬁux"' Uﬁuxsij,m _ Uﬁe%sij}qu (55)
where ap,=exp(81X;, +B,X,) is a factor that arises due to the pro- A

portionality of Cj; for the material gradation considered. Th P~ : : - .
global interaction integraiMp)gosa (M=1,2) is given by &ubstitution of Eqs(53) and(54) into Eq. (55) yields (m=1,2):

1 q
o+ oy = E(Uiksﬁ(ux"' o e 5mj}—dA

aq M:f {a--u-
(Mmgiobar= | {oyjUm + 07U m = ol "y} dA N IX;
A aX]-

1
+ | Ziggdux_ AU _ o aux . AUX,
+f {054 m = Cijia mewei] "adA (48) fA 2{0”8”’m Py ikl S meiy - Ty i m
A

= (Cij)tipeii meij AdA (56)

where Cjj = Cjjy (X). Notice that, for this case, the finkd inte-
aq gral requires the derivatives of the actual strain field, which may

—_ aux au —_ aux 11 3 . . .

(Mm)global—f {oyUim + "t m =~ ouceii ml}ﬁx_dA have numerical accuracy problems. The derivatives of material

A ) properties are represented by the material nonhomogegeiity

Eq. (56). Moreover, the first integral of Eq56) is different from
+f 180Uy m = Bmoijei "1qdA (49 those for the other two formulations.
A

Substitution of Eqs(46) and(47) into Eq. (48) yields (m=1,2):

Notice that, for this particular case, a simpler expression than that
for the general case is obtained. Eq.(22). The derivatives of 8 Some Numerical Aspects
material properties are represented by the material nonhomogene- i . .
ity B in Eq. (49). Moreover, the contribution of the nonequilib- FOr humerical computation by means of the FEM, Mente-
fium term to theM integral is related to the value gral is evaluated first in global coordinaté®/,))giona) @nd then
o ) o ) transformed to local coordinate$My,.,). The M integrals
7.2 Incompatibility Formulation. The derivatives of inter- (M, )., for the three consistent formulations have derivatives of

est, with respect to the global coordinate system,(arel,2): material properties in common. In this paper, we do not use
aux _ g aux | o aux — _ A aux closed-form expressions for derivatives of material properties be-

Zijm= S m(X) 0™+ Sja(X)okim = = BmSja (X)0ig cause these expressions would be specific to each specific func-
+ St (X)afim= = Bmef "+ S (X) oim (50) tion or micromechanics model. Thus, for the sake of generality,

together with Eq(47). The global interaction integrdM ) giopal \(/)\?eﬁ(rjﬂett:rer?elr%:eeiltjﬂgdzglvatlves by using shape function derlvatives

(m=1,2) is given by The derivatives involving material derivatives for each formu-
lation are

aq
— aux_ _au _ . gauxe 1 9M .
(Mi)giobai= f {oyul + of"Uim — owcely m'}andA «nonequilibrium: o= Ciyq jek™+ Cijaegi; (57
A , : ,
f {0 ( aux aur)T(J C aux} dA (51) eincompatibility: sﬁu:] = Sjkl ’mo'ék‘lux+ S1jk| O'Et?;] (58
+ 0 (Ui mj ~ &ij.m) ~ Cijki meki€ij 1
A *constant-constitutive-tensow;j = Ciju mex + Cijui €kim

Substitution of Eqs(50) and(47) into Eq. (51) yields (m=1,2): (59
4 A simple and general approach to evaluate such derivatives con-
(M) giobal= f {o; U+ of U gikgﬁ(“X(smj}_qu sists of using shape function derivatijd4]. Thus the derivatives
A ' b X of a generic quantity® (e.g.,Cij, Sju, Or &) are obtained as
n
P AN,
+ f {Uijuﬁ%xj - Oﬁlfésu}qu (52) - = E _IPi, (m: 1,2) (60)
A X 15 X

Notice that, for this particular case, the firdl integral does not Wheren is the number of element nodes aNg=N;(¢, ) are the
involve any derivatives of material properti¢sf. Eq. (23)). In  element shape functions which can be found in many references,
this formulation, the first integral of Eq52) is the same as that e.g., Ref[49]. The derivativesIN;/dX,, are obtained as
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Fig. 6 Example 1: FGM plate with an inclined crack with geometric angle 0: (a) geometry
and boundary conditions  (BCs) under fixed-grip loading;  (b) typical finite element mesh;  (c)
contours for EDI computation of ~ M.ntegral; (d) mesh detail using 12 sectors (S12) and four
rings (R4) around the crack tips (0#=18° counter-clockwise )

N IXy _,) Nlog FRANC2D [50,51] developed at Cornell University. The&eRANC2D
NJax [~ J INJo (61)  element library for FGMs consists gfaded elementsl9,46,45,
rete en which incorporate the material gradient at the size scale of the
whereJ™! is the inverse of the standard Jacobian matrix relatingement. The specific graded elements used here are based on the

(X1, Xp) with (&, ) [49]. generalized isoparametric formulatiopresented by Kim and
. Paulino[19], who have also compared the performance of these
9 Numerical Examples elements with that of conventional homogeneous elements which

The performance of the interaction integral for evaluating SIFgoduce a step-wise constant approximation to a continuous ma-
and T stress in isotropic and orthotropic FGMs is examined bigrial property field 45].
means of numerical examples. This paper employs the three forAll the geometry is discretized with isoparametric graded ele-
mulations, such as nonequilibrium, incompatibility, and constanments[19]. The specific elements used consist of singular quarter-
constitutive tensor, for numerical investigation. The following expoint six-node triangle§T6qp for crack-tip discretization, eight-
amples are presented node serendipity elemen{®8) for a circular region around crack-
tip elements, and regular six-node triangld$) in a transition
zone toQ8 elementgsee, for example, Fig. 6, for a typical crack
tip region discretization

All the examples consist of SIFs afdstress results for both
isotropic and orthotropic FGMs, and those results are obtained by
the interaction integral in conjunction with the FEM. In order to
validate SIFs and stress solutions, the FEM results for the first

“The FEM code-Franczp was formerly calledsom-Francep [19]. example(an inclined center crack in an exponentially graded plate

(1) Inclined center crack in a plate
(2) Strip with an edge crack

All the examples are analyzed using the FEM coeRANC2D”.
(Minois; FRacture ANalysis Codep), which is based on the code
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Table 2 Example 1: comparison of normalized mixed-mode SIFs in isotropic FGMs for Ba
=0.5 (K,=¢E°\Vma) (see Fig. 6). Contour 5 shown in Fig. 6 (c) is used for the constant-
constitutive-tensor formulation. The results for the nonequilibrium and incompatibility formu-

lations are almost identical and thus the results from the latter formulation are not reported

here.
Method 0 KK, K /Ko Ki /Ko K; /Ko
Konda and 0° 1.424 0.000 0.674 0.000
Erdogan[47] 18° 1.285 0.344 0.617 0.213
36° 0.925 0.548 0.460 0.365
54° 0.490 0.532 0.247 0.397
72° 0.146 0.314 0.059 0.269
90° 0.000 0.000 0.000 0.000
Nonequilibrium 0° 1.4234 0.0000 0.6657 0.0000
18° 1.2835 0.3454 0.6104 0.2112
36° 0.9224 0.5502 0.4559 0.3625
54° 0.4880 0.5338 0.2451 0.3943
72° 0.1451 0.3147 0.0587 0.2670
90° 0.0000 0.0000 0.0000 0.0000
Constant- 0° 1.4262 0.0000 0.6629 0.0000
constitutive tensor 18° 1.2807 0.3452 0.6081 0.2101
36° 0.9224 0.5512 0.4546 0.3607
54° 0.4862 0.5348 0.2460 0.3931
72° 0.1439 0.3144 0.0596 0.2670
90° 0.0000 0.0000 0.0000 0.0000
Dolbow 0° 1.445 0.000 0.681 0.000
and GosZ8] 18° 1.303 0.353 0.623 0.213
(X-FEM) 36° 0.930 0.560 0.467 0.364
54° 0.488 0.540 0.251 0.396
72° 0.142 0.316 0.062 0.268
90° 0.000 0.000 0.000 0.000
subjected to fixed-grip loadingre compared with available semi- Epi(Xy) = E‘fleﬁxl, Eyi(Xy) = Egzeﬁxl,
analytical and numerical solutions. The second example involves 0 ax o
hyperbolic-tangent functions for material properties and investi-  G12(X) = G187, via(Xy) = 03,
gates the effect of translation of these properties with respect to
the crack-tip location. B, =108, ED,=1C°, GY,=1216, 19,=0.3

9.1 Inclined Center Crack in a Plate.Figure §a) shows an  Table 2 compares the present FEM results for normalized SIFs
inclined center crack of lengtha2ocated with a geometric angle obtained by the nonequilibrium and constant-constitutive-tensor
;(counter-clockwis)ain a plate subjected to fixed-grip |0ading;fqrmulations of theM integral with semi-analytical solutions pro-
Fig. 6(b) shows the complete mesh configuration; Fifg) hows Vided by Konda and Erdogd@7] and the extended FEM results
five contours used for EDI computation of theintegral; and Fig. PY Dolbow and Gos%8] for various geometric angles of a crack

6(c) shows the mesh detail using 12 sect(842 and four rings in isotropic FGMs. The difference in the result for SIFs between
(R4 of elements around the crack tips. The displacement bouﬁqneqwhbnum and incompatibility formulations is found to be in

ary condition is prescribed such that=0 along the lower edge e orderO(10™) in this example, and thus the results are not
and u,=0 for the node at the lower left-hand side. The mes rovided. The converged results obtained by the nonequilibrium

5 T - ormulation are in good agreement with those by Konda and Er-
e s o o000, 24 Cap e, 09anar] (maimum diference 1 3% average diference 5%

. . ; ) o IMBose by Dolbow and Gos8], and those obtained by the
loading results in a uniform straih,(Xy, ;)= in a correspond- ., gtant_constitutive-tensor formulation. For the nonequilibrium
ing uncracked structure, which corresponds #95(X;,10)  and incompatibility formulations, a domain including almost half
=eE%% for isotropic FGMs andopy(X;,10=eE3e%1 for  of the square plate is used, and converged solutions are obtained.
orthotropic FGMs(see Fig. €a)). Young's moduli and shear However, for the constant-constitutive-tensor formulation, contour
modulus are exponential functions Xf, while Poisson’s ratio is 5 as shown in Fig. @) is used. We observe that the accuracy for
constant. The following data were used in the FEM analyses: the constant-constitutive-tensor formulation are reasonable for
small size of contours such as contours 1-5, but as the contour
becomes large than contour 5, the solution does not converge, and
accuracy deteriorates. As explained in the theoretical discussion,
the constant-constitutive-tensor formulation may have numerical

- - problems in the accuracy of derivatives of actual strain or stress
aw=0.1, L/W=1.0, #=0°1090°, s=1 fields. To reduce domain dependence, mesh discretization over the
plate shown in Fig. @) needs to be improved.
Figure 7 shows)= (K +K{)/Ey, value calculated by the inter-

plane stress, X 2 Gauss quadrature

dimensionless nonhomogeneity paramgar 0.5

Isotropic case

E(X,) = E%efX, (X)) =v action integral for the right crack tip of an inclined crack with
=18 deg using five contours for EDI computations as shown in
E°=1.0, »=0.3 Fig. 6(c). The nonequilibrium formulation is used both consider-

ing and neglecting the nonequilibrium tefsee Eq(22)), and the
Orthotropic case incompatibility formulation is used both considering and neglect-
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4.5 T T T Table 4 Example 1: comparison of normalized T stress in iso-
: : - tropic FGMs for Ba=0.5 (0,=¢E°) (see Fig. 6)
:Non—equilibrium formulation e
A e eglecting non-equibrium tem -+ g Nonequilibrium Paulino and Donfg8]
35k . ——————’, .......... ] .................. 4 ; T(+a)/0'0 T(—a)/()'o T(+a)/0'0 T(—a)/o-o
- 3_.“.'.\...  Non-equilbrium formutation including non-equiibrium ter & 0° -0.896 -0.858 -0.867 -0.876
‘-\lnoompatibla formulation ingluding incompatible term 15° -0.773 -0.747 -0.748 -0.763
A 30° -0.434 -0.436 -0.420 -0.444
25k N T TP TP W 45° 0.036 0.011 0.039 0.010
el - : 60° 0.513 0.484 0.513 0.490
el : 75° 0.868 0.850 0.870 0.858
2} Incompatible formulation -1 s ] 90° 0.994 0.994 1.000 1.000
neglecting incompatible term I
1'51 2 3 4 5 . ) o ) )
Number of Contours tained by the incompatibility formulation for orthotropic FGMs.

' _ . _ Notice that the two formulations provide similar FEM results for
Fig. 7 Example 1: comparison of  J=(Kj+Kj)/E;, for the right T stress for each geometric angle. For the isotropic CEstress
crack tip of an inclined crack with ~ #=18° using the M integral.  at both right and left crack tips changes sign in the range of angle

The nonequilibrium formulation is used both considering and = _ ; ; ;
neglecting the nonequilibrium term  (see Eq. (22)). The incom- 6=30 deg—45 degsee Table A Whie’ for the orthotropic case, it

patibility formulation is used both considering and neglecting changes sign in the range of angle 15 deg—30 deg@see Table

the incompatible term  (see Eq. (23)) 5). Comparison of Tables 4 and 5 indicates that the material
orthotropy shows significant effect oh stress in terms of both
sign and magnitude.

ing the incompatible ternisee Eq.23)). The solutions obtained

by considering the nonequilibrium term for the nonequilibriun&rack of length &” in a plate, and Fig. &) shows the complete

formulation, and the incompatibility term for the incompatibility . A . )
formulation are not distinguishable in a graphical form. Notic{eneSh discretization using 12 sect¢13 and four rings(R4) of

that the converged solution is obtained when including either t éements e.‘m““d the crack tip. Fig_ure(s:)gs(e) “'“Stfate the .
nonequilibrium or the incompatibility term, however, such behaJree considered types qf hyperbollc-tang_ent ”f‘ate”a' gra(_jatlon
ior is generally not observed when negleé:ting eithér term with respect to the crack tip: reference configuration, translation to
Table 3 compares the present FEM results for normalized SI&EE left, and trans!atlon to th? nght,.respectlv.ely. The flx_gd-grlp
in orthotropic FGMs obtained by the nonequilibrium formulatiorfliSPlacement loading results in a uniform straip(X;, X;) =& in
of the M integral with those obtained by the incompatibility for-& corresponding uncracked structure. The displacement boundary
mulation for various geometric angles of a crack in orthotropigondition is prescribed such thaj=0 along the lower edge and
FGMs. Notice that the two formulations provide similar FEMU1=0 for the node at the left-hand side. The mesh discretization
results for SIFs for each geometric angle. Comparison of Table§@nsists of 2088, 37 T6, and 12T6qgpelements, with a total of
and 3 indicates that the material orthotropy shows significant et>7 eélements and 1001 nodes. _
fect on SIFs, and the SIRS/ (right crack tip andK;, (left crack Young's moduli and shear modulus are hyperbolic-tangent
tip) for the orthotropic case are greater than or equal to those fgictions with respect to the glob@;, X,) Cartesian coordinates,
the isotropic case, however, the SIk§ andK;] for the orthotro- while Poisson’s ratio is constafig. 9). The following data were
pic case are smaller than or equal to those that for the isotropieed for the FEM analysis:
case. plane strain, 2 2 Gauss quadrature
Table 4 compares the present FEM results for normalized
stress in isotropic FGMs obtained by the nonequilibrium formu-  a/w=0.5, L/W=2.0, £=0.25, d=(-0.5t0 0.5
lation of theM-integral with those reported by Paulino and Dong

9.2 Strip With an Edge Crack. Figure 8a) shows an edge

[48] who used the singular integral equation method. Table 5 com- Isotropic case

pares the present FEM results for normaliZestress obtained by

the nonequilibrium formulation of th& integral with those ob- E(Xy = (E"+E"/2 +tanf B(X; + d)J(E" - E")/2
Table 3 Example 1: Comparison of normalized mixed-mode SIFs in orthotropic FGMs for Ba

=0.5 (Ko=£E%,\'ma) (see Fig. 6)

Formulation 0 K{' /Ko Kii/Ko K /K K /Ko
Nonequilibrium 0° 1.4279 0.0000 0.6663 0.0000
18° 1.3224 0.2176 0.5997 0.2436
36° 1.0177 0.4097 0.4150 0.4160
54° 0.6008 0.4477 0.1814 0.4379
72° 0.2154 0.2906 0.0056 0.2822
90° 0.0000 0.0000 0.0000 0.0000
Incompatiblity 0° 1.4285 0.0000 0.6663 0.0000
18° 1.3224 0.2194 0.5997 0.2427
36° 1.0177 0.4111 0.4149 0.4156
54° 0.6008 0.4480 0.1809 0.4373
72° 0.2158 0.2906 0.0052 0.2823
90° 0.0000 0.0000 0.0000 0.0000
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Table 5 Example 1: comparison of normalized T stress in
orthotropic FGMs for Ba=0.5 (aonggz) (see Fig. 6)

Nonequilibrium Incompatibility

0 T(+a)/ o T(-a)/ o T(+a)/ o T(-a)/ o

0° -2.822 -2.725 -2.832 -2.712
15° -1.407 -1.402 -1.384 -1.407
30° 0.156 0.079 0.168 0.074
45° 0.785 0.700 0.785 0.702
60° 0.971 0.909 0.970 0.910
75° 1.003 0.973 1.002 0.973
90° 0.996 0.996 0.997 0.997

Ba=15.0, v=0.3
(E",E") =(1.00,3.00
Orthotropic case
Eq1(Xy) = (Eqy + E; /2 + tanfi (X, + d)](E7;, — E1))/2
Eoa(X1) = (Epp+ E5)/2 + tanfi B(X, + d)](Ez, — E5,)/2
G1A(Xy) = (G, + G1,)/2 + tant (X, + d)](G1, — G1,)/2

aca=pBa=vya=15.0, »,=0.3

3.5

w0
2
€
[
Q
o
o
s
<
©
= (Orthotropic)
(IsotropiQ
0.5 I i 1
-1 -0.5 0 0.5 1
X1
Fig. 9 Example 2: variation of material properties: Eqy, Ej, and

G;, for the orthotropic case, and  E for the isotropic case

(E1y,E1) =(1.00,3.00, (E3,E},) =(1.25,2.75,
(G12Gi,) =(1.50,2.50

Table 6 compares the present FEM results for mode 1(B|F
obtained by the nonequilibrium formulation with those obtained
by the incompatibility formulation for various translation factors “
d” of hyperbolic-tangent material variation considering both iso-

; TA=1
ki -
i
l W=2 |
I 1
(a) (b)
X, X, i)
E, E, E,
Eu ! N E“
crack crack | crack
xI _dl xl
(c) (d) ()
Fig. 8 Example 2: strip with an edge crack in hyperbolic-tangent materials: (a) geometry and

BCs; (b) complete finite element mesh with 12 sectors (S12) and four rings (R4) around the
crack tip; (c) reference configuration (d=0.0); (d) translation of material gradation to the left
(d=+0.5); (e) translation of material gradation to the right (d=-0.5)
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Table 6 Example 2: comparison of mode | SIF  (K)) for an edge 10 Conclusions
crack considering translation  (d) of hyperbolic-tangent mate-

fial variation (see Fig. 8) This paper provides a critical assessment and comparison of
three consistent formulations: nonequilibrium, incompatibility,
Nonequilibrium Incompatibility and constant-constitutive-tensor formulations. Each formulation
leads to a consistent form of the interaction integral in the sense
d Iso Ortho Iso Orthd12] that extra terms are added to compensate for the difference .in
response between homogeneous and nonhomogeneous materials.
-05 1.212 1.164 1.186 1.158 These extra terms play a key role in ensuring path independence
-04 1.211 1.167 1.201 1.163 of the interaction integral for FGMs. In terms of numerical com-
-0.3 1211 1.175 1.190 1.173 putations, the nonequilibrium formulation leads to the simplest
-0.2 1.218 1.189 1.209 1.189 final form of the M integral among the three formulations. In
-0.1 1.231 1.212 1.212 1.217 terms of numerical accuracy, the nonequilibrium formulation is
001 %‘%3% (1)-%1 %)-%%g (1)-%‘;% equivalent to the incompatibility formulation, which is observed
0.2 0.486 0.615 0.487 0.614 in numerical examples involving various types of material grada-
0.3 0.451 0.585 0.451 0.585 tion. The constant-constitutive-tensor formulation requires the de-
0.4 0.430 0.567 0.430 0.567 rivatives of the actual stress and strain field, and may have nu-
0.5 0.419 0.554 0.419 0.554

merical accuracy problems with standa@fl elements commonly

used in the displacement-based FEM, as observed in example 1.
From numerical investigations, we observe that both material

gradation and orthotropy have a significant influence on SIFs and

) ) ) T stresdi.e., both sign and magnitujeand the crack tip location
tropic and orthotropic FGMs. For the orthotropic case, the FEMiso shows a significant influence on the fracture parameters in

results obtained by the nonequilibrium formulation are comparegherholic-tangent materials. We also observe that the extra terms
with _those obtamed by the _mcompatlblllty forml,_llatlon reporteqle_g.’ nonequilibrium or incompatible terinensure convergence
by Kim and Paulind12]. Notice that the two equivalent formu- ; target solutiongSIFs orT stress.

lations provide similar FEM results for mode | SIF for each trans-
lation factord. For the isotropic FGMs, the mode | SIF decreasegcknowledgments
with the translation factod for the range between -0.1 and 0.5.
For the orthotropic FGMs, the mode | SIF increases with th

translation factod for the range between -0.5 and -0.1, howevef, SA-Ames Chief EngineetDr. Tina Panontin through Grant

it decreases asincreases further. Table 6 also indicates that mo i
| SIFs for the orthotropic case are smaller than those for the is 0. NAG 2-1424. They also acknowledge additional support from

tropic case for each translation facifrom -0.5 to 0.1, how- the National Science FoundatidhlSF) under Grant No. CMS-

ever, the SIFs for the orthotropic case are greater than those 9&}5954(Mechan|cs and Materials Program
the isotropic case fod=0 to 0.5.
Table 7 compares the present FEM resultsTatress obtained Nomenclature

The authors gratefully acknowledge the support from NASA-
mes, Engineering for Complex Systems Program, and the

by the nonequilibrium formulation with those obtained by the in- a = half crack length

compatibility formulation for various translation factos of aora; = contracted notation of the compliance tensor
hyperbolic-tangent material variation considering both isotropic (S or §jq) for plane stressi=1,2,6; ]
and orthotropic FGMs. Notice that the two formulations provide =1,2,6

similar FEM results, and th& stresses are negative for all the atP or a};p = a or a; evaluated at the crack tip location;
translation factorsl considered. For both isotropic and orthotropic i,j=1,2,6

FGMs, theT stress decreases with the translation fadtfor the A = a 2X2 complex matrix

range between —0.5 and 0.0, however, it increasesiasreases b; = contracted notation of the compliance tensor
further. Table 7 also indicates thatstress for the orthotropic case for plane strainj=1,2,6;j=1,2,6

is greater than or equal to that for the isotropic case for each b}}p = by evaluated at the crack tip location;j
translation factor. =1,2,6

B = a 2X2 complex matrix
C11, Cop, C1p = coefficients in the relationship betweédmnd
stress intensity factor&, andK,)
= a 2X 2 diagonal matrix
Ciju or C = constitutive tensori, j,k,1=1,2,3
d = translation factor in hyperbolic-tangent

Table 7 Example 2: comparison of T stress for an edge crack c(0)
considering translation (d) of hyperbolic-tangent material
variation (see Fig. 8)

Nonequilibrium Incompatibility function

do = x4 coordinate of a fixed point
d IS0 Ortho Iso Ortho e = natural logarithm base=2.71828182...

E = Young's modulus for isotropic materials
-0.5 -0.463 -0.393 -0.452 -0.394 E® = Young’s modulusE evaluated at the origin
-0.4 -0.478 -0.407 -0.470 -0.406 Eip = Young's modulusE evaluated at the crack tip
-0.3 -0.507 -0.434 -0.493 -0.439 E11, Ex» = Young's moduli with respect to the principal
-0.2 -0.580 -0.499 -0.571 -0.501 axes of Orthotropy
_%-l :51729; _‘3-96535 :3-17:17 __g'ggzz E(l’l, 532 = Yqu_ng’s moduli E;1,Ey» evaluated at the
0.1 ~0.444 -0.364 -0.431 -0.362 _ongm
0.2 ~0.218 -0.205 ~0.217 -0.205 f = apoint force
03 ~0.175 ~0.171 -0.175 -0.171 f = a2x1 force vector
0.4 ~0.157 ~0.157 ~0.157 ~0.157 fl, f!' = representative functions for auxiliary dis-
0.5 -0.152 -0.151 -0.152 -0.152 placements for SIFs

G1, = shear modulus for orthotropic materials
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shear modulu$s,, evaluated at the origin g = contracted notation of;j; k=1,...,6

energe release rates £ or ¢f"™ = a vector for auxiliary straing; j=1,2,3
representative functions for auxiliary stresses 6 = angular direction in polar coordinates with
for SIFs respect to the local Cartesian coordinates

mode | energe release rate 9 = the angle of the local Cartesian coordinates

mode Il energe release rate with respect to the global Cartesian
contour integral coordinates

a 2x 1 real matrix ) 6, = indication of direction of material gradation
imaginary part of the complex function with respect to the crack

path-independend integral for the actual x = material parameter for isotropic materials;
field o i (3-v)/(1+v) for plane stress and 3-v4for

J integral for the auxiliary field plane strain

J integral for the superimposed fieldactual «"® = material paramete evaluated at the crack
plus auxiliary tip

mggg :|sz{reessssiinr:teennssi%/yf?:é?c:r w = roots of the characteristic equatides 1,2
tip _ . .

S . . = val h rack tip | i

normalizing factor for stress intensity fac- M pc evaluated at the crack tip locatiork

2 — =1,2
0. . : . ) .
tors, Ko=¢E"Va for the isotropic case and Z = complex conjugate ofy k=1,2

_—0 [ i . A . . .
Ko=eEp,\ma for the orthotropic case v = Poisson’s ratio for isotropic materials
length of a plate v1p, 101 = Poisson’s ratios for orthotropic materials
a 2x 2 real matrix oy = contracted notation ofy; k=1, ...,6

interaction integralM integra)

' oo = normalizing factorioy=¢E° for the isotropic
shape functions for nodeof an element

casea,=¢EQ, for the orthotropic case
0 22 p

a 2x 2 real matrix o = stresses for the actual fieldsz1,2,3; j
unit normal vectors on the contour of the do- =1.2.3
main integral o or aﬁ“x = a vector for auxiliary stresses;j=1,2,3

a generic propertyCij, Sjk, Or &j))
a 2x 2 diagonal matrix
coefficients of the asymptotic displacementg\ppendix A: Anisotropic Elasticity

for or_thotroplc materlalskzll,z . The generalized Hooke’s law for stress-strain relationship is
coefficients of the asymptotic dlsplacement%iven by [40];

for orthotropic materialsk=1,2
weight function in the domain integral gi=ayo;, a;=4a;(0,j=1,2,...,6 (A1)
radial direction in polar coordinates
real part of the complex function
compliance tensoti;, j,k,1=1,2,3

a 2Xx 2 real matrix €17 €11, €28 E3= €33 £4= 2633 E5= 2613
elasticT stress

representative functions for auxiliary dis-
placements foil stress 01= 011, 0y= 0, 03= 033
representative functions for auxiliary stresses

where the compliance coefficients;, are contracted notations of
the compliance tensdgj, and

&= 2812

04=023 05=013 0g=012

for T stress (A2)
displacements for the actual fields 1,2 For plane stress, tha; components of interest are

a vector for auxiliary displacements; 1,2 a;(i,j=1,2,6 (A3)
width of a plate .

strain energy density and for plane strain, tha; components are exchanged with as

strain energy density for the auxiliary field follows:
local Cartesian coordinatess1,2 asas,
global Cartesian coordinateiss 1,2 by =a; - ?L(I,J =1,2,6 (A4)
complex variablez,=x +iy,; k=1,2 83

material nonhomogeneity parameter for gra- Two-dimensional anisotropic elasticity problems can be formu-
dation of E;; lated in terms of the analytic fmctiona}k(zk), of the complex
the real part ofw; k=1,2 variable,z =x,+iy, (k=1,2), i=v-1, where

material nonhomogeneity parameter for gra-

dation of E,, or E X=X+ay, Ye=pyk=12 (A5)

the imaginary part ofiy; k=1,2 The parameters, and gy are the real and imaginary parts @f
material nonhomogeneity parameter for gra= ax+iBx, Which can be determined from the following character-
dation of Gy, istic equation40]:

contour forJ andM integrals 4 3 2 —
A — 2a6u” + (28 + agg) u” — 2a8psu +89o=0 (A6
outer contour 1 1 (22, o 26/ T A2 (AB)

inner contour where the rootsu, are always complex or purely imaginary in
contour along the upper crack face conjugate pairs agy, f1; M2, Ko
contour along the lower crack face

Kronecker deltaj,j=1,2 - . .
strains for the actual fieldi=1,2,3; j Appendix B: Representative Functions for SIFs

=1,2,3 For orthotropic FGMs, the representative functions
f(rl2,9,a') in Eq. (1) are given by[37]:
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—_— 1 —_—
fi=\2r/m Re[ ,—t,p{,u“ppz\ cos6+ ulP sin 6
ua = pg
R
- uiPpycosd+ ulP sin 0}}

fl'=\2r/7 R ;{p Vcosd+ ulP sin g
P — =

- pyVcosf+ ulP sin 0}}

I 1 fin .
fh=v2rim Re[ I—“p{,u“pqz\ cosf+ ulP sin 6
Ml
- u¥Pq,\cosh+ ulP sin 0}]
fll — ;’2 / R ; / tip
S>=N2rlm ip_ _ipld2VCOSO+ 5" sin 6
My T Mo

- quVcosf+ ulP sin 0}]

where Re denotes the real part of the complex funcMﬁ and

ti
g" — 1 Re 1 ,U«llp
12 [ tip _  tip tip
\2mr M1 T M \cosa+,u siné

- ——Mgp (B2)
Veosf+ uiP sin g

Notice that, in the earlier expressions, the graded material param-
eters are sampled at the crack tip.

For isotropic FGMs, the representative functidiis’?, 6,a™)
for displacements in Ed1), andg(r~*/2, 9,al) for stresses in Eq.
(3) are given in many referencdg.g., Ref.[38]). The graded
material parameters are sampled at the crack tip.

Appendix C: Representative Functions forT Stress
The presentation follows the Stroh formali$&9]. For othotro-

pic FGMs, the representative functiot¥¢inr, 6, f,a'®) in Eq. (4)
are given by[39]:
h 1
t)=- == Inr = >(Syhy + Sphy)
2T 2
(Cy
h 1
th= - 22 It = >(Syihy + Sphy)

“p denote crack-tip material parameters, which are obtained frohhe parametersl andh; in Eq. (C1) are the components in the
Eq (A6) and taken fo3, >0 (k=1,2), andp, andg, are given by 2X2 matrix S(6), and the 2< 1 vectorh as follows:

P = tlp( tlp)2 |p _ aIIlelp

atlp
tip  tip
Ok =M + 4 P - ah

respectively. The functiong(r~2/2, 9,a'®) in Eq. (3) are given by

[37]:

p_ 1 pPug pg
0= A Re tip tip tip
N2t M1~ My | VCosO+ wy sin 6

B Mtlp
—
Vcosd+ uiP sing
tlp 2
(| B 1 )

gnu=r— t t
\2 r |p_

Vcosf+ ulP sin g
tlp)z

1
Vcosé+ ,u"p sing
tlp
I

922~ T— P =
- Vcosg + ,u"p sin 6

llp

*
Vcos+ uiP sin g

p
p
p

'( t
- \2ar r P = w3 | Veosa+ tlpsm&

*
Veosf+ ulPsin g
tlp tlp

I
O12=
\ 27Tr |p -

\Jcosg+ ,u"p sing

5|
|
|
|
3,
|
g
rsram|

~ Jcoso+ ,u“" sing
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2 S S
H=—R ACBBT:[ ]
S(6) 7TG[ (6)B'] S Sp

— -1f — hy
h=L f—{hz (C2

[xg ] [-xup -aul
)\tlpqtlp )\tupqup )‘Illp )\tzlp

where

B In s,(60) 0
Cw)‘[ 0 Ins(0)
L*=RdiAB™], f=[f,0]" (C3

in which piP and g (k=1,2) are given by Eq(B1), and\lP (k
=1,2) is the normalization factor given by the expression

)\np)z(qtlp tIP_ “P tlp) 1. (CH

The representative functlon§(r‘1,0,f,a"") in Eq. (6) are
given by[39]:

t5,=03%cog 0, t5,=02*sir? 6, t5,= 053 *sindcose

], sd{(6) = cosf+ uiP sin g

(CH)
where the auxiliary stresses are given[Bg]:
1
oAM= 27TrnT(e)Ns(@)h, A =ot*=0 (Ce)
in which
n=[cosh,sind]", Nj(#) =2 RdBP(6BT]
1 (o)
u1(6) ] uiP cosf-sin 6
P(o) = , ——, (k=1,2
(6) [ 0 wio | MO sy K12

For isotropic FGMs, the representative functions
tU(Inr,,f,alP) in Eq. (4) for displacements, anti(r™1, 6, f,alP)
for stresses in Eq(6) are given in many referencdg.g., Ref.
[41]). The graded material parameters are sampled at the crack tip.
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1 Introduction “foldover,” in which a bending induced trough or wrinkle folds
oyer at a roller and remains trapped during subsequent transport,

Knowledge of th? re_latlonshlp between microstructure anéjreating aesthetic or dimensional defects in the finished product.
macroscopic properties is essential to understanding the mechzﬁq(lj-u

’ S Sctive was to develop a modeling approach by which the spatial
ence macroscopic behavior in ways that are not well understo erogeneity in mechanical properties across the web could be
The fiber laydown processes used to manufacture nonwoven WeRSacterized, and then incorporated in finite element simulations
make it difficult to precisely control local material density. Under, 4 statistically reproducible manner.
standing the effects of this nonuniform density distribution is of The transport of nonwoven webs has not been widely discussed
particular importance in the assessment of product manufacturigghe open literature. Nonwoven webs are based on loose assem-
processes, where the webs are commonly transported under s of discrete fibers or continuous filaments, which are consoli-
sion through a variety of roller and guide systems. dated via thermal or chemical bonding, mechanical entanglement,
It is well known that deformation and stress fields within webgy a combination of these approaches. The fibers may be randomly
during transport strongly influence the incidence of manufacturingstributed or preferentially oriented via dynamic combitizard-
defects[1-3]. Spatial heterogeneity may contribute to the initiaing”) or hydrodynamic methodéKo and Du[4]). The current
tion of instabilities in the manufacturing process and thereby geimvestigation considered the behavior of a thermally bonded
erate product defects, resulting in processing machine downtine@rded web, in which the polypropylene fibers were preferentially
This investigation explored the critical defect known asligned with the longitudinal, or “machine,” direction of the web.
Consolidation of the web is achieved via “calendaring,” a process
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY in which the loose fiber mal is passed through heated rollers, one
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF ap- ©f Which is engraved to yield the desired pattern of bond points.
PLIED MECHANICS. Manuscript received by the Applied Mechanics Division,BONding is achieved by fusing fibers together under the combined
March 11, 2003; final revision, July 20, 2004. Editor: R. M. McMeeking. Discussiogffect of pressure and temperature at these bond points. An SEM
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Jogrﬁﬂcrograph depicting the resulting microstructure is presented in
of Appllgd Mech{inlcg, Department of Mechanical and Environmental Englneeylnﬁ,ig- 1.
University of California-Santa Barbara, Santa Barbara, CA 93106-5070, and will be . . . . .
accepted until four months after final publication in the paper itself in the AsME Understanding the mechanical behavior of these materials is
JOURNAL OF APPLIED MECHANICS. essential to the formulation of novel material and product designs
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Fig. 1 Secondary electron SEM micrograph illustrating typical
web microstructure. The diamond-shaped dark regions are

bond points, where fibers have fused together under tempera- ) ) ] ] )
ture and pressure during calendaring. Fig. 2 Gray scale TIFF image resulting from optically scanning

a web sample

that reduce product defects, machine downtime, and time to mar-
ket. In the web mechanics literature, the web is often treated as a_ )
homogeneous continuum, neglecting both the effects of disconti-This paper describes the development of a methodology for
nuity and the effects of spatial nonuniformitgtack et al[5]; Simulating the transport of heterogeneous nonwoven webs
Good et al[6]; Swansof 7]; Lin and Mote[8—10)). The emphasis through a roller system as part of a manufacturing process, the
has been to identify boundary or initial conditions in the transpo@bjective being to identify material and system conditions that
process that can cause manufacturing defects. The web is typic##§d to product defects and machine downtime. In order to char-
treated as a beam or plate, and the tendency of the web to devedgjerize the natural spatial heterogeneity of the carded web of
a defect is related to the stress field. interest, samples of the web were optically scanned to determine

The deformation and failure of heterogeneous materials hall¥e spatial variation in density. Following the technique of Thig-
been widely investigated. Materials considered include geologi€n €t al[17], a covariance function was fit to the images, which
materials, porous metals, composites, woven and braided texi@s then used to generate simulated “virtual” webs having spatial
materials, and foam. Investigations range from phenomenologi€&iaracteristics equivalent to those of the real material.
continuum modeling to investigations at the micromechanical The virtual webs were then used to formulate finite element
level. The effect of a nonuniform distribution of porosity on flowmodels in which the local mechanical properties of the web were
localization and failure in porous metal alloys was analyzed n@ssumed to be governed by the local web density. Models were
merically by Beckef11], and Khvastunkov et aJ12]. Nakamura formulated representing two common loading configurati¢hk:
and Sureshi13] and Brockenbrough et dl14] used finite element conventional tensile testing of rectangular web specimens(znd
analysis to determine the effects of fiber distribution and loc¥feb transport under tension over a three-roller system. The tensile
microstructure on deformation and stress in metal-matrix compdgst models revealed that heterogeneous webs were weaker than
ites. Leggoe et al15], and Chen and Mdi16] have carried out homogeneous webs of equivalent mean density. In three roller
three-dimensional finite element analyses to study the effectsBpdels, the heterogeneous web exhibited behavior that qualita-
microstructural heterogeneity on deformation and effective strelééely matched experimental observations, indicating that spatial
in composites. All of these studies have demonstrated the inflieterogeneity in material density may potentially contribute to the
ence of microstructural heterogeneity on macroscale mechanitifiation of process instability and product defects.
behavior, the effects being most pronounced for phenomena that
are highly sensitive to localized effedfsuch as failurg

One of the challenges in simulating the stochastic nature of gjmyjation of the Spatial Heterogeneity of Non-
material properties lies in characterizing the natural spatial hetero- .
geneity of materials. If spatial property distributions were trul)\fvoven Web Fabrics
random, this would be a relatively trivial matter; once the mean Creation of the “virtual” web was based on grayscale optical
and standard deviation of the variation is determined, the genesaanning of samples of the carded web. The specimen was
tion of simulated materials having equivalent randomly distritscanned against a “black” background, ensuring that only the light
uted properties may be accomplished using codes that empteflected by the web itself was returned to the scanner; the re-
random number generation. Leggoe e{ab] provide an example corded grayscale level should therefore reflect the local web den-
of an investigation where this was successfully accomplished. $ity. The scanning process yielded TIFF images of the web, an
actual materials, however, there is often an underlying spatial pakample of which is provided in Fig. 2. These image files were
tern that arises during material synthesis, so that the property disen converted into text files containing the grayscale levels for
tribution must properly be decomposed into two components; tieach individual pixel.
underlying pattern, and a Gaussian “noise” superimposed on thdt is assumed that the web density is a two-dimensional isotro-
underlying distribution. pic random field. Analysis of the gray scale level data thus enables
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the formulation of a covariance matrix describing the spatial dis- transform to the spatial domain to obtain a random process,
tribution of web density. To create the virtual web, the covariance Yn(X), having zero mean and unit variance. Zero padding

matrix was fit to an analytical function; was necessary to eliminate pollution due to edge effects for

|2\ | - a nonperiodic signal.
Chy=¢?{1+ (—2) ., heRY B>0, (1) (4) Scale and location adjust the procesg(x), defined in step

b (3) to get the final proces&y(x), given by

whereb=1.268465,8=0.540665, the separation vector between Y

spatial locations; andx; on the web ish=x;-x;, a2 is the vari- _ (2

ance,RY is the spatial domain, and the number of dimensidns Z) = o gl codwyXy + waKe+ h) + e (7)

=2. The normalized covariance matrix is then obtained by divid- ) ) o

ing C(h) by the variancer2. whereo is the desired standard deviation aads the de-

The objective is to create a “virtual” web having a spatial dis- _Sired mean of the density distribution.

tribution of density,Z(x), which is statistically equivalent to the (5 Output the simulated two-dimensional density distribution.
measured characteristics of the actual web. It is assumed that the

process to be simulated is Gaussian, is second-order stationary ) )

with zero mean, and yields the covariog&@th). From Eq.(1), 3 Experimental and Modeling Procedures

C.(O):Oz’ and must _by de_finition .be greater _than ZEr0. A Processs 1 - rensile Testing.Rectangular web specimens were sub-
with nonzero mean is easily obtained by adding the required megRye 1 tensile testing using an Instron 1125 uniaxial loading unit

to the simulated zero-mean process. The covariance matrix 0L & inned with self aligning grips and fixtures. The specimen ends
second-order stationary stochastic proc&(ss is positive definite \yere attached to aluminum plates using superglue to ensure that

and boundedKarlin and Taylor[18]), so that the applied load was distributed evenly across the full width of the
© o specimen. In no instance was there any evidence of failure or

f f |C(h)|dh < . (2) distortion of the web in the attachment region. Loading was ac-

o J =0 complished by displacement of the crosshead at a fixed velocity.

The negligible stiffness of the welcompared to the fixtures and
rips) enabled the extension of the specimen to be regarded as
ectively equal to the crosshead displacement.

N All specimens were prepared with an aspect ratio of 4:1, and
C(h) :f f codw'h)s(w)dw (3) has their major axis aligned with the longitudirfedaching direc-

—o0 J —0 tion of the web. Specimens of varying dimension were tested to
support future investigations of the effect of scale on the variabil-
ity of specimen behavior. A series of 820 mm specimens were
tested with the crosshead speed set to 0.025 m/min, giving an
engineering strain rate of 0.0053'sA series of 320 80 mm
longitudinal specimens were then tested, with the cross-head

N speed set to 0.101 m/mia strain rate of 0.0053%). The typical
S(w) :f f C(h)codw h)dh. (4) strain rate experienced by the web during transport through roller

-0 J = systems is expected to be on the order of?1.

The covariance matrix defined in E@.) is an even function ofi.
Therefore, the covariance matrix has the spectral representati

where s(w)>0 is called the spectral function. Dividing by the
variance yields the spectral dens#C(0), whereC(0) represents
the variance(Cressie[19]). The spectral density function of the
processZ(x), is given by

Shinozukd 20] and Shinozuka and J481] suggested simulating

the stochastic proces&(x), by the discrete cosine transform 3.2 Finite Element Model Formulation

12 N 3.2.1 Material Properties for Heterogeneous WehB8 finite
. element computations were performed with the ABAQUS/Explicit
Z0) 0( ) g; COg w1y + e+ i) ®  coftware packagf22]. The use of finite element models dictated

. L ) ) o that the discontinuous web be approximated as a continuum. The
with ¢ being independent random variables uniformly distributegleb was modeled with quadrilateral, finite membrane-finite strain,
between - and 7. The random frequenciesyy, wy are distrib- shell (S4R elements. Shell element characteristics were defined
uted according to the joint density functiong(w;,w;) to ensure that the bending properties of the \erftical in deter-

=s(wy, wp)/ 0%, where mining the tendency of the web to wrinkle and create foldover
w oo defect$ were represented accurately in the model.
o2 =  w,)dw;dw,. 6 _ _The \_/veb was modeled as belng an |sot_rop|c, str_aln-rat_e insen-
) S(wy, o) dwyde, ©® sitive, linear elastic-perfectly plastic material. Tensile testing ex-

periments have confirmed that the web displays some viscoelastic
Shinozukg20] and Shinozuka and Jd4@1] showed that the ran- pehavior, as expected given that it is an agglomeration of poly-
dom process given in E€5) has zero mean and covarian€h).  propylene fibers. However, in manufacturing processes, the speed
As the number of the terms in the seridstends to infinity,Zy  of web transport is such that the total transport time is usually too
converges to a Gaussian procé€sessig19)). short for relaxation to significantly affect the process. The strains
To create virtual webs having spatial density distributions stancountered during web transport are generally low enough to
tistically equivalent to those derived from the gray scale scan dagmsure that the assumption of linear elastic behavior is reasonable.
the procedure was as follows: The assumption ad, plasticity is also a significant approxima-
tion. The web is a mat of aligned fibers, and as such deviatoric
(1) Compute the covariance matrix from the two-dimensionaitresses will actually have little direct effect on plastic deforma-
grid of gray scale data using the function given by Eqg, tion. In fact, the web may plastically deform under the influence
and normalized by the variane#. of direct tensile stresses. The objective in introducing a yield
(2) Perform the inversécosing Fourier Transform on the nor- stress was to simulate foldover defects, where some inelastic de-
malized covariance matrix generated in st¢pto obtain formation must occur for the fold become a permanent “crease” in
the joint spectral density functiog(w). the web.J, plasticity represented the most practical method of
(3) Convolve the square root of the joint spectral density fun@ccomplishing this for continuum elements.
tion with cosine transformed Gaussian white noise, and Relating material properties to density was an important ele-
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Fig. 4 Configuration and constraints for finite element models
simulating tensile testing of heterogeneous nonwoven web
specimens

shells of similar thickness, a relatively low average yield stress
was sought. Given the relatively low longitudinal strains during
transport(and thus the expected linear elastic behayithis ap-
proximation should not adversely affect the response of the model
webs during transport though the three roller system that is the
Fig. 3 Secondary electron SEM micrograph showing ruptured focus of this investigation. ] _ _

fibers in the vicinity of the nonwoven web fracture path Regardless of the model configuration, the following procedure
was used to create webs possessing spatially heterogeneous den-
sities for use in finite element analyses;

ment of the model formulation process. Experimental results in- (1) Apply a regular finite element mesh to a plane rectangular
dicate that in the vicinity of the fracture path the web reduces to web of the desired dimensions.

the thickness of individual fibers, as is evident in the micrograph (2) Generate a heterogeneous density distribution using the
presented in Fig. 3. This implies that the mechanical properties  web simulation procedure described previously. The target
should depend directly on the relative density of the web material.  mean and variance for the model may be derived from
As the fiber number density increases within a region, the stiffness  analysis of grayscale images or defined by the investigator.

and yield strength of the web should also increase. (3) Overlay the heterogeneous density distribution on the finite
Appropriate relations for the Young’s modulug, and vyield element grid developed in stef). The overlay is accom-
strength,o,;, were sought in the literature. A variety of relations plished by manipulating the property definition section of
are available for braidefSun and Qiag23]), woven(Gao et al. the text input file used by the finite element analysis pack-
[24] and Scida et al[25]), cellular (Christenser]26]; Ladd and age(ABAQUS).
Kinney [27]; Choi and Lakes[28]), and nonwoven materials (4) Generate the final model geometry, including the applica-
(Wang[29]). Drawing from the behavior of cellular materials and tion of any defects in the case of roller system models,
experimental observations, it was assumed thand o were using codes developed specifically for each of the models
density dependent, and represented by the following equations: described in the next section.
E = C1<p—> (8) In the models, the continuous set of real densities was approxi-
Es Ps mated by assigning element densities to one of 65 discrete density

. X values. This limit was imposed due to the necessity of creating a
Tg _ P 2 new property definition within the input file for every density that
Es Cz Ps © s assigned. Subsequent investigatigkbvastunkov et al[12])

. . . ({:ave indicated that as few as 11-12 distinct values may be suffi-
where the superscrifits) denotes local material properties, anient to accurately represent the behavior that would arise in het-

zubS(_:tript(s) denotes the properties of the material at averagg,geneous materials given the continuous set of real densities.
ensity. _ _ _ _
The values selected for the proportionality constants and physi-3.2.2 Conventional Tensile Test Modélse first loading con-

cal properties were as follows: figuration modeled represented a conventional tensile test, in
which a rectangular web specimen is loaded to eventual failure.
C,=1.00 The model configuration is illustrated schematically in Fig. 4. The
_ length and width of the specimens were selected to match the
C,=0.05 aspect ratio of the experimental specimens, and fall in the middle

of the range of specimen dimensions tested in experiments. The
specimen thickness was selected in conjunction with the average
elastic modulus to ensure that the specimen exhibited an elastic
tensile response approximately equivalent to that of the experi-
mental specimens. The resulting dimensions were as follows:

LengthL=0.16 m

Average densityp,= 110 kg/n?
Young’s modulus at average densify,= 1.6 10’ Pa
Poisson’s ratio = 0.4

Yield strength at average density, =8.0X 10° Pa.

It should be noted that the value selected for the con&antill

give a yield strength considerably lower than that observed in . _
longitudinal testing. The purpose in assigning the material elastic- ThicknessT = 0.00025 m.

plastic constitutive behavior was to simulate foldover, which dé-he model web was loaded by the incremental application of a
pends on bending in the transverse direction. Given that cardediform displacement in the-direction to the one end of the web,
webs are significantly less resistant to bending than continuumhile the other end of the web was constrained to have zero

Width W=0.04 m
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Width W=0.30 m

ThicknessT = 0.00025 m.

The finite element grid contained 10 660 elements. There were
30 elements across the width of the web, giving an element aspect
ratio of 1.000625. This level of discretization was selected based
on trials conducted to determine the number of elements needed to
, achieve converged results for web troughing under the action of a
/ e shearing displacement.
I A4 e 6 The rollers are rigid, and constrained at the roller center to zero
displacements. The driven roller axes were aligned withxhe
Web direction. The free rolle3) was allowed to have fixed angular
Motion m_isgilignments aboyt _both thq_a_nd X, axes, and was driven by
friction only. The friction coefficient between all rollers and the
o web contact surface is assumed to be 0.80. The roller characteris-
‘\ tics are summarized in Table 1.
- . The web initially leads roller 1 by 0.3 m, and leaves at an angle
1 Upstream of —45 deg with respect to the positixg axis. The tail of the web
AN approaches roller 3 at an angle of 90 deg with the with respect to
Tail the x4 axis. In order to create the natural stress and deformation
state in the static web, the tensile loads and roller misalignment
l are ramped in during an initial preload step 0.1 s in duration. The

web is ramped up to a tension of 20 Newtons during the preload
step. The tensioned web is then ramped up to the line velocity of
5.08 m/s by ramping rollers 1 and 2 up to angular speeds of
20N —-25.4 rad/s and 50.8 rad/s, respectively, and ramping the speeds
Tension of the ends of the web up to the desired line velocity.

4 Results and Discussion
Fig. 5 Schematic illustration of the geometry of a three-roller

web transport model. The shaded rollers (1 and 2) are driven at 4.1 Tensile Testing: Experiments and Finite Element

a fixed angular velocities; the unshaded roller ~ (3) is anidler. A Models. The results obtained from tensile testing a set of ten
tensile load of 20 N is maintained at each end of the web to 320x 80 mm “longitudinal” specimené&specimens cut so that the
simulate line conditions. major axis coincided with the machine direction of the yvate

presented in Fig. 6. The results are plotted in terms of tensile force
per unit width; given that the thickness of a nonwoven web is
. ) o o difficult to define, this provides a more fundamental measure of
displacement in the longitudindk;) direction. To recreate test the |oad supported by the web than would a stress based on an
conditions in which the specimens were rigidly glued to alumigrtificially defined thickness. The tensile response is approxi-
num loading plates, both ends of the web were constrained to z@figtely linear at low straindess than 0.05 and becomes increas-
displacement in the transverée) direction. ingly non-linear with increasing strain. Final failure was relatively

- abrupt, with little evidence of necking. There is significant scatter
32.3 Models of Web Transport Over a Misaligned Threeih the load to failure and elongation at failure. This is to be ex-

Roller SystemThe second model configuration represented a wi %cted, given the natural heterogeneity in local density—each

being driven over rollers under tension, as illustrated schem Becimen gives rise to a unique failure path and location. The

cally in Fig. 5. Rollers 1 and 2 were driven, while roller 3 was %OX 20 mm specimens exhibited similar behavior, with an in-

free idler (only free idlers could be subjected to misalignment i reased dearee of scatter in the failure properties. as would be
ABAQUS). The Lagrangian nature of the finite element mode] 9 ; > prop! !
expected given the increased characteristic dimension of the het-

requires that the model include a long tail “upstream” of roller 1 tpoeneity relative to the specimen dimensiéhis type of size
in order to enable a reasonable length of the web to pass throd%ﬁg y P yp

- . . ect is commonly observed in the failure of ductile all¢g§)).
the roller system during a model run. The width used in the mo Finite element models were formulated using material proper-

corresponded to the typical dimensions of a web used in an ex
; . ies drawn from Eqs(8) and(9). A set of models was analyzed to
ample manufacturing process, and the thickness was once a%g ermine the effect of grid refinement on model response. The

selected to yield the desired tensile and bending response. Lo e
resulting dimensions of the web in a three roller model were 5‘35““5 indicated the}t a mesh containing 3600 elem(eslﬂsele-
. ments across the width120 elements along the lengthielded
follows: . -
converged results. Two calculations were then undertaken in order
LengthL=8.0 m to evaluate the effects of spatial heterogeneity on web response;

Table 1 Roller characteristics used in finite element models

Roller center, m

Roller

number X1 X5 Radius, m Mass, kg State Over speed
1 0.0 0.0 0.2 1.00 Driven 1.0
2 0.4 0.2 0.1 10.0 Driven 1.0
3 0.8 0.2 0.1 0.50 Idler 1.0
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Fig. 6 Tensile test results for 320 X80 mm “longitudinal” g g
specimens, with load plotted in units of Newtons per meter

specimen width Fig. 7 Comparison of tensile responses of finite element mod-

els representing uniform and heterogeneous web specimens
with  experimental results obtained for “longitudinal”
specimens
one model representing a uniform web, and one representing an
artificially generated spatially heterogeneous web. The model
characteristics are summarized in Table 2. Note that the dispastyain contours in Fig. (@) show that during initial loading, plastic
between the average overall densities in the uniform and hetestrain initiates in regions of low density, where the material is
geneous models results from the random nature of virtual wateak, creating a locally heterogeneous strain field. Although the
creation; each realization of the virtual web will have a uniqudeformation was not homogeneous, no region within the mesh
overall average density. was excessively distorted at this stage in the deformation. As
The load-displacement response for the models is compagtaining continuedFig. 8(b)), it is evident from the contours of
with the averaged response of the experimental specirfimth  plastic strain that deformation becomes concentrated in a narrow
320x 80 and 80< 20) in Fig. 7. Although the web material wasband, as is typically observed in necking processes. Here the con-
modeled as a linear elastic, perfectly plastic material, the overtdurs of low plastic strain are obscured by the extreme plastic
response of both finite element models exhibits slightly nonlineatrain in the region of strain localization. Continued loading re-
post yield behavior. For the uniform model, this is a natural resugtilted in effective failure of the material within the localization
of the constraint imposed on lateral displacement at the endshefnd, and an eventual complete loss of load carrying capacity.
the web. For the heterogeneous model, the nonlinearity is mordt should be noted that the location and evolution of this local-
pronounced, and is particularly noticeable at the onset of plasti@tion band is extremely sensitive to the spatial property distri-
deformation. The additional effect can be attributed to the varigution. During the convergence tests, it was noted that with dif-
tion in element yield stress associated with local density variferent property distributions, the localization band emerged at a
tions; weaker elements yield earlier than the average elemedlifferent location in each specimen. This variation can also lead to
creating nonlinearity as the number of elements participating #ignificant differences in the overall yield strength predicted by
plastic deformation gradually increases. The finite element mod#ie models, as has previously been observed by Leggoe[&B4l.
provide good agreement with the linear elastic portion of the eand Khvastunkov et a[12].
perimental data, indicating that the combination of elastic modu- The deformed mesh for the uniform web is shown in Fig. 9.
lus and web thickness was chosen appropriately. The low yielthe necking pattern is typical of the behavior expected from uni-
stress introduced into the models to simulate foldover results fiorm specimens conforming td, plasticity. Plastic deformation
the models yielding at a significantly lower stress than the expegian be seen to localize in two symmetrically located regions, cor-
mental specimens, as expected. responding to locations where the constraint imposed by the
Examination of the onset of yielding in the heterogeneououndary conditions generates the highest deviatoric stresses.
specimen can provide insight into the evolution of failure in heBands of localized deformation emerge at 45 deg to the loading
erogeneous materials. The heterogeneous specimen exhibits adiigction.
nificantly lower yield strength than the uniform specimen, despite The failure patterns in the heterogeneous and uniform models
the comparable mean density of the two specimens. The plastiay be compared with the fracture path observed in the 320

Table 2 Parameters for tensile test models

Mean Maximum Minimum Standard
density density density deviation Number of
Model (kg/m®) (kg/m?) (kg/m?) (kg/m®) elements
Heterogeneous 108.56 131.00 85.00 8.81 3600
Uniform 110.00 110.00 110.00 0.00 3600
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Fig. 10 Fracture path for a 320 X80 mm “longitudinal” speci-
men of the carded nonwoven. The irregular failure path is simi-
lar in form to that arising in the heterogeneous web model of
Fig. 8(b).

spond to locations where adjacent regions of accumulated damage
link up during the final stages of fracture. The alignment of these
steps is consistent with the preferred direction of fiber alignment.
These differences may be considered in light of the model for-
mulation. The model was loaded only until the onset of strain
) . ) . localization; the material model did not include a failure criterion.
plastic strain at an applied displacement of 0.0112m  (repre- £\ 0 if the model had been formulated to continue to final failure,
senting an overall applied strain of 0.035 ). Final necking of the _ - .
web has initiated. the use of al, plasticity model is likely to ha_ve distorted the
observed fracture pattern. As a fibrous mat, it is probable that the
web will yield in response to direct tensile stresses rather than
shearing stresses. The authors have observed in SEM investiga-
X 80 “longitudinal” test specimens illustrated in Fig. 10. Failureions that fibers tend to align with the straining direction as defor-
in both the web specimen and the finite element model follows amation proceeds. With stress being supported solely by the fibers,
irregular path across the width of the specimen. There are, hotiis renders the use of & plasticity model to represent large
ever, qualitative differences between the model and actual fractaieformations questionable. For future investigations interested in
patterns. The actual fracture path is noticeably more jagged thasb failure, it would be advisable to formulate a novel material

the path in the model, with long sharp steps aligned parallel to theodel that more accurately captures the large strain behavior of
longitudinal direction of the web. These steps most likely correhe web material.

Fig. 8 (a) Plot showing contours of equivalent plastic strain at
an applied displacement of 0.00625 m  (representing an overall
applied strain of 0.02 ). (b) Plot showing contours of equivalent

4.2 Web Transport Under Tension Through a Three-
Roller System.Five models were formulated to investigate web

HEE R behavior during transport under tension through a three-roller sys-
% HEHHE § tem, the objective being to examine how spatial heterogeneity and
T i i i - i .
Y changes in the average material properties contributed to manu

facturing defects. The defect introduced was a misalignment of
e S the free roller(idler) about its center point. In the manufacturing

processes of interest, a maximum misalignment of 0.0436 rad
(2.5 deg about each axis is maintained; thus the worst case is

Fig. 9 Deformed mesh for a model representing a uniform web

at an applied displacement of 0.0112  (representing an overall represented by a simultaneous misalignment of 2.5 deg about each
applied strain of 0.035 ). The web is constrained to zero lateral axis.

(x,) displacement at the ends to simulate being glued to load- The individual model characteristics are summarized in Table 3.
ing plates. The shaded web illustrates the undeformed web In the first two models, a uniform web was transported; in model
path.

Table 3 Model parameters for transport of web under tension

Angular defect

) - (radiang
Mean Maximum Minimum Standard
density density density deviation
Model (kg/md) (kg/md) (kg/m®) (kg/md) X1 Xo

WEBHND 110.00 110.00 110.00 0.00 0.0000 0.0000
WEBHWD 110.00 110.00 110.00 0.00 0.0436 0.0436
WEBRND 88.93 110.00 65.00 9.31 0.0000 0.0000
WEBRWD1 88.93 110.00 65.00 9.31 0.0436 0.0436
WEBRWD2 112.27 145.00 76.00 8.89 0.0436 0.0436
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Fig. 12 Deformation of a spatially heterogeneous web during
transport through a three-roller system in which the idler roller

Fig. 11 Deformation of a uniform web during transport (roller 3) is misaligned after 0.8 s of web motion, for a web
through a three-roller system in which the idler roller (roller 3) having a mean density of 88.89 kg/m 3 and standard deviation
is misaligned_ (model WEBHWD ) after 1.0 s of web motion. The in element density of 9.31kg/m 3 (model WEBRWD1). The
shaded web illustrates the undeformed web path. shaded web illustrates the undeformed web path.

WEBHND the rollers were perfectly aligned, while in model WE- S .
BHWD a worst case misalignment of roller three aboutxthand show behavior similar to that of previous models. Although some

x, axes was introduced. Models WEBRND and WEBRWDP'aStiC deformation developed during loading, the web as a whole
transported a lower density heterogeneous web through syste able to support the loads throughout its transport without

- - L : ; ~ developing localized regions of plastic deformation. The web in
‘gg\}v%nzd ﬁgﬁgggrﬂﬁaggmé rgg:ﬁggﬂ\éel& evghlcl)ef r:\]grdniglwdEen s js model was substantially stronger than the web in models WE-
through a misaligned roller system ND and WEBRWD1, and better represents the response of the

The manufacturing defect of interest was web foldover eal web than the artificially weak web used in those models.

foldover arises when a “wrinkle{shear-induced troughreaches 2€SPite the development of substantial troughs in the upstream
a roller and becomes permanently folded upon itself. Once inifﬁ".lﬁ T)? W£|nkllr?]gr;no:iioldmng(]jefe?ttshwerre olll[)serfwte'?. fiv for
ated, this defect is propagated along the length of the manufactur- able 4 summarize€s some of the results of e five cases 1o

ing line, and production must be stopped while the defect is capc transport over the three-roller system. For future investiga-
rected. Roller misalignment is one of the principal causes (apns, it will be important to investigate the effect of anisotropy on
foldovér oldover. Carded nonwoven webs are strongly anisotropic, and

The uniform web in the perfectly aligned model WEBHND didcan have transverse elastic moduli as much as a factor of 5 lower
Yy alg gn the longitudinal modulus. Foldovers typically occur along

not undergo plastic deformation during the transport process, th . g >IN .
no wrinkligg gccurred. The web moregor less fofl)owerzj the idea:l'lnes aligned parallel to the longitudinal direction, so it would be

path described by the undeformed mesh through the roller syste%PeCted that transverse bending properties .WOUId §trongly influ-
The introduction of a roller misalignment significantly affecte"¢® foldover. The development of anisotropic elastic-plastic ma-

the web, as illustrated in Fig. 11. Distinct ridges developed in the
trailing end of the weh(to the left side of Fig. 1L during the
initial pretensioning step. As the web accelerated to the target
velocity, the web oscillated due to the misalignment of roller 3
though no wrinkling developed downstream of roller 3 and nc
foldover arose.

The results for the perfectly aligned heterogeneous web mod
WEBRND were similar to those obtained for the uniform web,
and once again no defects arose. Small isolated areas of plas
deformation three or four elements wide occurred during the aj
plication of the tensile load. As the web ramped up in velocity
during the second stage of loading, a few additional pockets «
plastic deformation occurred. However, the plastic strains reachi
a maximum early in this stage of loading and no additional plastic
strains occurred. This behavior is not typical of the real web ma- ) ) )
terial, and may be attributed to the artificially low yield strengtfy'd: 13 Dheformhatm?] of a s”patlally het.erogr?”ﬁoﬁs Yg‘fb d“”””g
assigned to the web in this model. Even in the presence of t ﬁ%ﬂ;?oét)t igoﬁsaﬁén;%e-;?te?rf%sge?fIcv\gbKr:nottic?nl f?)rr rg \?vreb
plastic deformation, no wrinkling or folding was observed in th aving a mean density of 112.27 kg/m 3and standard deviation
web downstream of roller 3. o in element density of 8.89 kg/m 3 (model WEBRWD2). The

The results for WEBRWD1 are shown in Flg 12. Under thghaded web illustrates the undeformed web path.
influence of the roller misalignment, ridging in the tail of the web
and isolated pockets of plastic strain arise during the pretensidiable 4 Some results of the finite element analyses for the
ing stage of loading. As the web accelerated, additional regionstbfee-roller system
plastic strain formed between rollers two and three. As roller three
oscillates, contours of plastic strain show that this deformation
alternates from the top edge of the web to the bottom due to extra \;qqe|
tension as the web oscillates. New regions of plastic straining

Ridge in
Strain trailing
localization end of web  Oscillations ~ Wrinkles

develop through the motion, with localized bands of plastic defowEBHND NO NO NO NO
mation arising and causing the web to develop wrinkles, as Y$EBHWD NO YES YES NO
clearly visible at roller twathe middle rolley in Fig. 12. WEES\TvDDl \'(\II?S ygs %EOS $SS

Figure 13 shows the deformation pattern for model 5, WEyEBRWD?2 NO YES YES NO

BRWD?2 after 1.0 s of web motion. The deformation patterns
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The dynamic response of parametrically excited, axially moving viscoelastic belts is in-

vestigated in this paper. Results are compared to previous work in which the partial, not

material, time derivative was used in the viscoelastic constitutive relation. It is found that

this added “steady state” dissipation greatly affects both the existence and amplitudes of
nontrivial limit cycles. The discrepancy increases with increasing translation speed. To

limit the comparison to the additional physics included in the model, the solution proce-

dure of Zhang and Zu [1,2], who applied the method of multiple scales to the governing

equations prior to discretization, is retained. The excitation here is provided by physically

stretching the belt. In this case, viscoelastic behavior and excitation frequency also affects
the amplitude of the tension fluctuation®0OIl: 10.1115/1.1827248
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Introduction its affects on the equations of motion is provided. A more physi-
cally motivated excitation source is also introduced. The effects

Axially moving materials are present in many engineering SY¥h the previous results for a parametrically excited belt span are

tems from r_naterlal processing mac_hlnes_to power transmissi [bn studied. As the translation speed increases the discrepancy
belts. For this reason, a great many investigators have studied %?Ween the previous and present results grows

dynamic behavior of these structures; $&e-10| and the refer-

ences therein. One prominent use of axially moving materials in
power transmission is the serpentine belt drive found in nearyquation of Motion
every automobile produced in the last 15 years. Because the . . . .
crankshaft pulley, which drives the serpentine belt, does not rotate 1€7€ the weakly nonlinear equations of motion for an axially

at a steady angular velocity over one revolution and the torques Bi?Vind String composed of a viscoelastic material and under para-

the accessory pulleys are periodic, the tension in each belt Sﬁgﬁtric excitation are derived. It is important to make clear the

varies periodically. Front end accessory drive designers then mggtrce of the parametric excitation so it can be modeled correctly.
be aware that tension fluctuations may cause a parametric re5B€ Usual source of parametric excitation in a tensioned string is a
nance in the belt span. The belt drive can then be designed s{l¢iv'N9 support which causes the tension in the string to change
that engine speedgexcitation frequencigswhich cause reso- ut has negligible effect on the total length between the supports.
nances can be moved away from frequent operating ranges One could also assume that an external field is acting on the string
To better understand the effect of parametric excitation in inci2 a_Iter_ the tension dlrectly_whlle holding th? supports fixed. S.UCh
vidual belt spans, Mockensturm et EL0] used a string model to excitation does not occur in most mechanical systems and is not
' H w tension fluctuations arise in a serpentine belt. The motion

investigate the regions where principal, and first summation a ; : .
difference parametric resonances may occur. Discretization sthe crankshaft is assumed to be prescribed, with the accessory

performed using the eigenfunctions of an axially moving strin rve ify?;ergsgﬁ\rclg% ntc:er?;ri?)ﬁt ?{:Jéttiggigtrlwzn'a-lr—guiéws;hde EJHO\é)Vélt
with constant tension. Modal damping was introduced and fir: 9, y

order nonlinear terms were included to estimate the vibration a%'r‘?ﬁlcehmﬂhar difference between the following and previous
plitude in the resonance regions. p y 9 p

In a series of subsequent papers by Zu and co-aufticsl1— derivations is the generalization to a viscoelastic material model.
q pap y In previous work, the viscous material model did not include a

16], a better understanding of the mechanical energy d|SS|pat|?Fady dissipation” term due to the axial motion of the string; the

mechanisms was attempted by using a viscoelastic material mo . :
for the belt. A variety of constitutive models and excitation fastic modulus was simply replaced by an operator such&hat

sources were investigated. Weakly nonlinear terms were retainied-L*]=E(®) + 7(), whereE is the elastic modulusy is the

as the viscoelastic effect only appears in the nonlinear terms of {{§C0US material constant, and a subscript denotes partial differen-
string model used. While these studies provided a systemaiiion- This transformation(mode) neglects the dissipation
method to include material damping in the analysis, an importabesent when th? belt is undergoing steady motions. A more physi-
material dissipation mechanism was not included in the derivati6al transformation(mode) would be E—E[*]=E(*)+ n(*)

of the equations of motion. where a dot denotes material, not partial, time differentiation. For

In what follows, this mechanism is included and a discussion @n axially moving string, the material and partial time derivatives
are not identical and related by

1To whom correspondence should be addressed. -
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viscous effects would not alter the parametric excitation. HowApproximate Solution

ever, if the tension fluctuations are a result of stretching, the . . . . .
change in constitutive model will alter the parametric excitation Because the goal of this work is to investigate the importance

. . L i of the mechanics neglected in previous work and not to compare
For an elastic string, the tension is approx|mateEAs whereA . lution methods thg solution %rocedure used by Zhang ang Zu
is the referential cross-sectional area. If the belt is being perio O '

cally stretchedg and, thus, tension are periodic functions of tim 2] is employed. The perturbation method is applied directly to

If the belt is composed of a simple viscoelastic material, the teﬁle partial differential Eq(10) and the sequence of perturbation
sion is related to the strain by equations discretized using the traveling string eigenfunctions.

Thus, an approximation is sought in the form
T=A(Ee+ ne)=A[Ee+ n(g+vey)]. 2

If the stretching is uniform, the partial with respecixts zero and
the tension does not depend on the translation speed. The ten
however, does still depend on the strain rate. If the strain in t
belt is varying harmonically as= A sin(()t), the dynamic tension
in the belt is given by

W(é!Tls):WO(ngO!T1)+8Wl(§lT0!Tl)+ et (11)

S\{g}'ereTO: 7 is a fast time scale that, in steady state, characterizes
ﬁréofions occurring ab. T;=¢7 is a slow time scale on which the
amplitudes and phases depend.

If the amplitude of parametric excitation, is of ordere, the
equations for the leading order and first correction terms in Eq.
T/A=EA sin(Qt)+ nAQ cosQt= A sin(Qt+ ¢), (3) (11 are

whereA?=(EA)?+ (7AQ)? and the phasep, is not important if o

only steady state behavior is studied. The excitation amplitude, as M[wg] +G[wg] +K[wg]=0, (12)
well as the frequency, then affects the amplitude of parametric
excitation. A . N ~° - -

Labeling the axial and transverse displacemahtand W, re- M[w;] +G[w,] +K[w;]=—2M[wg] — G[wg]+ N[ wo]

spectively, the Lagrangian strain in the stringeiéx,t) = U,(t)
+W)2((x,t)/2. For the viscoelastic material the tension is

Ll a]— 1\a2 where (9 and(s)" denote a partial differentiation with respect to
= = + + + + ) - ' ! )
TIA=Ele]=E[Ut 2 Wi+ 7l Uit WilWot o WoWoo T, andT,, respectively. The dimensionless amplitude of paramet-

+asinwTo+ ) (Wo)ge,  (13)

_ _ _ @ _ric excitation is thera?=a?(1+ {?w?). Using the standard pro-
The equation governing the transverse motion of the strirgdure to study resonances that may occur when the excitation
(Tx=pAW) becomes frequency is near a summative combination of any two system
) natural frequencies, a detuning parameterijs introduced such
pWii+ 2pv W+ (pv“— EUy— pU ) Wy, that
= (WL 3 EWH (W Wi - v WWoo) T, (5) w=wgtoten, (14)
wherep is the referential mass per unit volume. in which w,, and w, are natural frequencies of the linear system.

The spatially constant axial strald, is assumed to be addi- Solutions of Eq(12) can be expressed as

tively composed of a temporally constant straig, and a har- _ o,T (T
monically varying straing, cosQt, where() is the frequency of Wo=n(E)An(Ty)e'n o+ ¢ (§)A(Te'“o+cc,  (15)

excitation. . . where only thenth andIth complex eigenfunctionsy,(¢) and
With the nondimensional parameters #(€), are retained to study combination parametric resonances.
To reduce equation length the notation is used to denote the
we ng Y L= N complex conjugate of all preceding terms in the expression. Func-
L’ L’ pL? Eeo tions A, and A, are found by eliminating the secular terms from
(6) the equation governing; .
£, L2 1 1 EA _Substituting Egs(14) and(15) into Eq.(13) and expressing the
a=—, w=Q\/—, (=79 , o= —=—, trigonometric functions in exponential form results in
€ Eeg pEgqlL? g To
the nondimensional equation of the transverse motion is M {WJ + é{Wl + R[Wl]: NST+[ —2i wnA,QI\A/I[z//n]—Agé[z/fn]
W+ 2CW,+ (C®— 1—acoswr+ {wa sinoT)Wg=N[w], o
- (7) aA Y
. < e + T T T My 36
where the nonlinear operatdl{ w] is defined as 2 ¢
NIW]= 2 @WAW o+ EW W WA EW (W W+ W W) — |
2 PWWee WeeWe Wl Ve + 2 wd) + CManl JAZA, Fe@nTo
+ CLW(2WE,+ WeWige) (8)
If underlined terms are ignored Zhang and Zu's modeP] is . , , 2
recovered. Note, in this formulation the viscoelastic constant ap- +1 ~ 2o AIMIG ] = AGL ]
pears in both the parametric excitation in E¢j.and the nonlinear N
terms in Eq.(8). 3A, P,
Following Wickert and Moteg[17], Eq. (7) can be written in 5 —Ze'“T1+[M2|(3<p
canonical operator form by introduction of the operators 3
\/ e = (e - e | = L] % e | = 2— L] — .
M-1=() G[-]=20()¢ K[1=(P~D()g,  (9) +2iw'0+cMSIg]AEAI]e.w.TOHC,
as
- - - 0 . (16)
M[w_, ]+ G[w,]+K[w]=N[w]+a(coswT— {w SiNwT)W.
(10) where
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1
2

Ma= 3 9E? 9E 9E 92 @n

(Wfk)z Py N Iy @ azlr/,k} in which

S P P b P It | P me=(Msid ), Ge=—1(GL ¥l o).
R
IE 9% 982 9E d& 98 &\ 92
i 375 ¢ ¢ Ma= (Mo, 1), Ma=1{May, ), (21)
‘9_’”) T (18)
e Pty &
for k=n, | and the phase of the excitation has been neglected. The My = < ﬁ_§2’¢|> s M= < (7_52’%>

nonsecular terms in Eq16) are unimportant in subsequent analy-

sis and combined into the term NST. The teMy, does not

appear in previous work. . o .. and the notatiorge,*) represents the standard inner product of two
Equation(16) has a solution only if a solvability condition is complex functions ovete (0,1).

satisfied. This requires that the right side of Eif) be orthogonal  Referring to Wickert and Mot§17], the kth natural frequency

to every solution of the homogeneous equation. For the genegald mass normalized eigenfunction of translating stringsegre

case where internal resonances do not exist, the solvability congjkﬂ(l_cz) and ¢, = JZ sinkm)d ™, respectively. Substitut-

tion can be expressed as ing these eigenvalues and eigenfunctions into Ef@. and (20)

— 2iwpApmy = ALGyi + [(3¢+ 2l wpl) My —icimy,]AZA, €30S TO
+a—_'m erTi=0 (19) 1
2 N ' g =2kmc? my=-— 7 7*k*(3+2c%+3c%)
~ 2i oy A m— A/ +[(3¢+ 21w )my —icmy JATA, (22)
A, 1
+ 7” m,e'#T1=0, (20) Mg=> 7°K5¢(7+6¢2+3c%)
|
My —(=D"'sinf(n+1)mc]+i{1-(—1)""' cog (n+1)mc]} 23)
4n??c (n+D[(n+1)2c2—(n—1)?] '
[
Equation(23) is slightly different than that derived by Zhang 3Mye aa, o
and Zu[1,2]. In particular, the sign toggling terms-(1)"*" were anfBp=— Bnm 90 Zng LM €oSuTi=Ba=B)
incorrectly neglected in their derivation. Thus, when-| is
even—for all the principal parametric resonancese-{ is zero —m'nI sin(uT1— Bn—BD ], (27)
the results here agree with those of Zhang and Zu. However, when _
n+I is odd, for some summation parametric resonances, the re- ,_ SMye , aa o T._p
sults here differ from Zhang and Zu but agree with Mockensturm APIT T gy W m[mn' coduTy1=Bn= A1)
et al. [10] when ¢ is zero. Thus, in addition to neglecting the D
dynamic dissipation, a mathematical mistake corrupted the results —Mmy sin(uT—Bq— B, (28)

of Zhang and Zu.
To solve the nonlinear Eq§19) and(20), expressA,, andA, in
polar form

wherem!,,=Im(m,) andm?=Re(m,).

Limit Cycles

is 1 . s Equations(25)—(28) govern the slowly varying amplitudes and
Anzz apenm, "'\|:§a|e L (24)  phases of the modal coordinates. If the amplitudes are not chang-
ing with time, steady motionglimit cycles) are obtained. The
htéivial solution (¢, = a,=0) always exists, as expected. Since the
eguations for the amplitudes and phases depend explicitly on
aQfﬂow) time, it is clear that if the amplitudes are constant the
phases must be functions ©f ; in particular, the phases must be

Note thata, and B, represent the amplitude and the phase of t
response, respectively. Substituting Eg4) into Egs.(19) and
(20) and separating the resulting equation into real and imagin

parts yields such thatg! + ! = .
20, Mpy— CMy " In the following, nontrivial steady motions are obtained for
al= n~2n n gaﬁ+ ! [mlm cos uTy—Bn—B1) both elastic and V|scoelas_t|c belts. Multlplylng Eg7) by «; and
8nmw 4n Eq. (28) by «,, and summing the results provides
+mpy sin(u Ty = Ba—B))], (25) __3 Monap My af _ a +i [mR coso
_ K= 729 "gam 8l Anm Al n!
,_2oMy—CMg Aoy | Lo
=g bai T zr—[Mn coduTy—Bn—Bi) —mp siné], (29)
R . where it has been assumed bath and «; are nonzero, and the
+my sin(uTy—Ba— B, (26)  constantd=uT,— B,— B .

376 / Vol. 72, MAY 2005 Transactions of the ASME



Elastic Limit Cycles.

For the case when no viscous material Steady-State Response of Viscoelastic Moving BeltsWhen

effects are considere@=0), nontrivial limit cycles only occur the viscoelastic effects of the belt are not negligible, one finds the

when, from Egs.(25) or (26), my, cos#+nT sin#=0. Finding
sing and cod) in terms of the system parametensy, andmy,,,
and inserting the result into EQR9) gives

8
©(9+6c%+9c?)

V(mp)2+(mf)2

4u

nsaﬁ+|3a|2=
3
T

Fa

; (30)

nl#*

where

~ 4mn?%cy2-2(-1)""" cog(n+1)mc]

[FRN\2 T\2_
(i) "+ (i) (n+D[(n+1)2c2=(n—1)?]

(1)

For a principle parametric resonande=(), the limit cycle am-

plitudes are given by

Y |
nw

71_3

5 8
an=—
ne(9+6c%+9c?)

(32)

Real values fowry, exist only if the right-hand side of Eq30) is
positive, or

1 1
_+_
n |

a
m=E—
4

V(ml )2+ (mR)2.

Zhang and ZUy1,2] give a relationship betweea, and «; for

(33)

steady state amplitudes of the excited modes are related by

2 /n

n 2
77 Vyan (34)

a?=

Using this and Eq(25) to eliminated from Eq. (29), gives
Cia8+Cyaj+Csa?=0, (35)

whereC,, C,, andC; are time independent constants given by
C,=AB+P? C,=2Pp,

and Cz=u?—B[(m})?+(mf)?], (36)
with
- (anmZn_CmSn)§|5/4
- 25n5/4 ’
'a 1/n 1/4 1/1 1/41) 2
B_{E T T) +E(ﬁ) ] :
3¢ [my, myn®2
P= ?( o 7 (37)

These expressions are identical to those of Zhang and 2 if
mgz, is set to zero.

Equation(35) obviously admits the trivial solutior,=0. Non-
trivial solutions simply have amplitudes governed by

, —Cp*\C5-4C,Cq

®no~ 2C1

(38)

combination resonances. However, it is not clear how this wahe amplitudes of a general summation parametric resonance are
derived and numerically integrating Eq25)—(28) shows the re- then given by Eqs(34) and(38). For the special case of a prin-
lationship is not valid. cipal parametric resonance, the amplitude simplifies to

2
®no

—BB8CuMy,*+ \(3aMyne SiNN7C)2— £2(2w My — CMgy) 2(4u2c?— a2 sir? narc)
2nm '

(39)
c[{A(2wnMyy—CMgy) 2+ 99?ms, ]

expected. The same dimensionless values of the elastic and vis-
coelastic moduli used by Zhang and Zp=400, {=10) are also
used here.

Nontrivial limit cycles can then only exist i, is real or

and —C,+/C5—4C,C3>0.
o ) ) Results for primary parametric resonances can be compared
Substituting the expressions f@r;, C,, andCj into Eq.(40)  girectly with those of Zhang and Zu. However, due to the alge-
leads to the conclusions that the first limit cycle of the viscoelastiaic mistake mentioned previously, the combination parametric
system exists if resonancer{=1 andl=2) for a viscoelastic belt presented here
— b does not agree with the Zhang and Zu result even if steady state
. 4\ﬁ+4\ﬁ V(Mg “+(mg) dissipation is neglected. When results for this parametric reso-
- E ns A nance are presented, the mathematical error was corrected so that
= 2[(mp)?+(mf)?ICy (E
(2wpmy,—cmg,) ¢ |

C3-4C,C3>0 (40)

only the effects of steady state dissipation are compared.

As the excitation frequency approaches a summation of any
two system natural frequencies the trivial solution becomes un-
stable and stable nontrivial solutions branch from this point. The
. . amplitude-phase coordinates undergo a pitchfork bifurcation. As
Results and Discussions the frequency increases, the amplitude of the response grows as

Although the energy dissipated during steady state motion expected for a system that stiffens with increasing deformation. At
the belt may not seem significant, only slightly modifying thesome point above the summation of the natural frequencies, the
governing equations, the effect on the parametric resonances trarial solution again becomes stable and an unstable nontrivial
be substantial. As is expected, after correcting an algebra mistalkegnch appears. Increasing the excitation frequency still further,
the present analysis agrees with that of Zhang anfl1Z2] when for the dissipative system the stable and unstable nontrivial
the belt is not translating or steady state dissipation is absebtanches coalesce at a saddle-node bifurcation in amplitude-phase
However, as the speed of the belt increases, the consequencespate. For conservative systems the nontrivial amplitudes con-
not including steady state dissipation become significant. In ttiaue to grow with increasing excitation frequency, without anni-
following these differences will be highlighted. Stability resultsilating each other in a saddle-node bifurcation.
are not presented in the present work since they are as would b&he stability diagrams are presented as projections of the sur-

5/4
) . (41)
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Fig. 2 The amplitude of the nontrivial limit cycles in the first

RN AN combination parametric resonance  (n=1 and /=2) for ¢=0.5,
Y \\ \\ §_=1_0, a_nd ©=400. Inset shows solution neglecting steady state
\ N\, \, dissipation.
b \ \ AN
2 “ ‘\‘ 1\‘
2 1/2; 3/4 ) }
£ / / / previous(insed analyses at half critical speed are shown in Fig. 2.
E / Ve ,;/ For all excitation amplitudes ant= 0.5 the maximum amplitude
£ ,/ r is predicted to be 25% less in the present analysis. The effect of
g A . the added dissipation is as expected; the regions were nontrivial
T solutions exist are smaller when steady state dissipation is
— included.

Qualitatively, steady state dissipation has much the same effect
on the first two principal parametric resonance regions as on the

10 15 20 first combination resonance; see Figs. 3—6. Again, the solutions
(b) Frequency detuning, | approach each other as the translation speed goes to zero and both
models predict the resonance regions are largest for a stationary
Fig. 1 Stability boundaries of the first combination parametric belt. Both models again predict the collapse of the second primary
resonance (n=1, /=2) obtained with (a) and without (b) steady resonance when=0.5. For the first principal resonance, the de-
state dissipation with  {=10 and ¢=400 tuning frequency at which the saddle-node bifurcation occurs is

predicted by the present model to again be 8.9% and 44% lower

for all @, andc=0.2 andc=0.5, respectively. These values are
faces in théa- u-c parameter space onto thec plane. The area 8.8% and 31% for the second principal resonance at speeds
between the dark solid and dashed lines corresponds to the regioh.2 andc=0.4, respectively. Again, the present model predicts
in which the stable nontrivial solution exists. These regions efiese resonance regions close when the belt is traveling at its
pand for both excitation frequencies above and below the nomirfitical speed. When steady state dissipation is neglected the re-
value with increasing excitation amplitude. The regions betwe@ons where the trivial solution is unstable closes but the saddle-
the solid dark and light lines is where the trivial solution is unnode bifurcations do not approagf=0 as shown in Figs. 3 and 5.
stable. Again, this region grows with increasing excitation amplWhen w~2w,, at half the critical speed and for &l the peak
tude. Finally, the regions between the solid light and dashed liné®it cycle amplitude is again 25% lower in the present analysis;
enclose areas in which the unstable nontrivial limit cycles existsee Fig. 4. Whem~2w,, the peak amplitude is 7.1% and 50%

For the first combination parametric resonance=(. and| lower in the present analysis for &l and c=0.25 (Fig. 6) and

=2), significant difference is predicted by the present analyseks=0.75, respectively.
Figures 1a) (the present resultsand ib) (Zhang and Zu's re-  The source of the parametric excitation is extremely important
sults illustrate how the extra dissipation alters the detuning frevhen viscous effects are included in the material model. Zhang
quency at which the two nontrivial branches coalesce and only thed Zu assumed the tension in the belt varies with a given ampli-
trivial solution remains. The curves where these branches emarigi@e and frequency. The physical source of this tension variation
from the trivial solution are identical in both analyses; there is n@as not discussed. However, in most systems and certainly belt
steady state dissipation when the belt is traveling without defdi¢ives, the source of the tension fluctuation is forced periodic
mation. In both cases, this combination resonance region is clogggtion of material points at the boundary. In belt drives, this
when the translation speed is zero, as expected. For translatib@tion is transferred from the pulleys and the length of the span
speeds significantly lower than the critical speed, the differencéges not change. If this is the case, as noted previously, the exci-
are slight. This is expected since the steady state dissipatioriddion frequency and viscoelastic material constant help determine
small whenc is small. However, at just 20% of critical speed andhe excitation amplitude. Assuming the system is being excited in
for all values ofa, the detuning at which the unstable and stabl@ summation parametric resonance, the ratio of the excitation am-
branches coalesce is 8.9% less with steady state dissipation. THigide, a, to that given by Zhang and Zu isa/a
difference grows to 44% at half critical speed, and 100% at criti= 1+ (n+1)??7%(1—c?)%. As expected, this ratio goes to one
cal speed, where the present analysis predicts this combinatamthe translation speed approaches the critical speed where all
resonance disappears as it does when no dissipation is pfsentnatural frequencies go to zero. The ratio is greatest when the belt
This is not predicted by the Zhang and Zu analysis. The largestnot translating. For a stationary belt, excited in the first princi-
region of nontrivial limit cycles occurs a&t=0.38 presently and at pal parametric resonance and usifig10 (Zhang and Zy the
¢=0.65 in prior work. The limit cycle amplitudes for present an@mplitude ratio is 62.8. Thus, if the dynamic strain amplitude is a
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Fig. 3 Stability boundaries of the first principle parametric
resonance (n=/=1) obtained with (a) and without (b) steady
state dissipation with  {=10 and ¢=400

Fig. 5 Stability boundaries of the second principle parametric
resonance (n=/=2) obtained with (a) and without (b) steady
state dissipation with  ¢=10 and ¢=400

must be less than 1.6%; at the first combination and second prin-

fourth of the static strain, the elastic dynamic tension amplitude é#pal resonances, this ratio decreases to 1.1% and 0.80%, respec-
a fourth the elastic static tension but the viscoelastic dynamtigely. If the material viscoelastic constant is reduced to 10% of
tension amplitude is 15.7 times the static tension; the belt is thémat used by Zu{=1), these ratios are 16%, 11%, and 7.9% for

in compression much of the time. For the belt to remain in tensiahe first three resonance regions, respectively. The viscosity sub-
at this driving frequency, the ratio of the dynamic to static strairstantially alters the amplitude of the parametric excitation.
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Fig. 4 The amplitude of the nontrivial limit cycles in the first
principle parametric resonance  (n=/=1) for ¢=0.5, &=10, and
¢=400. Inset shows solution neglecting steady state dissipa-
tion.
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Modeling of Threshold Strength in
Fisla sénsasttic § Cylindrical Ceramic Structures

Department of Mechanical and Industrial

Engineering,

University of Iceland, Recently, three-dimensional structured ceramic composites with large threshold strengths

Reykjavik, Iceland (i.e., stress below which there is zero probability of failure) have been fabricated utilizing
e-mail: fi@hi.is an architecture consisting of relatively stress-free, elongated prismatic domains, sepa-

rated by thin compressive walls. We build upon prior work on laminate architectures, with
the common feature that these structures are all susceptible to fracture. Typically, these

Glenn E. Beltz three-dimensional structures consist of thin shells of mullite that surround alumina.

e-mail: beltz@engineering.ucsb.edu Cracks, originating from large flaws within the ceramic body, are arrested by the sur-
rounding compressive layers until a specific stress level is attained (i.e., the threshold

Robert M. McMeeking strength), resulting in a truncation of the strength distribution in the flaw region. A
e-mail: mcm@engineering.ush.edu preliminary stress intensity solution has shown that this arrest is caused by a reduction of
the crack driving force by the residual compression in the compressive walls. This solution
Department of Mechanical and Environmental also predicts that the threshold strength is dependent not only on the magnitude of the
Engineering, residual compression in the walls but also on the dimensions of both phases. A finite
University of California, element model is presented that utilizes a penny-shaped crack in the interior of such a
Santa Barbara, CA 93106-5070 structure or half-penny-shaped crack emanating from the edge of such a structure. On-

going analytical and experimental work that is needed to more fully understand this arrest
phenomenon and its application towards the development of reliable, damage-tolerant

ceramic components are discusséBOl: 10.1115/1.1831296
1 Introduction the present study. To understand the mechanics of fracture in this

rchitecture, a simple analytic model and several finite element

The major Qrawback (.)f ceramics as structural mqtenals IS th%ﬁalyses are carried out to study the threshold strengths for differ-
brittleness. Brittle materials contain an unknown variety of cracI%sBO
A

. ; - . t configurations.

and flaws tha@ are madverterytly mtyoduced during processing anty analysis proceeds in the following way. First, the three-
surface mach|n|n@1:2]. The high brittleness makgs ceramic partﬁimensional ceramic structure is simplified as an infinitely long
exjremely prone to impact damage, often re;ultlng In catastrop indrical structure and a crack is modeled as a penny-shaped
failure. A concept which plays a central role in the study of crac

arrest in brittle materials is the threshold strength—that is, a str:
below which the probability of failure vanishes. This phenomen
increases the damage tolerance of ceramics and will allow en

ack in the interior. The longitudinal axis of the cylinder is per-
dicular to the plane of the crack and is assumed to nominally
in tension. The problem is then extended to a semi-infinite

- ; . ructure with a half-penny-shaped crack emanating from the edge

neers o design reliable ceramic components for structural appjig,ch 4 structure. Stress intensity factors are calculated for these

K/Iatlolps. It:gs ?ﬁetn tshhown by Rao et[i?ﬂ. and Hbf#?b antlj MC- o configurations as a crack grows from the tensile section into
eeking [4,5], that thin compressive layers, within a laminayo compressive section. The stress intensity factors are used to
ceramic, arrest large cracks, and produce a threshold stren

process. Typically, the laminar plates are composed of alternating

Ie_lyers of AEO3_ and a muIIite/AJ_>03_mixture. Re_sidual compres- 5 proplem Formulation

sive stresses in the layers can arise due to differential strain be- ) ) ) )
tween the layers caused by one or more of the following: differ- The physical system that provides the basis for the following
ential thermal contractionor expansion during cooling (or ~ discussion is a three-dimensional architecture consisting of elon-
heating, a change in volume due to a crystallographic pha@ted prismatic _doma_lns,_separated by thin compressive walls, as
transformation, or molar volume change associated with the f&own schematically in Fig. 1.

mation ofareaonon prO.dUCt' . . 2.1 Analytc Model for an Idealized Cylindrical
Since laminates are simply two-dimensional structures, theyaé?ructure As an approximation, we assume the three-

g_nly effecnlvet attarrgstlng a crack '”.Te drl]rectlci)n. T?r%e.' aﬁémensional architecture to be an infinitely long cylindrical struc-
imensional structured ceramic composites have been fabricafgd, " the structure consists of concentric cylinders, alternating

that yielq a threshold stren_gth i.n other dimensions. T_his is bei_ fween tensile and compressive zones, the innermost being a
accomplished by assembling fibers and spheres using colloigglgjie ;one, As a representative model, Fig. 2 shows three con-
processing techniques and coating these geometries with ano tric cylinders with radiir,, r,, andr., respectively. The

material. The coated fibers and spheres are then consolidate {Qness of the compressive layer is giventbyr,—r . Assume
produce a material with a periodic structure that includes layers é“preexisting penny-shaped crack of diameteer({:))a épans the
compression that can arrest cracks propagating in all three d'mﬁﬂimeter of the tensile layer. In the following analyses, we deter-

sions[6]. One type of three-dimensional structure consists of relgsine the stress intensity factors for a crack when it extends into
tively stress-free, elongated prismatic domains, separated by tl R compressive zone, that is, foj<a<r, . The stress intensity

compressive wallgsee Fig. 1 This is the central idea underlying ¢, +ors are used to determine the applied threshold stoggs,
_ _ o needed to extend the crack through the compressive layers to pro-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- duce Catas.tmphl(.: failure. . . .
CHANICS. Manuscript received by the Applied Mechanics Division, June 30, 2003: A Stress intensity factoK can be determmed by Superimposing
final revision, July 9, 2004. Associate Editor: K. M. Liechti. the two stress fields: the applied stress field and the residual stress
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Matrix of hexagonal rods
packed together

Tensile layer

in tensile section

Compressive laye

(a)

(®)

Fig. 1 (a) Schematic and (b) micrograph of a three-dimensional ceramic architecture. As a
material example, the solid core consists of alumina (Al,03), while the thinner, compressive
coating-like phase consists of a mixture of mullite and Al ,03 (micrograph courtesy of M.
Snyder).

field, as depicted in Fig. 3. Each stress field is applied to the same@sion,o,, at the remote boundary. The stress intensity factor for
penny-shaped crack of diametea 2nd each has its own knownthis case is readily available and given by Tddhas:
stress intensity factor.

Before we carry out the superposition, let us assume that the Ko ' =2 \/EF(a/r ) @
cylindrical structure is infinitely long and subject only to uniform applied™ =%a N 7 o
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hand side of the “equality” is a tensile stress of magnitude, (
—o.), applied at the remote boundary, to a cracked specimen that
doesnot contain residual stresséwith F~1). The stress inten-
sity factor for this stress is given by the first term on the right side
of Eq. (3). The second stress field is a tensile stress of magnitude
(o¢+0y), applied only to the crack within the tensile region. Its
stress intensity factor is given by the second term on the right side
of Eqg. (3). The two superimposed stress fields sum to that shown
on the left-hand side of Fig. 3. The stress intensity factor for the
Crackin tensile secton  two superimposed stress fields is thus given by:

2 2 g
K:(Ua_ac);m'i_ ﬁ(ﬁcﬂn)ﬁ) ﬁdf- (3)

Embedded flaw
Penny shaped crack

The integrand in Eq(3) is due to a ring load of radiuéwhich is
integrated with intensityr; + o up to a radius ,. Evaluating the
Crack extended into compressive section integra| and Slmpllfylng giVeS:

2
a a a r
Fig. 2 Schematic of an infinite cylindrical structure containing K=20, \[;-i— 20 \[;— 2(oetoy) \/; \/1- ga . 4

a penny-shaped crack in its interior  (tensile ) phase

The first term in Eq(4) is recognized as the stress intensity factor
) . . i ) . for a penny-shaped crack in an applied tensile field, while the
whereF(a/rc) is a dimensionless correction function given by: remainder of the expression is negative. Thus, the stress intensity
a 3 factor initially decreases when the crack extends into the compres-
1-05— +o_145< —) sive shell of the material, and fracture resistance correspondingly
le le increases. The analytical result in Hg), for the stress intensity
a : @) factor, is compared with calculated stress intensity factor, in
A\ / 1— —
r

F(alry)~
Section 3.

Using elasticity theory, it can be shown that the magnitude of
}ae axial tensile stress (@r<r, andr,<r<r.) is given by:

C

The correction function depends on geometry of the structure ar%
as Eq.(Z) shows, as radial Qimensiqn of the cylinder a.pproach.es E'AaATH(t+2r,)
infinity (r.— ), the correction function approaches unity, that is o=, (5)
F(alr.)— 1. For purposes of this study, it is not feasible to use an re
infinite value forr. and we must accept a finite value, which is . . . .
reflective of the real three-dimensional structure. For our geord?d: Similarly, the magnitude of the axial compressive stregs (
etries, the magnitude d¥(a/r,) ranges from about 1.01 to about =" <Tb) iS given by:
1.375. The arbitrariness in the choicergf, which sets the back- , 2 .2
ground stress, is one disadvantage of the using cylindrical model o =E AaAT(re—t"—2try) 6)
to represent the stresses in what really is a periodic structure. ¢ rg '

We now return our attention to the superposition scheme outline
in Fig. 3. The applied stress is,, the magnitude of the residual whereE' =E/(1—v), E is Young’s modulusy is Poisson'’s ratio,
compression isr. (defined to be a positive numbeand the re- A is the difference in thermal expansion between the two mate-
sidual tension is denoted as. The first stress field on the right- rials, andAT is the temperature relative to a datum at which the

*+ 4 * + Ga':c caxot

— \(E\ A

AARR

Ga

Fig. 3 Stresses in a loaded cylindrical ceramic architecture can be obtained via superposition
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Penny shaped crack

Tensile layer Compressive layer

Fig. 4 Schematic of the semi-infinite cylindrical structure with a half-penny shaped crack
emanating from the free surface

thermal residual stresses are zero. In Efs.and (6), AaAT is propagates radially on its original plane through the various
taken to be a positive number. The derivation of E§$.and(6) phases. While this straight crack propagation has been observed to
is given in Appendix A. occur in many experiments, a phenomenon known as bifurcation
In general, the stress intensity factor in E4). decreases mono- can alternatively occur, where the crack may branch from its
tonically as the crack grows through the compressive layer aratiginal plane after penetrating into the compressive Igydr
hence, the crack grows stably until it reaches the interface with tfiais effect has been shown to increase the threshold strength be-
next tensile zone as the applied stress is increased. Howevegoihd what is calculated here, but does imply that the physical
can be shown that above a critical value of applied stress, timechanisms considered in this section are not universally appli-
functionK(a) reaches a local minimum in the compressive zoneable. While the finite element method discussed in the next sec-
If the crack were to reach this location, it would continue to growion can be extended to consider cases that involve elastic modu-
unstably until reaching the interface with the tensile layer. Furth&rs mismatch and bifurcation, we submit that the results presented
discussion of this critical applied stress is given in Appendix B. Im this work still provide invaluable guidance on the design of
this paper, we avoid parameter regimes that lead to a minimumthree-dimensional architectures that are fracture resistant. In addi-
K(a) prior to the crack reaching the tensile zone. tion, the current work provides a level of confidence before ex-
Assuming the threshold stress occurs when the crack hasding the FEM model to more complex geometries.
reached the interface with the tensile zone, one can idekKtify

with K, anda with r,+t and solve foro, to arrive at: 2.2 Cracks Emanating From a Surface. The second case

we consider is a half of a concentric cylindrical structure with a

K. T oct(t+2r,) half-penny-shaped crack emanating from the edge, as shown sche-
=% Vi g 5 matically in Fig. 4. The motivation for this geometry is that ce-
a t(t+2rg)—re ramic composites of this type are typically tested in bending, with

1 2 surface cracks initiating from the surface in maximum tension.
R /1_ @) For a half-space with a half-penny-shaped crack emanating
1+t/ry) from the edge and subject to tensile loading at the remote bound-

re
o) —&
\r2—t(t+2ry)
o . . . ary, the stress intensity factor is well known and is given by Tada
By substituting Eq.(6) into (7) we can write the normalized [7] as:

threshold stress as:

2
Tthr K, T ral2(t\(t K=—o.JmaF(d), 9)
= -2 [=]l=+2 ™
E'AaAT  2E'AaAT\r, V1+tiry \re) (rg)irg

whereF(6) is given by:

+1/1- 1 ®) F(#)~1.211-0.186ysinf (10°<H<170°). (10)
1+tlry)

Given that we are using a finite value for the cylindrical diameter,
Equations(7) and(8) show that the threshold strength for a cylinthe result by Tada can only be used as an approximation to our
drical composite increases with the fracture toughness of the thiesults.
layer material, the magnitude of the compressive stress and th&quations9) and(10) show the stress intensity factor is depen-
thicknesses of the various layers. These expressions are analogia on the angled, measured from the edge of the structure.
to those worked out for laminate architectures in earlier workowever, this dependence is relatively weak. For a crack emanat-
[3-5], in that they give very similar trends with regard to théng from a free surface, the state of stress varies from plane strain
variation of oy, with crack geometry. Most importantly, they al-in the interior of the plate to plane stress at the surface. Hence,
low one to design cylindrical ceramic architectures with thasing a crack-opening displacement method to calculate the stress
knowledge that failure will not occur below this value of stress.intensity factors can give erroneous results so &@) is limited

This theoretical model ceases to apply when a variety of reab internal angles. Raju and NewmdB] use a nodal-force
istic effects prevail. For example, elastic mismatch is not agaethod, which requires no prior assumption of either plane stress
counted for; that is, we assume the effective Young’s modHllus or plane strain, to obtain the stress intensity factors of semiellip-
is identical in both phases. In addition, we assume the cratikal surface cracks. Their results seem to suggest that the stress
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Fig. 6 Comparison of calculated and theoretical stress inten-
sity factors. Tensile and compressive layers have equal thick-
Fig. 5 Typical finite element model with singular elements nesses. Thickness of tensile layer is 2 r,=200 um.

around the crack tip

) ) ) o load, and for the stress intensity factdy.qq.adue to the residual
intensity factor varies strongly near the surface, indicating th@ress caused by thermal mismatch. The theoretical results for
need for substantial mesh refinement in this regime. Because}@dfpplied and K esiquar given by Eq.(4), are plotted on the same
this complication we defer consideration of cracks at the poigraph for comparison. As the figure shows, there is good agree-
where they intersect the surface to future work. ment between the theoretical and computed results.

For the case of residual stresses in a semi-infinite cylindricalIn Fig. 7, we show the calculated stress intensity factors for a
structure there is no analytical solution available for stress intetiickness ratio ot/2r ,=1/10. Again, the results are shown sepa-
sity factors and we must rely solely on finite element analysis. rately for K,,peq due to the externally applied load, aiGegigua

due to the material mismatch. The theoretical resultsKigficq

3 FEM Models for Stress Intensity Factors andK esiguai@re plotted on the same graph for comparison. As in

Stress intensity factors are calculated using the commercial ?_e previous case, there is good agreement between the theoretical

nite element codensys[9]. Recall the two cases considered; thal
is, an |nf|n|tely Iong Cylindrical structure with a penny-shaped 3.2 Ha|f-Penny-Shaped Crack Emanating From the Sur-
crack in the interior and a semi-infinite structure with a ha'fface_ We next consider the second geometry_ha|f ofacy"ndri_
penny-shaped crack emanating from the edge. cal structure with a half-penny-shaped crack emanating from the
edge, as shown in Fig. 4. The same two configurations are con-
ered as for the full-penny-shaped crack, that is, a configuration
ere the thickness of the compressive layer is equal to the diam-
ter of the tensile cell, and a configuration where the compressive
g;}yer is one tenth the diameter of the tensile cell. The finite ele-
nt calculations are carried out in a similar fashion as in the
evious section. Only one-fourth of the body is modeled, given
e symmetry of the problem.

nd calculated results.

3.1 Full Penny-Shaped Crack. We first consider the struc- ~.
ture of concentric cylinders with an embedded penny-shap%?jj
crack, as shown in Fig. 2. Figure 5 shows a typical finite eleme

ments are used in the analysis. The first row of elements aro
the crack tip is modeled with singular elements, with the midsi
nodes placed at the quarter points, to account for th& singu-
larity in stresses and strains at the crack tip. The stress intensity
factors are calculated with a displacement extrapolation method as s ’ .
outlined in theansys theory manual9]. R ' ‘ )

A typical dimension for the AIO; tensile cells in the three- .
dimensional architecture isr2=450um. For the compressive
layers, a mixture of mullite and AD;, typical dimensions range
from 23 to 90um [10]. Two configurations are considered here:
one in which the thickness of the compressive layer is equal to th
diameter of the tensile cell, that i¢=2r,, and with 2,
=200um; one in which the compressive layer is one tenth the:
diameter of the tensile cell, that i+ 2r /10, for a thickness of
tensile layer 2,=450um. In the former,t/2r,=1, and in the
latter, t/2r ,=1/10. In both configurations, the elastic constants oi3
the tensile and compressive zones are considered to be identica 125 |
The reason we choose two different thickness ratios is that th
smaller one is comparable to the experimental dimensions used |~ 5 Lef v 0 0 0 0w e L 06
Lange et al[6,10] and the larger one is comparable to ratios usec 1 1.05 1l 115 12
in finite element studies on laminatg4. Crack Length a/r

Figure 6 shows the calculated stress intensity factors for a ¢
thickness ratio of/2r,= 1. The results are plotted versus normalg;, 7 Comparison of calculated and theoretical stress inten-
ized crack length, as the crack extends from the tensile laygfy factors. Thickness of compressive layer is one tenth the
through the compressive layer. The results are shown separat@iyneter of the tensile zone. Diameter of tensile zone is
for the stress intensity factd{,,i.qdue to the externally applied 2r,=450 um.
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Fig. 8 Comparison of calculated and theoretical stress inten- AO‘ATE\/Z

sity factors. Tensile and compressive layers have equal thick-

nesses. Thickness of tensile layer is 2 r,=200 um. Fig. 10 Threshold strength versus fracture toughness for a

full-penny shaped crack

Figure 8 shows the calculated stress intensity factors for the
thickness ratio of/2r ,= 1. Again, the results are shown separatelnd then solve for the applied strasg, which appears as a linear
for Kppiiegdue to the externally applied load, alGggadue to  prefactor inK,ppieq. Thus, the largest stress needed to extend the
the material mismatch. The results are shown for three valuesas@ck through the compressive zone is given in a normalized form
angle 6, 30 deg, 60 deg, and 90 deg. As expected, and suggesésd
by Eq. (9), the stress intensity factor decreases as the afgle
increases.

Figure 9 shows the calculated stress intensity factors for the
thickness ratio ot/2r,=1/10, also for the same three values of AaATE
angle 6, 30 deg, 60 deg, and 90 deg. @ Kapplied "'b)

Now that the stress intensity factors have been calculated, the

. L S O appli d\/"_
next step in our analysis is the determination of threshold strength, . . o ap_p“e @ )
which we take up in the following section. If the initial crack size in the tensile layer is less thgnand the

stress needed to extend it is less thap,, the crack will be
4 Discussion of Threshold Strength arrested by the compressive layer. However, if. thg crack is very
small and extends at a stress greater thgp, it will extend
As discussed in Sec. 2.1, the stress intensity factor generalyough the compressive layer and lead to catastrophic failure
decreases as the crack extends into the compressive layers. Thitsiout being arrested. Thus, E(.1) is rigorously thought of as
the maximum stress needed to drive the crack through the comthreshold stress. If the applied stress is less than the body
pressive layers occurs when the crack is at the interface betwegiduld not fail when tensile stress is applied along the fibers. As
the compressive and tensile zones, that is, wirem,+t=ry,. In  previously noted, this enables load-bearing components to be de-
the context of the superposition concept introduced in Sec. 2.1, gigned with the foreknowledge that failure is unlikely to occur
can SetK:Kapplied"' K residua™ K¢ 5 hencevKapplied: Ke—Kresiquar  below that stress.
As expected, Eq(1l) shows that the threshold strength in-
creases with the fracture toughness of the compressive ldggrs,

Kc Kresidua(rb)
Tine  AaATE'Vr, AaATE'r,

(11)

175

(30°

Kopptiet

Stress Intensity Factor (applied)

—

(60°) - —
O'H,.pue,f\_/ Ta (9poy - - -

T -0.1

11

Crack Length a/r2l

115

-0.2
-0.3
-0.4

-0.5

Stress Intensity Factor (residual)

The normalized threshold strengths are plotted in Figs. 10 and 11,
against the normalized fracture toughn&ssof the compressive
layer. Values oK, are chosen between 1 and 5 a range
which is typical of ceramic materials. Values of other material
parameters are taken aE=300GPa, »=0.3, Aa=2.795
x10°8C ! and AT=-1200°C, for purposes of setting the
ranges of these plot axes. Taking.=3 MPa\/m and t/2r,
=1/10, typical of the cylindrical structure by Snydgt0], the
threshold strength we arrive at is800 MPa. This modestly ex-
ceeds what has been observed in that system, but other effects,
such as edge cracking and crack branching into other propagation
planes(as well as the fact that modulus mismatch is not accounted
for here are being considered as mechanisms that are coming into
play in the experimental system.

In addition to the effect of intrinsic fracture toughness, the finite
element results reveal the effect of mismatch stiein\ «, albeit
in an indirect way due to the normalization we have chosen to use
in Figs. 10 and 11. Inspection of E€L1), coupled with the fun-
damental result that we expet,.squa t0 Vvary linearly with

Fig. 9 Comparison of calculated and theoretical stress inten-
sity factors. Thickness of compressive layer is one tenth the

diameter of the tensile zone. Diameter of tensile layer is
2r,=450 pm.

ATA e« (and that theK giqua in the numerator of the equation is
actually expected to be negatjygields the intuitive result that
oy INCreases with mismatch strain.
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0.5 I - pected from prior experience with laminate systems, the threshold
I 1 strength is shown to depend on the mismatch stféirough the

. thermal expansion coefficient mismatch and temperature change

the intrinsic toughness of the constituent materials, and the thick-

ness ratio. The results are in modest agreement with experimental

results.
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K. In this Appendix, we overview the derivation of the background
stress field that drives crack propagation in the cylindrical, axi-
: symmetric problem discussed in this paper. Consider the geometry
Fig. 11 Threshold strength versus fracture toughness for a depicted in F'g.' 2, _albelt without a crack. The el_a_stlc moduli are
half-penny shaped crack. Results are shown for angle ~ #=60°.  t@ken as identical in all three layers. The coefficient of thermal
expansion in the interior layeof thickness) is taken asy,, and
that in the remaining layers is taken ag. The stress equilibrium
equations, written in cylindrical coordinates and assuming no
ebody forces, reduce to

The effect of tensile region sizer2 and compressive layer
thicknesst, and the ratiot/2r,, are even less transparent in th

finite element results, simply because we did not perform an ex- doy, 1

tensive parametric study in this space. Nevertheless, useful insight ar + T (o —049)=0

can be gained from the simple analytical model through (Bj. (A1)
which shows that the threshold strength decreases with the thick- d0 5,

nesses of the various layers. The ratir , has a modest effect; in 9z 0.

addition the absolute size of the tensile zong, impacts the o ] )
threshold stress as well. The latter effect is being exploited Bjoreover, compatibility requirements dictate that

Paranjpye et al[11] through microelectromechanical systems P
(MEMS) processing technology to achieve threshold stresses in —(Fegp) =g . (A2)
laminate systems in excess of 1 GPa. ar

As to be expected, the threshold strength depends on the elagiigiation(A2) follows from the fact that displacements in tide
moduli of the tensile and compressive layers. With everything elggection vanish, and the displacement component irr thzec-
held fixed, if the tensile layer were more stiff than the compregpn may only depend on. In addition, we insist that,, remain

sive layer, the magnitude of the residual stress rises and hencedbfstant throughout the structure. Hooke’s Law is written as
threshold strength increases as is apparent fron{BgWhile we

have not performed a systematic study of cases where the com-
pressive layer elastic properties differ from those in the tensile
zones, the good agreement that has been observed in this study
between the FEM results and the analytic results provide the nec-
essary confidence necessary to build elastic mismatch into future
implementations of this FEM model. In addition, more sophisti-
cated procedures, such as considering a periodic structure based 1

on a hexagonal compressive layer configuratioepicted in Fig. 2= g0z M(0gt or) 1+ AT

1), and using the J-integral Icul ress intensity factor . .
shoﬁlddbuesefplt)rid\] tegral o calculate stress intensity aCtova‘th the subscript onx taken to coincide with the appropriate

phase. The symmetry of the deformation dictates that all shear
quantities vanish.
S Summary Insertinge,, and e ,, from Eq. (A3) into Eq. (A2), and elimi-

The finite element method was used to predict threshofthtingo, via Eq.(Al), yields a linear ordinary differential equa-
strengths in a model system consisting of a cylindrical jacket ution for o, that leads to a general solution of the form
der residual compression, surrounded by regions of tensile mate- . 2. _ 2
rial, subject to tensile loading aligned with the cylindrical major T =Ci+ Calr% 0gy=Cy=Colr%, (Ad)
axis. The model system has relevance to ceramic composites tluhere the constants; andC, must be determined separately for
have been fabricated by consolidating fibers of one phase in @ach phase, resulting in si&) unknowns. We note that E¢A4) is
other at high temperature, followed by cooling, resulting in reconstant with a piecewise constant solution &gy, consistent
sidual compression in the phase surrounding the original fibevgith the second part of E4A1). Additional boundary conditions
The architecture offers superior mechanical response, in tleae imposed in order to determine the constafits:the stress
cracks which originate in the cylindrical zones may be arrested lbpmponents must remain finite as-0; hence,C, vanishes for
the surrounding compressive layers, resulting in a truncation tbfe inner phase(2) the outer surface of the structure is free of
the strength distribution with respect to flaw size and an assotiaction; henceg,, is taken as zero at=r; (3) continuity ofe
ated design threshold strength. A simple fracture mechanissenforced at both=r, andr=r,; and(4) continuity of o,, is
model, valid for similar elastic properties is presented, and tramforced at botli=r, andr=r.
finite element results are in good agreement with that analysis.There remains a seventh unknown, the constant valus, of
Moreover, the finite element model is extended to the case ofaich is found through a macroscopic force balance. That is, St.
half-penny crack emanating from a traction-free surface. As eXenant’s principle is exploited to write

SrrZE[‘Trr_ V(0ggt 05 ]+ AT

1
800:E[0'00* V(o 0,) ]+ AT, (A3)
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20, (0=<r<ry)+ m(r2—rd) o, (r,<r<ry) a=ratt (i.e., the farthest extent within the compressive Jone
Solving Eq.(B1) as an identity gives the critical value:

+ar(r2—r2 rp<r<r,)=0. A5
r( c b)a'zz( b c) ( ) (0'C+Ut)(2r§+2rat+t2) (Bz)
With the unknowns in hand, the third of EGA3) may be used to Tgrit= = Ut
write the longitudinal stress in each phase: (Fat DVEE+ 2t
[ EAT 2 2 Thus, the stress intensity factor undergoes a minimum within the
(@p—ags)(rp—r3) for 0<r<r compressive zone far,> o, and Eq.(7) becomes invalid for
= a

(1—v)r? the threshold strength. By equating E&2) with Eq. (7), a re-
striction on material parameters that guarantees stable crack

EAT(ap—ag)(rp—ri—r2) for r.<r<r growth across the entire compressive zone can be obtained. Mc-
a~— b-

Oz7=

(1—)r2 Meeking and Hbaielp5] have derived similar results for the case
¢ of a two-dimensional laminar composite.
EAT(ap—ay)(ri—r2)
2 for ry=<rs<r References
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= I Problem With a Cavity on the
Lot | Interface—Part I: Theory

Department of Civil Engineering,

Nagoya Institute of Technology, The problem of a point dislocation interacting with an elliptical hole located on a bima-
Gokiso-Cho, Showa-Ku, terial interface is examined. Analytical solution is obtained by employing the techniques
Nagoya 466, Japan of complex variables and conformal mapping. A rational mapping function is used to

map a half-plane with a semielliptical notch onto a unit circle. In the first part of this
paper, complex potentials for the bimaterial system with an elliptical hole on the interface

Y. Shirai is derived when a point dislocation is present in the upper half-plane without loss of
Engineer generality. The solution derived can be used as Green’s function to study internal cracks
Shizuoka Prefectural Government, interacting with an elliptical interfacial cavity[DOI: 10.1115/1.1876432

Shizuoka, Japan

1 Introduction hole at the interface of dissimilar materials is not solved yet. It is

. . . ... well known that point dislocation solutions can be employed to
Composites are widely employed in present day appllcatlons':‘i

Their tailor made properties enable them to be used in Vari%inulate cracks by means of a distributed dislocation technique. In

. prop T o s paper, the solution for the problem of a point dislocation in
environments. Interface between dissimilar materials is an essgr; upper half-plane interacting with an elliptical hole on the in-
tial fef’“.”fe of composites. Interfaces are relat_lvely weak comparglace of bonded dissimilar materials is obtained. Mapping of a
to adjoining materials and may debond easily. Debonding of i

. o If-plane with a semielliptical notch onto a unit circle is done by
terfaces leads to the formation of cavities and cracks. Interfacm ans of a rational mapping function and the problem is solved

cracks/cavities interacting with subinterfacial cracks is also B the complex variable method and a closed form solution is
common feature in composite materials. obtained.

Williams [1] used eigenfunction expansion method to solve the
problem of a crack lying along the interface of two bonded dis-
similar elastic materials and derived the stress fields near the crack At ;
tip. Rice and Sih[2], England[3], and Erdogar{4] employed 2 Derivation of Solutlon. ) )
complex variables to obtain analytical solution for the problem of The problem under consideration consists of two half-planes
an interfacial crack along two bonded dissimilar elastic halftith semielliptical notches bonded along the common boundary
planes. Analytical solution reveals oscillating stress fields ahe@8 Shown in Fig. (). Material 1 occupies=0 and material 2
of the crack tip and interpenetration of crack faces behind tigcupiesy <0. Bonded parts of the interface is denoted\byand
crack tip but these anomalies were found to be confined to a smif unbonded parts by, wherej=1, 2 denote materials 1 and 2,
region and hence could be neglecféil To overcome the above respectively. Shear modulus and qusson’s rat!o for materials 1
anomalies Comnino[6,7] proposed a model by treating interfaceand 2 are denoted hy; andu;, respectively. Materials 1 and 2 are
crack as a continuous distribution of dislocations. considered separately i andz, planes as shown in Figs()

The problems of internal cracks approaching interfaces hag@d 1c). The z plane is obtained by rotating material 1 by
been examined using the distributed dislocation method and sohf0 deg about th¥-axis while material 2 is undisturbed in tg
ing the resulting singular equations to obtain stress intensity fa@ane. Since the geometry gfplanes are identical, same mapping
tors[8,9]. Several problems pertaining to interfacial cracks havénction is used to map planes onto unit circles as shown in Fig.
been summarized in Murakami et 4L0]. Recently, Oda et al. 1(c). S* and S denote the regions inside and outside the unit
[11] used the body force method to study the problem of an intefircle. Point dislocation®p;=D,; +iDy; and -Dg; are located in
face crack interacting with an internal crack. material 1 atzy; (t;=to1) and at infinity(t;=1), respectively. Dis-

Hasebe et al12] and Okumura et al.13] modeled the inter- locations, stresses and displacementg;iplanes are related to
facial cavity as an elliptical hole and solved the problem of théose in the originat-plane as

bonded bimaterial plane with an elliptical hole at the interface and Dvi=—du Dwi=d+ Xw=dwo Duw.=d
loaded it parallel to and normal to the interface, respectively. They e e e I Ce
employed the rational mapping function approach and studied Up=u, Vi=-u; Up=U, Vo=u,

stress concentration effects due to interfacial cavities. It should be
noted that crack is a degenerate case of an elliptical hole. T Ta OViT Oy Txvi=— T
The problem of a point dislocation interacting with an elliptical

Ox2=0yxp Oy2=0yp Txy2= Tyyp D

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY A mapping function that maps a half-plane with semielliptic notch
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF AP- onto a unit circle is given by
PLIED MECHANICS. Manuscript received by the Applied Mechanics Division,

August 5, 2003; final revision, November 24, 2003. Associate Editor: Z. Suo. Dis- \*"1 +12 +t.
cussion on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, z=- ib —ia—! + constant. 2)
Journal of Applied Mechanics, Department of Mechanical and Environmental Engi- 1 —tj 1 —tj

neering, University of California-Santa Barbara, Santa Barbara, CA 93106-5070, antiJ . . . .
will be accepted until four months after final publication in the paper itself in thé.0 are the dimensions of ellipse alorgandy; axes, respectively.
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E N Doy =Dyi+iDy, ¥
Z=ot)=—=+> ——+E, j=1,2. &) Y

1 _t] k=1 gk_ tj Z01 T

o)

Ey, Ex, Ec, and{, are complex constants amd=28 in this analy-
sis. The procedure for calculating the constant&jris explained
in detail by Hasebe and Inohafa4]. g g

The given problem can be split into two parts: probleanthe z
solution of point dislocations and a free boundary in a half-plane Tnterface M

Material 1

with a semielliptical notcisee Fig. 1b)) is solved and, problem I‘fj}ﬁ,‘;alz
(b) the continuity of stresses and displacements across the bonde
part of half-planes is satisfied. Accordingly, complex potentials for G,
the upper half-planématerial 3 can be written in the mapped
plane as _
Y
h1(ty) = h1alty) + Pea(ty) B, G,
1 xl
Ut = Yalty) + Yen(ty) (4 U
ZD

where the suffix 1" corresponds to problerfa) and suffix “IA” . dxlﬂdl /1 s
corresponds to probletti).

2.1 Solution for Problem (a). The solution for the problem
of a half-plane with a semielliptical notch subjected to a point ~
dislocation att;=tp; and t;=1 (z;=«=) has been obtained by /
Hasebe et al.15]. The solution is presented here for the sake of E, E, G, [ B, E, 4,
convenience,

— X,

Moo, [ToM

b
C, Material 2
a

D D —
baa(ty) = = —= log(ty — tog) + — log(ty — 1/tgy)
2 2T

— J— — — -z plane -[ anc
, D1 olto) ~ o(1fg) (1ltg))? . D1 = [o7ploc]
21 o'ty t- 1/§1 2ns ®) ©
1 1 B Ad B Fig. 1 Elliptical hole at a bimaterial interface
><<_, —= _) k 1kBk (5)
gk -1 gk — 101 ty gk k—l gk
and —
— 1 d1(ty) + dp(1/ty) = O(ty), (11
—_— 1h .
Ugr(t) = = P (Lhty) - a;(, « 1)) ba(ty), (6) EQq.(9) can be rewritten as
1
whereB=E,/w'(Z), {4=1/, andAq can be evaluated as ex- 01(0) = 03(0) =0. (12
plained in[15]. General solution of Eq(12) is an arbitrary rational functiofl6]
2.2 Solution for Problem (b). Solution to problenib) entails O(ty) = 64(ty). (13

satisfying boundary conditions along the bonded and unbonded ~
parts of the interface. Since the elliptical hole is traction fre&ince d;(o)=6;(0)= 6,(s) on the boundary,

analytic continuation leads to —_ B —_ .
¢5(1o) == ¢y(0) + 61(0) and  ¢,(1/o) = - ¢1(0) + 64(0).
w(l/t ) ¢, ®). 7) (14

"(t;
w'(t) Substituting Eq(14) into Eqg. (10), the boundary condition oM
The boundary condition on the traction free elliptical holean be written as

becomes

() = - ¢ (11t) -

_ $1(0) + A¢h1(0) = B16y(0), (15
¢/ (o)~ 4j(0)=0 on L ®)
whereo represents the point on the boundary; superscripgsd _ Ko + K2 _ 1-Bp ko +1) 1-ap
v L . ] , B;= =
denote the limiting values of the functions on the circumference Ko+ g 1+ B Ko+ g 1+ fo
when approached from inside and outside the unit circle,
respectively. where u; and u, denote the shear moduli of material 1 and 2,
Since tractions and displacements are continuous across tegpectively,ap and By are the Dundurs parameters given by
bonded part of the interface,

- o :(K1+1)F_(K2+1) :(Kl_l)r_(KZ_l): M2
¢1(0) = ¢1(0) = $5(Uo) = ¢p(1lo) on M, 9 D7 (ki + DT+ (ko + 1) TP 7 (ke + DT+ (sp+ 1) gy
1 1 By repeating the above procedure #y(t,), the following bound-
M—[Klﬁff{(o) + ()] = ;[qus;(l/a +¢,(1/0)] on M. ary condition onM can be formulated
1 2
(10 #5(0) + Aoy (0) = Bybo(0),
Writing (16)
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:K1,U«2+,U«1:1+,3D :M2(K1+1):1+0’D
Koty + p,  1=PBp’ Koty + i, 1=fBp
The problem of obtaining the potentiads(t;) and ¢s(t,) is thus
reduced to finding solutions to the Riemann—Hilbert Eg§.(15),
and (16).
In the dislocation problemy(t,) is expressed by Ed4). Sub-
stituting Eq.(4) in Egs.(8) and(15) yields

b1a(0) = p1Al0) =0 on Ly,

$1A(0) + A1pia(0) = B1Oia(0) + Crpgy(0) on M,
where

17
(18

Cy = iy + DIk + pq) = (1 + ap)/(1 + Bp)

and HlA(tl)=¢1A(tl)+¢2(1/a) is a rational function. Similarly,
¢y(0) — () =0 onl, (29
$3(0) + Ayhy(0) = Bobrp(0) + Crpy (/) onM

where
Co == palrey + Dl(kopy + po) = = (1 + ap)/(1 = fp)

(20

and Ooa(to) = do(ty) + p1a(1/1,) is a rational function. The general,

solution to Eqs(17) and(18) can be written a$16]

bialty) = Byxa(ty) 61a(0)do . Coxa(ty) b (0)do
W 2m J d@o-t) T 2a ), xi(o) oty
+ xa(tp)Pa(ty), (21

where P;(t;) is a rational function to be determineg;(t;)=(t;
—a)™(t;—-B)t™, and m=0.5+(logA;)/27. The behavior of
x1(ty) is given by

x1(0) ==Axi(o) on M,

xi(@)=x7(0) on Lj.

Similarly, the general solution to Egd.9) and(20) can be written
as

bty = Boxa(tp) Oa(o)do N Coxa(tp) ¢a(L/o)do
T 2m Jyn0e-t) 2w, xio)o-t)
+ Xa(t) Po(ty), (22
where

Xoto) = (t, — @) ™(t, — B)1 M2

and m,=0.5+(log Ay)/27. The second term in Eq$21) and
(22) is evaluated using the residue theorem as

C1X1(t1) f Pa(0) Coxa(ty) $ar(0) C,
; = D, log(t; — 1, log(t; -t
xi(o) (o= tl) 277'(1 +A) M x1(o)(o =1ty 2m(1+Ay) 1) oot 01) ot~ o)
to1 _ . f\2
it do +D—1w(t01)’ w(l/tm)[l_ Xt } (Lftgr)?
vig; Xa(@) (o —ty) ' (ton) x1(1ftoy) 1ty = Loy
. Dlz ( 1 )[1 _ Xty ] By 27 AdlkBk|: xa(ty) ] ’ 23
é'k 1 gk —to1 xa(Z) 1t = gk k=1 O x1(Z)
Coxalty) dar(Lo) Coxalty) dar(1/a) c — —
2X2- 2 : d1 o= .2X2 2 d1 _ 2 D4 log(t, - tyy) - log(t, — 1oy)
2@ Ju xz(0)(o—ty) 2mi(1+Ay) Iy xo(0) (o —1ty) 2m(1+Ay)
1oy do w(tyy) — w(1fyy) Xa2(to) 1 N 1 1
+ Xz(tz)J -Dy ; 1- -Dy> T
o, Xe(0)(o—1) o' (toy) Xa(tor) 1tz = tog ki \g—1 fe—tor
)| Bd? o AaBdl] ol
><|:1—X2(2/:| kk,_ Adak k’k 1_X2 2,) . (24)
X2(8k) 1t = & k=1 tp— & X&)
I
The contour integrals of Eq$23) and (24) are carried out as g, (¢ P d By (t 0 d
outlined in Hasebe et al17]. The first derivatives of the integral 1X1(. ) " 1a(0)da = .le( ) 1a(0)do
terms in Egs.(23) and (24) are expressed by terms without 2m Jyxi(o)(o-t) 2m(L+AY J, xalo)(o-t)
integrals[17]. B (t)
The rational functionfja(t;) can be expressed as a sum of =1 2 [1 Xl ] A
irregular terms inside and outside the unit circle as 1+A | 55 X1(61n) | €1n -
ty) b
a b . 1- xa(ty ] in .
Oa(ty) = 2 1_” l_n , (25 ; [ X1(710) | =ty
En—t T 7t
(26)

where|&;,|>1, |70 <1, anday, andby, are complex constants

to be determined.

Substituting(25) into (21) the first term is evaluated using resi-P1(t;) is obtained from the analytical conditions gia(t;). Sub-

due theorem as

Journal of Applied Mechanics

stituting Eq.(4) into Eq. (7),

MAY 2005, Vol. 72 / 391



_ 14 _
it == 1) = 2T 1,00 = a(t) = 1)
w(1it
- w( (tf)) Sinlty). (27

The first term in Eq(27) can be written from Eq(21) as
Bia(Llty) = xo(11t)P1(11t;) + terms regular irS'.
The second term in Eq27) can expressed as
w(1lty)
w,(tl)

N —
A.B 12
At =- > ”f—kfk +terms regular ir§°

k=1 &~

where Ay = ¢1.(£y). From (6), the last three terms on the right-

hand side of Eq(27) disappear. Thugjya(ty) is written as

N R—

o o A B g/Z

Yaalty) = = xa(L)Py(Lity) + >, —HSk
k=1 k 1

+terms regular irS'.

N — N
bualty) = - D xa(ty) ] AuBi D

1+6,5, x1(Z) fk‘tl 1+51

xa(ty) ] AZkEkg{(z 5
- - D44 log(t
X |: Xl(é’l/() §|/< - tl 277(1 + 51) 1{ Og( 1

to1

k=1

_ do
-1y — 1 -
o~ l09(h o) ) j T

(1ftg)?
t - 1/51

L petto) - w(1fty) [1 B
Yo't

+D12( -1 g lﬁ){l_

AdlkBk|: xa(ty) ]
2 — 11,
* E o x1(Z0) ]

Xalt) }
xa(L/toy)

m(tl)] By
xa(Zo 1ty

(32

Since ¢14(ty) is regular inS', the irregular part should be can-where 8;= u,(x;+ 1)/ (1(kp+1))=(1+ap)/ (1 —ap).
celled out. Expanding the first term in Laurent series and equatingThe complex potentials in the final form can be written as

terms with pole at;={¢ to zero, we get

>

AuBy

Pitp=-2, —— . 28
v o1 X (G—1)
Similarly, P,(t,) can be obtained as
N JR—
AyB
Pylt) = - >, ik (29

o X0 (L~ 1)

In order to evaluate the functio®,(t), the following relations
are used:

Y) _xt) et &) ) meaty
@ ta(D)’ x2(é2n) thl(gén), x2(772n)

Wheregénsllg_m, nénsllﬁ, A,=1/A,, andm,=m,.
Using Egs.(21) and(22)
+A1 n

toxa(750)

an

[lﬂ}_
X1(én) 1ty

01a(t) = ralty) + 452(1@ = 1

(ty) b B
+ E [ 1 Xty :| 1n _ 2 E [ 1
n X1(710) 1 i — 1ty 1+A;| n
B xa(ty) ] Bon 75 "'E |:1 _ xa(ty) ] Apnép
Xu(m20) 1 mon =t n xu(én) 1 én -t

-S Xl(tl)A_lkBk . % Xl(tll)AZI:Ekgl;Z. (30
k1 X1(8d(Gk— 1) k=1 xa(G) (G —ty)

h1(ty) = d1alty) + P (ty), (33

% {1 ‘s X2(t2) } A_2kBk
1+ 6k 2X2(§k) 4t

[ X2(t2) } A1kEk§1’<2 |:
X 1=
x2(8) 1 G-t 277(1"'52)

{
)

N
1+52k§:‘1

Polty) = -

log(t, — toy)

—log(t, - 1/t01)+X2(t2)
o, X2(0)(o—1)

@) = ot {1 Xt }
X2(ton) 1tp — oy

! o' (toy)

1 Xa(to)
o3(- )2
= VR | R

2{1 ~ X2(t2) ]]
k1 = xo&) ] |

where 8,=1/8,, and Ay = d1a(0), Ax= b5(¢). It should be
noted that the first derivatives @f;(t;) and ¢(t,) do not involve
integral terms present in Eq&3) and(34). Thus numerical inte-
gration is not necessary to calculatg, and Ay as well as stress
components. However, numerical integration of the integral terms
in Egs.(33) and(34) is necessary to compute displacement com-
ponents which involve both the complex potentials and their de-
rivatives. The complex constantg, andAy (k=1,2,... N) are
determined by solving theNtsimultaneous linear equations cor-

By
ty— &

B ’
2772 Adlk Kbk

(34)

Since Egs.(25 and (30) are identical, their poles must be theresponding to the real and imaginary partsAgf and Ay obtained
same and the coefficients in the two terms, which either include om their definitions. The complex potentialg(tj) (j=1,2) are
exclude the Plemelj functions, must also be equal at each polegiven by Eq.(7). It should be noted thad,(t,) is regular att,

S; andS;. Therefore, the coefficients are evaluated as

En= k= aw=~AuBe  ax=—AxBy,

== bu=AaBE  bac= AuBill

Thus,

N — N —_—
AuB AxB 2
bty =- >, 228, 5 FaBiaC

31
Pl SRR O °] o

Finally, ¢14(t1) is obtained as
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=ty; since the expression involving logarithmic terms of E2f)
cancel out with the term under the integral sign. Further, the so-
lution to the problem of a point dislocation in material 2 can
similarly be obtained by replacing the subscripts “1” and “2” in
Egs.(33) and (34).

Conclusions

The solution of a point dislocation interacting with an elliptical
hole has been derived analytically by applying complex variable
method. The key point to note in the derivation of Green’s func-
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e nrrasad | INteraction Between Interfacial
wrowasene | CAVity/Crack and Internal
= A Grack—Part 1l: Simulation

X. F. Wang

Research Associate . . . . . . . . .
This paper discusses the interaction of an interfacial cavity/crack with an internal crack

Department of Civil Engineering, in a bimaterial plane under uniform loading at infinity. The point dislocation solution is
Nagoya Institute of Technology, used to simulate internal crack by using the distributed dislocation technique. The result-
Gokiso-Cho, Showa-Ku, ing singular integral equation is solved numerically and the stress intensity factor varia-
Nagoya 466, Japan tions are plotted for some cases of internal crack interacting with interfacial

cavity/crack.[DOI: 10.1115/1.1876433

1 Introduction ings are obtained. In the second stage, tractions along the internal

. . . . : : crack length due to unit point dislocations acting in normal and
Multiple crack interaction studies constitute a major research fﬁngentialg directions to tr?e internal crack are n?ultiplied by un-

ynderstanding the structural integrity of components under lo (?ﬁown dislocation densities and equated to the negative of trac-
'rgghé\f?ancgcgfgeszgﬁtuéiisg?vv\cg:g gqnug'rggkciﬁglr(:cﬁgen: rzg@ns obtained in the first stage. This sets up the singular equation
been carried out ar?alytiéally and numerically to estimate the sO-F the given problem the solution of which gives the unknown
verity of cracks and to assess the overall integrity of componen rstlag(;aitrln?gngi?n?g(l:?;sg?i?att:ieti u: lég?]\'\gne g?/?\ftjﬂ\?:d are known,
Works carried out in this direction include cracks of arbitrar Dislocation >c/iensit is defined HE_‘;‘J '
lengths in homogeneous media interacting with each other; hole y '
edge cracks interacting with internal cracks; internal cracks inter-
acting with interfacial cracks, etc. The mathematical difficulties h(®) = T -5 U O -4 ), It <c, @
while solving crack interaction problems make numerical tech- K1
nigues inevitable. Several problems of practical interest have bagRerec is the semicrack length, arje: 1,2 correspond tox andy
solved numerically and compiled in Murakami etfdl]. _displacements, respectively. In the above expresgipis shear
In this paper the problem of an internal crack interacting witthodulus andk; is given by (3-4v;) under plane strain an(B
an interfacial cavity/crack is examined. The point dislocation sQ-;, ) /(1 +1,) under plane stress conditions in whighis the Pois-

Iuti(éndQelriveq earlieEZ]_ is used i.n C(l)njunchtion with tlhe disktrit_)l_'hson’s ratio of material 1. The bracketed term in EL).denotes the
uted dislocation technique to simulate the internal crack. mp in displacement across the crack face.

method has been used successfully to study several crack inte a%rhe condition of single valued displacement on the crack sur-
tion problems that are not amenable to analytical solutjan3]. face is given by
In the simulations, two internal crack orientations and correspong—
ing far-field loading directions are considerge Fig. 1 (a) in- c

—-C

2/-’“1d +

2

ternal crack parallel to and loading normal to the interfdoe
internal crack normal to and loading parallel to the interface.

Crack interaction effects will be studied by examining the Val’la%ingular integral equation can be setup by noting that the stresses

tions in stress intensity factors at the crack tips by varying th uced due o given loading should be zero on the putative crack
distance between the internal crack and the interfacial hole. TW.%j clog Ing sho Py
e as the internal crack is traction free. Thus, negating the trac-

numerical procedure to obtain stress intensity factors will be e?— ; : ; ; o
plained in Sec. 2. Stress intensity factors variations for some ca lgns induced due to far-field loading at the crack site by distrib-

of internal crack and loading orientations will be studied in Sec. ye’t;[ljgtit)hne dislocations leads to the following singular integral

2 Analysis

The solution of the problem involves simulating internal crack
by distributing a point dislocation along the putative crack length.
Earlier, the solution to the problem of a point dislocation in a +io,(t,9]}dt (3)
bimaterial plane with an interfacial cavity/crack has been ob- ) . .
tained. This solution will be used to simuiate the internal crack/hereoy(t,s) represents the traction component in kittirection
We assume that the internal crack exists in material 1. The giv@hpoints induced by dislocation density;(t) at pointt in the |
problem can be solved in two stages. In the first stage, tractiogigection. The left-hand sid&c(s) andT(s), denotes negative of
along the putative internal crack length induced by far-field loadhe traction induced due to far-field loading at the crack site. The

condition of single valued displacement of Eg) can be rewrit-
I ten as

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF AP- c
PLIED MECHANIlCS. Mgn_uscript received by the Applieq Mech_anics Divisionl, f {hn(t) + ihT(t)}dt: 0. (4)
August 5, 2003; final revision, November 24, 2003. Associate Editor: Z. Suo. Dis-
cussion on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, -

Journal of Applied Mechanics, Department of Mechanical and Environmental Engj i e
neering, University of California-Santa Barbara, Santa Barbara, CA 93106-5070, gme eXp||C|t forms of Eqs(?’) and (4) are difficult to present and

will be accepted until four months after final publication in the paper itself in thé/€ thgrefore solved nume.rica”y using the Gauss—Chebyshev in-
ASME JOURNAL OF APPLIED MECHANICS. tegration method as explained[i4,5].

Nc(s) +iT(s) = f {ha(Olonn(t,s) +ion(t,5)] +h (Y om(t,s)

394 / Vol. 72, MAY 2005 Copyright © 2005 by ASME Transactions of the ASME



pt 29 ' ’ =05
—o— I'=0.!
: ——T=1.0
—— =20
2. . . . - — r=1e5
(- c._-, * Isida and Noguchi[1],
Oda et al [3]
y A Z, s a et al.[3]
=T - —
LL:
h 1t e,
Material 1 ¥ ==
K% b l
X 05} " S—
a
Material 2 Interface o ;
BV, - 3 $ S —y
- —_— % 02 04 06 08 1 12 14
hle
Yp Yp (@
R e —
2, T
——TI=05
—— =10
P —— =20
[ Y S . -

(a)

x|

c |[*=%

- A'_T_ of-
——— —-
h

P p .

_l_ 03 02 04 06 08 1 12 14
P — hle
P Material 1 P (b)

g
Fig. 2 Normalized SIF of an internal crack parallel to the inter-

a Tnterface x face and interacting with an interfacial crack (alc=1, blc
— . =0, e/c=2) (loading normal to the interfﬂ:e ): (a) crack tip A (b)
up Material 2 up crack tip B; (»1=1,=0.3; F =K,/ p\mc)

Kor ¥,

- —_—
up up geneous case. For the homogeneous cgs€), and SID reverts

®) to VK?+K3 of a homogeneous crack.

Complex stress intensity factor for the interfacial circular hole
Fig. 1 Internal crack interacting with interfacial cavity edge crack is given by
C
Kp =Ky + J [ha(DK(t) +h,(DK4(0 Idt, (5)
—C

The stress components on the interface near the debonding t'ﬁ . .
D (see Fig. 10 beloycan be expressed §8] whereK,(t) andKs(t) represent complex stress intensity factors of

the interfacial hole edge crack induced by the point dislocation at
coshime;) —= - i i ial directi i .
U%: JH_WG“)\;K(J)W COS{(%J)_SJ Inr)+0(r°), point t in normal and.tange‘ntlal dlrectlons,_ respeqtlve{){. de
N notes complex stress intensity factor of the interfacial crack due to
far-field loading K, K, andK; at the debonding crack tip (see
Fig. 10 below are calculated by6]

v _ Coshime;) + 2 sinH{(7re;)

VKIKT cog0f) - In1) + 019,

i N2t K= 227 expl- mey)
N |’ (BB~ )™ Fy(Bexd—imy(w+ 52)]
A, =+ SO0 TR i@ - e, In 1) + O(r9), X B0 - =123,
N2mr

where the signs+ and — are for material 1 and 2; respectively, ©®
KO=kP+ikV (j=1,2 correspond to materials 1 and B the The definitions of various terms in E¢f) and the procedure to

complex stress intensity factor of the interfacial cra@g,) is an evaluate them are detailed [6].

argument oKW, r is the distance from the debonded crack tip o :

the interface, and; is the imaginary part ofn; (refer to[6] for the 3 Numerical Results _ )

definition of my).  The condition of stress continuity on the The above procedure will now be applied to solve a few crack
interface relate&® andK® asKD=K@=K [6]. In the above interaction problems. Assuminglane stressondition for all the

. I . . cases considered in this paper, two distinct internal crack orienta-
expressions, coglre)) \K''K') denotes stress intensity at the debgigns are considered for numerical simulatiotas: crack parallel

onded tip similar to stress intensity factor for a homogeneoys the interfaceb) and crack perpendicular to the interface. Stress
crack. Thus, cos(hraj)\s‘K(”W is called stress intensity of deb-intensity factors(SIF) at the crack tips of an internal crack are
onding (SID) in this paper to distinguish it from that of a homo-evaluated and their normalized values are plotted. Normalization
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) ) ) ) Fig. 4 Normalized SIF of an internal crack parallel to the inter-
Fig. 3 Normalized SIF of an internal crack parallel to the inter- face and interacting with an interfacial elliptical hole (alc
face and interacting with an interfacial circular hole (alc =05, b/c=1, elc=1.5) (loading normal to the interface ): (a)

=1, b/c=1, e/c=2) (loading normal to the inte(l‘al_ce ): (a) crack crack ip A (b) crack tip B; (1,=1,=0.3; F,, =K, ”/p\s’R)
tip A (b) crack tip B; (v,=v,=0.3; F =K,/ p\c) ' '

) ) — ) using a different procedure. Figure 2 shows normalized stress in-
is done with respect tpywc, wherep is the remote stress normal/tensity factors at crack tipa andB. It can be seen that there is a
parallel to the interface andis half-length of the internal crack. good agreement between the results of Fig. 2 [dn8]. Figure 3
The value ofc is taken as unity in all the simulations. Sheaghows the normalized SIF of an internal crack interacting with a
modulus and Poisson’s ratio for materials 1 and 2 are givep;by cjrcular hole on the interface. The values of SIF at crack\tare
and v (j=1,2), respectively. Poisson’s ratio af;=1,=0.3 is pigher in this case compared to the previous case. This can be
taken for all the cases considerdd= u,/ 1y denotes the elastic attributed to the hoop stress on the circular hole that tends to
mismatch between the two bonded dissimilar half-planes. All thﬁcrease the SIF as the crack moves closer to the (}n_eLe ash
numerical results obtained from the numerical procedure outlingdcomes small However, SIF at crack tiB show little variation
in Sec. 2 are accurate to within 0.1%. This is accomplished Ryhen compared to the previous case. Figure 4 shows normalized
evaluating the difference between the results obtained from tWgF of an internal crack interacting with an elliptical hole whose
successive values d¥l (Gauss pointsand calculating the error minor axis is along the interface. Results show similar trend as in
percentage. In the present paper three valued 8, 16, 32 are  the case of a circular hole. The hoop stress on the elliptical hole
taken for numerical purposes. . ~ surface tends to increase SIF of crack AipFigure 5 shows the
The internal crack orientation parallel to the bi-material intehormalized SIF of an internal crack interacting with an elliptical
face will be considered first. Figure@ shows an elliptical hole hole whose major axis is along the interface. The magnitude of
on a bimaterial interface interacting with an internal cré®R mode-I SIF is less when compared to previous two caB&Es.
located at a vertical distande from the interface in material 1 3(a) and 4a)). However, the SIF at crack tiB show little varia-
(y>0). The center of the internal cradk) is offset bye=(c tion for all the interfacial hole shapes considered implying that the
+a) from they-axis for all the cases with this crack orientationshape of the cavity has little effect on the SIF at crackRip
Remote loadingp are applied normal to anglp on material 2 The problem of an internal crack perpendicular to the interface
parallel to the interface as shown in Fig(al y=2(28p Will now be considered as shown in Fighl Remote loadings of
-ap)! (1-ap) Whereap andBp are the Dundurs parameters. Thep on material 1 andup on material 2 is applied parallel to the
solution for the problem of an elliptical hole at the interface ofnterface whereu=(1+ap)/(1-ap). The center of the internal
two bonded half planes subjected to far-field loading normal to tlesack(z,) is at a distance ofh+c+b) from the interface. The SIF
interface[6] will be used to find the left-hand side of E@). at both the crack tips of the internal crack will be evaluated and
The efficiency of the above procedure is verified by solving thiaeir normalized values will be plotted against the normalized
problem of an interfacial crack interacting with a parallel internalistanceh/c. The solution for the problem of an elliptical hole at
crack. This problem can be modeled by taking the vdl# the the interface of two bonded half-planes subjected to far-field load-
elliptical hole zero(see Fig. 1a)). SIF for this problem have beening parallel to the interfacg7] will be used to find the left-hand
compiled in Murakami et al[1] and reworked by Oda et dI3] side of Eq.(3).
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0.5

Fig. 5 Normalized SIF of an internal crack parallel to the inter-
face and interacting with an interfacial elliptical hole (alc
=1, b/c=0.5, e/c=2) (loading normal to the interfege ): (@)
crack tip A (b) crack tip B; (v,=v,=0.3; F =K, ,/pVmc)

Figure 6 shows the normalized SIF of an internal crack inter-
acting with a circular hole. It can be seen from the plot that the
SIF at crack tipA nearer to the circular hole increases indefinitely
as the distance between them becomes small. Figure 7 shows the
normalized SIF of an internal crack interacting with an elliptical .
hole whose major axis is perpendicular to the interface. Figure 8 5 086 .
shows the normalized SIF of an internal crack interacting with an hic

Fig. 7 Normalized SIF of an internal crack perpendicular to the
interface and interacting with an interfacial elliptical hole (alc
=0.5, b/c=1) (loading parallel to the interface ); (vi=v,
=0.3; Fap=Kapl/pVmc)

The cases considered above involve varying the vertical dis-
tanceh of the internal crack from the interface and examining the
variation in SIF. Cracks may also evolve from cavities under ex-
ternal loading. Cavities are a major source of stress concentrations
from which cracks are most likely to emanate. Such cracks may
interact with internal cracks leading to their growth and coales-
cence. Crack growth due to void growth and coalescence consti-

— 105
- T=10

elliptical hole whose major axis is parallel to the interface. Figure _ _ '
9 shows the normalized SIF of an internal crack interacting with/g. 8 Normalized SIF of an internal crack perpendicular to the

crack bisecting the bimaterial interface=0).

25 T T

Fig. 6 Normalized SIF of an internal crack perpendicular to the
interface and interacting with an interfacial circular hole (alc
=1, b/c=1) (loading parallel to the interface ); (v=v,
=0.3; Fap=Kuglpmc)

Journal of Applied Mechanics

interface and interacting with an interfacial elliptical hole (alc
=1, b/c=0.5) (Ioacﬁig parallel to the interface ); (»i=w,
=0.3; Fap=Kap/pimc)

2 T

1 i H

o 05 1 15 2

hic

Fig. 9 Normalized SIF of an internal crack perpendicular to the
interface and interacting with an interfacial crack (alc=0, blc
=1) (Ioa@g parallel to the interface ); (»,=v,=0.3; Fup

=K gl pVc)
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Fig. 10 Interfacial hole edge crack interacting with an internal
crack T

tutes a major study in the field of ductile fracture. A number of

studies have been carried out to understand the role of cracks

emanating from holes of various shapes. A compilation of studies

on hole edge crack problems can be found in Murakami ¢fill. 0
Hasebe and Chef8] have studied the problem of a circular

hole edge crack interacting with an internal crack in a homoge-

neous medium by applying the rational mapping technique. Oku- o5 . ;
mura et al[6] and Hasebe et al7] have examined the problems 1 1'5Inte facial defmn ding ( d/c)2-5 3
of an elliptical hole on the interface subjected to far-field loads )

acting normal to and parallel to the interface, respectively. Their

work will now be extended to study internal crack interacting witltig 12 Normalized SIF of an internal crack interacting with an

interfacial cavity. The problem of a circular hole edge crack onigterfacial circular hole edge crack  (loading normal to the inter-

bimaterial interface interacting with an internal crack will now beace): (a) crack tip A (b) crack tip B (a/c=2, elc=3, hlc

examined(Fig. 10. The center of the internal cradk,) is offset =2; »,=1,=0.3; F =K, ,/p\mc)

from the y-axis by e=a+c. SIF at crack tipsA and B of the

internal crack and SID of the debonded fipof the interfacial

hole edge crack are evaluated to study crack interaction effectSIF of an internal crack with respect to the interfacial debond
Figure 11 shows the normalized S(Dosf(wsl)\fKDK_D/p\f;:) length. Mode-I SIF at both the tips of internal crack decrease with

of a hole edge interface crack with increasing debond length. ificréasing debond length indicating crack shielding by the hole

can be seen that SID increases with debond length. It is interestff§g€ crack. Further, the variation in mode-1 $Hy) at crack tipB

to note the variation of SID, which shows an initial increase foiis negligible ford/c<1.5. This shows that interfacial debonding

lowed by a flat portion(1.4<d/c<1.7) and a final increase d3 has little effect on .tipB of the internal crack untid/qzl.S. As .

becomes large. The flat portion of the curve indicates that tHe debond length increases more and more of the internal crack is

tendency of increasing SID due to increasing debond length SBielded further decreasing SIF at tipsand B of the internal

hindered by crack shielding due to internal crack. For small valu€&ck.

of I the initial rapid increase in SID is slowed down due to inter- )

nal crack shielding. Figure 12 shows the variation of a normalizéti Conclusions

This paper addresses crack interaction problems between an

22 internal crack and interfacial cavity. The solution of a point dislo-
—TI=05 cation interacting with an elliptical cavity has been obtained ear-

2 = E;;;S , , o , . lier [2]. By applying the distributed dislocation technique this fun-
——TC=1e5 damental solution is used to simulate internal crack. Since the

fundamental solution satisfies boundary condition on the interfa-
cial hole, the stress distribution and stress concentration can be
calculated easily and exactly on the hole surface. Two orientations
of internal crack with respect to the interface have been consid-
ered. When the internal crack is parallel(loading normal tp the
bimaterial interface, it is seen that the SIF of the internal crack
increases with decreasing distandgc) from the interface. In
particular, SIF at crack tig\ is larger for the case of a circular
hole compared to other hole shapes considered. This can be attrib-
& 7= i S 3 uted to the hoop stress on the hole surface which tends to increase
Interfacial debonding (d/c) the SIF. The SIF at crack ti decreases as the dimension of the
elliptical hole perpendicular to the interface decreases. When the
Fig. 11 Normalized stress intensity of debonding (SID) of an internal crack is perpendicular to the interface, it is seen that the
interfacial hole edge crack (a/c=2, e/c=3, hic=2; »;=v, SIF of crack tipA of the internal crack increases indefinitely as the
=0.3; SID=cosh (me,)VKpKp/ pyc) interfacial hole is approached. An interesting case of an edge

-
[e:]
T

Stress Intensity of Debonding
»
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crack from a circular interfacial hole interacting with an internal __ Theory,” 72 pp. 389-393.

crack is also considered. As the debond length increases it is 063] Oda, K., Noda, N., and Arita, S., 2003, “Stress Intensity Factors for Interaction
d that d ! fint | K is shielded by the hol between Interface Crack and Internal Crack and for Kinked Interface Crack in
Served that more and more of Internal crack Is shielded by the NOI€  gongeq Semi-Infinite Planes,” Key Eng. Mate243-244 pp. 375-380.

edge crack. The SID at the debonding Dpis seen to increase [4] Chen, Y. Z., and Hasebe, N., 1992, “An Alternative Fredholm Integral Equa-

initially and then remains unchanged for large value$’ dfefore tion Approach for Multiple Crack Problem and Multiple Rigid Line Problem in

increasing finally. This indicates crack shielding by the internal 5 E'Et*j“e Elas':t|C|g,” 'tfng-GFfSCt- M§°243~kPF# 2557—1296783- Numerical Solution of

: . : . rdogan, F., Gupta, G. D., and Cook, T. S., , “Numerical Solution o

crack on the interfacial hole edge crack for debond_lng Iength n Singular Integral Equations,” iMethods of Analysis and Solutions of Crack

the range 1.4°d/c<1.7. The method presented in this paper can  proplems edited by G. C. Sih, Noordhoff, Leyden, Chap. 7, pp. 369-425.

also be used to solve multiple crack problems. [6] Okumura, M., Hasebe, N., and Nakamura, T., 1995, “Bi-material Plane with
Elliptic Hole Under Uniform Tension Normal to the Interface,” Int. J. Fract.,
71, pp. 293-310.
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ruu § Strain-Modulated Adatom and

Department of Mechanical Engineering,

sy | Surface Vacancy Pair Interactions

Laramie, WY 82071
Adsorbed atoms (adatoms) and vacancies have a significant role to play in the physics of

Rf V. Kukta surfaces and the mechanisms of film growth on a substrate. This paper investigates the
Department of Mechanical Engineering, effect of applied or residual strain on the energetic interaction between pairs of adatoms
State University of New York, and vacancies. The analysis is based on a continuum-level point-defect model, where

Stony Brook, NY 11794-2300 adatoms and vacancies have strain-dependent properties. Atomistic calculations are used

to evaluate the defect properties for Si(111). The result is used as input for the defect

D- KOUUS model in order to investigate the strength and character of the interaction versus strain,
Department of Mechanical Engineering, separation distance, and relative orientation of the defects. It is found that strain may
University of Wyoming, cause the defects to align in certain direction and modulate their interaction between
, Box 3295, repulsion and attraction, providing a mechanism for controlled building of
Laramie, WY 82071 nanostructures[DOI: 10.1115/1.1875392
1 Introduction This is especially important in the case of surface steps where

Surface processes such as material deposition onto a substtré?leds’ unaccounted for by the Marchenko—Parshin model, may be

surface reconstruction, and self-assembly are subjects of inte gqgmcant at points quite far from the defect, as shown by Kukta

investigation due to their application in the development of nanfﬁ‘-nd his co-worker$11,12. Kukta et al.[13,14 discuss an alter-

structured materials and devices. Understanding the mechani&ﬁgve.m?t?og ;orf catlculatmfg thf. sou;ce stlr_eggt? ffomTLhe e|r|1ergy
that control morphology during film growth might yield new fap-O! an Isolated detect, as a function ot applied strain. 1his allows

rication techniques and methods for improving the reliability ophe to estimate the_pomt source ff‘?”.‘ an atomistic mod_el W't.hOUt
fglaxing atomic positions to their minimum energy configuration.

micro- and nanoscale devices. Film growth occurs by materi g)efect point sources are typically treated as fixed quantities
aggregation on various length scales, from clustering of adatom ; X i - '
g9reg g g ependent of applied fields or fields induced by other defects.

to the coalescence of large islands. Adatom clustering sets . X X
g 9 is is the assumption made by Lau and Kd¢bh According to

stage for subsequent growth and can greatly impact morphological'; . A
9 d 9 9 ymp P 9 r model, an adatom on a half-space induces a strain field that

development. Hence, the mechanisms that govern clustering ard ) . . .
fundamental interest for controlling growth. decays as the inverse cube of distance and the interaction energy

Various models have been used to investigate material aggrepgg’veen adatoms decays similarly as the inverse cube of the sepa-
tion on a surface. Continuum analyses, molecular dynatMes) ation. Neither the induced field nor the interaction energy depend

and kinetic Monte CarldKMC) are three widely used examples©n applied strain. Kukta et dl13] report that adatom interactions

MD models atomic processes by tracking atom motion as gO§hould generally depend on strain. Otherwise a linear relationship

erned by interatomic potentials and classical equations of motidh,OPtained between surface stress and adatom coverage, which
They have been extensively used to study many processes incleeptradicts experimental measurements by Ibach and his
ing diffusion of adatoms(e.g., see Kallinteris et alf1] and CO-workers[15,18.
Evangelakis and Papanicolag2]). In KMC, atomic kinetics is N @ previous articl¢14], the authors developed a general three-
modeled through a series of statistical events. It has been usedlifgensional framework for adatoms with strain-dependent source
study adatom diffusion and growth of patterned nanostructures #§ds and discussed the nature of far-field interactions between
Sabiryanov et al[3], growth of adatom clusters and islands byadatoms. The term strain-dependent source field implies that the
Larsson[4], and self-assembly processes on surfaces by LarssgJastic field induced by a defect depends on the local value of
et al. [5]. In continuum analysis, surface defects are treated 8&ain. The present paper extends that work to include surface
point sources of strain. Lau and Kolfi] treat an adatom as aVvacancies and investigates some other issues not previously ad-
point dilatation (force dipold, and Marchenko and Parshjii] dressed, including the near-field behavior. Like adatoms, surface
model an atomic surface step as a point dilatation and a mom#&agancies will generally have strain dependent properties. Many
on a half-plane. These models capture the induced displacem@hgnomena that occur on surfaces involve mutual interactions be-
field at points sufficiently removed from the defect. The strengtiveen adatoms and vacancies. It is known, for example, that strain
of the point source is usually obtained by matching displacemergy cause a flat surface to roughen. This phenomenon has been
fields or defect-defect interaction energies to atomistic predictioatudied extensively in a macroscopic framework where the surface
(e.g., see Shilkrot and Srolovif8], Kouris et al.[9], and Peralta evolves as a smooth continuous functitgg., see Asaro and
et al.[10]). When evaluating the source strength, care must Bdler [17], Grinfeld [18], Freund and Jonsditt{r19], Kukta and
taken to ensure that the atomistic regime is sufficiently large, §oeund[20], Shilkrot and Srolovitz21]). On the atomic scale,
that a finite region can be identified where the atomistic and corsughening of a flat surface requires the formation of adatom-
tinuum models converge without substantial boundaries effectacancy pairs. For the surface to evolve towards a rough morphol-
ogy, atoms must move from the surface layer—leaving
T Comied by the Anolied Mechanics Division of THE AMERICAN SOCIETY vacancies—to sites atop the surface—where they become ada-
o e o AV S LrAs O ap (oM. Subsequently, adatoms must combine to form mounds and
PLIED MECHANICS. Manuscript received by the Applied Mechanics DivisionY2CaNCiES must combine to form troughs. This process occurs
October 27, 2003; final revision; October 6, 2004. Editor: Robert McMeeking. Dighrough their mutual interactions. The macroscopic evolution of
cussion on the paper should be addressed to the Editor, Professor Robert M. Mfe system is determined by complex interactions among large
Meeking, Journal of Applied Mechanics, Department of Mechanical and EnV|ro(l@)—&qsembleS of defects. It is not the purpose of this paper to draw
mental Engineering, University of California—Santa Barbara, Santa Barbara, . .
93106-5070, and will be accepted until four months after final publication in theONclusions about evolution on the macroscale, but rather to pro-
paper itself in the ASME JOURNAL OF APPLIED MECHANICS. vide a basic ingredient necessary for linking atomic scale proper-
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ties with the macroscale evolution, namely the strain dependence . dV(eT-F)
of defect interactions. It is noted that while the focus is on ada- Daﬁ(?—_ g)=————
toms and vacancies, the analysis also applies to adatom and va-
cancy clusters and to larger defects like nano- and micrometerthe stress of the point phase. Equati¢hs{(6) along with re-
scale islands. This paper addresses only mechanical interactionste boundary conditions determine the elastic field. It follows
It is noted that entropic interactions may be large, particularly férom Eq.(3) that the elastic field induced by the point phase is that
small defects as adatoms and vacancies. Unless temperaturef & force dipoleD,z applied on the surface. According ) and
low, one must also account for entropic effects. due to symmetry of the strail,;=Dg,, which implies that the

The next section reviews the model. Constitutive constants fdipole has no net moment. If the point phase has an enErthat
Si adatoms and surface vacancies oflHi are estimated and is independent of strain, its dipole vanishes and it induces no
their far-field interactions are discussed. It is found that dependietastic field. If the energy is linear in strain, the dipole is a con-
on strain, defect pairs may repel or attract each other and oriatént and the induced elastic field is independent of strain. How-
themselves in certain directions. It is also observed that the mo@ekr, in general the dipole will depend on strain and the point
accounts for the distinct near- and far-field behavior. In Sec. 3 tpéase is said to be elastic. The displacement field produced by the
near-field interaction is evaluated and the nature of the interactipaint phase is evaluated from the surface elastic Greens function
is compared with the far-field results. Gij(x-y) as

ﬁsaﬁ (6)

ﬁGia(X B y)

p” @)

U; (X) = DEY’B
2 Mechanics of an Elastic Point Phase ) : . .
) ) Energy as a function of strain characterizes the elastic field of a
Many structural elements in materials systems can be treateqﬁjsnt defect and how it changes in the presence of an applied
point phases. Some examples are adatoms, surface and bulksygin and strains associated with other defects, surface heteroge-
cancies, interstitial and substitutional atoms, surface clusters, (ities, etc. Typically the elastic field of a point defect is found by
lands, and bulk inclusions. The teretastic point phaseefers to  comparing atomic displacements of a fully relaxed atomistic
cases where the elastic field induced by a point phase dependsspRulation with the continuum field produced by a point dipole on
strain. This section reviews such a model that was developed elgg-elastic half-spacke.g., Refs[9,11,13]. Comparing displace-
where[13,14. It is applied to adatoms and vacancies in the folments can be very time consuming, particularly for anisotropic
lowing section. ] . materials where analytical forms for the displacement field are not
Consider a half-space with energy per unit voluig:) where  generally available. Equatiof6) provides an alternative. Defect
& denotes strain. A point phase is placecat(t) on the surface. energy¥(£?) is calculated as the increase in energy when the
It has an energW (sT—¢") that depends on the total surface straiglefect is introduced on a surface that is uniformly strained by the
¢! evaluated at the point phase, minus the stidirihat is pro- amounte® and it is readily evaluated from an atomisftis] or ab
duced by the point phase itself. The self-strairmust be omitted initio model [14]. With (6) it is possible to estimate the elastic
because it is singular at the point phase. Strainsnd ¢* are field by calculating the energy from unrelaxed atomic positions.

considered to be infinitesimal. Bulk stress is defined as The estimate could provide an initial guess for finding the relaxed
atomic positions.
_ IW(e) Surface defects, such as adatoms and vacancies, are mobile and
aij(e) = Js) @ their motion is biased in the presence of a nonuniform strain field.

They tend to move such that the free energy of the system de-
The field quantityoy;(e) is the total stress, which includes thecreases, which is characterized by an energetic driving fdrce
contribution of externally applied loads and the self-strégs The driving force is evaluated from the variation in total free
sidual stressinduced by the point phase. The self-stress of thenergyE with defect positiorny(t) as in[14]:
point phase is evaluated a% :aij(s*). The total free energy of

the system is written as the sum of the bulk and point phase d =—E=—D (6_8&_‘9_8&) (8)
contributions plus the work done by applied loads, and the elastic C Y, B\ ox,  ax, x=y(®)

field is found by minimizing energy with respect to compatible

strain fields,c ande". The following relations are found: The free energy decreases as a defect moves in the direction of

its driving force. If the self-strain of the defect is the only source
. Y of strain there;; =& and the driving force vanishes. This must be
doyj  doy; | i -
L (2) true because the energy of a surface point defect on an unbounded
ax I half-space is invariant with position. Likewise, the driving force
vanishes in the case of a uniform applied strain. Nonuniform
and strains, other than the defect’s self-strain, give rise to a nonzero
driving force. One such example corresponds to the motion of a
" 485D IoX) _ 0 3) defect biased by the nonuniform strain field induced by another.
@ This methodology is utilized in the study of interactions between
. adatoms and vacancies or{1il) that follows.
in the half-space volume and
n=0 4) 3 Constitutive Relations for Adatoms and Vacancies
aijh; (4)

The Si111) surface is chosen to illustrate the effect of strain on
adatoms and vacancies. For simplicity the surface is considered to
oni=0 (5) beunreconstructed. The($11) surface is elastically isotropic and
I it is therefore possible to approximate the elastic field of a defect
on the surface of the half-space. Repeated indices are sundpedusing the isotropic elastic Green’s function, further simplifying
is Kronecker’s delta symbolj(x) is the Dirac delta function, and the analysis. Figure (&) illustrates the diamond cubic structure
n; denotes the outward unit normal at the half-space surface. Latiewed on a cross-section normal to tiell) surface. The two
indices denote components of a three-dimensional tensor, whsleades of circles represent atoms on different planes parallel to the
greek indices denote components of a two-dimensional surfgaoage. The structure is composed of an alternating sequence of
tensor these two layers. Figurgld) depicts a surface vacancy, wherein a

in addition to
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Fig. 1 Schematic view of the diamond cubic structure on a cross section normal to the (111) surface. Shown is (a) the
unreconstructed defect-free surface,  (b) a surface vacancy, and two different types of adatoms (c) and (d).

single atom is removed from the surface, and Figs) &nd 1d) Vi=-536eV, D°=-247¢eV, FC=-14.25¢V,
depict adatoms on the surface. The adatom of Fi{g) tould
continue the bulk crystal structure. HC¢=40.87 eV (12)

Each defect is characterized by energy as a function of strain.
Defect energy is calculated using Tersoff's potenfi22] with and
unrelaxed atomic positions. Use of the unrelaxed structures should \pg: -202eV, DI=-0.68eV, Fi=3.13 eV,
not qualitatively affect the results. The energy of each system in
Fig. 1 is calculated as a function of a uniform applied strefin HY=-1.02 eV (13
Let x' be the position of adatomin the unstrained configuration.
Strain £° is imposed by transforming the structure (s £°)x',
wherel is the identity tensor, energy is evaluated and the result

According to these estimates, the adatom of Fig) tiypically has
lower energy than the one of Fig(d). It is only in very extreme

d3ses that the adatom of Figdl has the lower energy, as in the

expanded as a Taylor series about zero strain. As the surfacgdse \here biaxial compressions are larger than about 23%, which
considered to be traction-free, straifi is constrained to enforce is too large to be meaningful here. Since the adatom of F). 1

the boundary condition. To find the constraln_tsﬂ; energyWof a5 such a large energy, only the one of Fifg) 1s considered
the bulk structure is determined for an arbitrary strain and thgner.
stress-strain relation is evaluated fr@f). Considering thes; di-
rection to be normal to the surface aedande; directions to be . .
in the plane of the surface, strais$,, %,, ands{, found in terms 4 The Interaction Between Adatoms and Vacancies
of the surface in-plane straing,, 3, anded; such that the sur-  Surface defects, like adatoms and vacancies, interact through
face traction vanishes. Defect energies depend only of the surfalee coupling of their induced elastic fields. Analysis of such inter-
strain because of this constraint. The energy of each defectagfions between surface defects is important in an effort to under-
determined by subtracting the energy of Figa)lfrom those of stand their relative motion on a surface. In this section, the defect
Figs. Ab)-1(d). For defects on th€l11) surface, energy is of the induced strain field is determined, based on the model presented
form earlier. In addition, the interaction energy and driving force be-
1 tween two surface defects is analyzed.
- = It is worth noting that the terms “surface defect,” “dipole,”
V(&)= Wot Doyt Feageapt 5 Hewet s © “adatom,” “vacancy,” and “point phase” can be used interchange-

and using(6) the defect dipole is ably in this derivation since the necessary mathematical treatment

is identical.
D,s(e) =D&, + 2Fe 5+ He 0,5 (10 With the displacement field given in Eg7), the strain field
where «, =2, 3. For the structures of Figs. (k)-1(d) caused by a defect can be written as
respectively Eop= 5D (Ganys* Gpyya) (14)
Wb=6.04eV, D’=0.37 eV, FP=-12.47eV, where the defect dipol®,, depends not only on the applied
strain but also on the strain induced by other defects. To avoid the
HP=-15.47 eV (11) singularity caused by the defect at its location, the self-induced
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strain is excluded in the calculation of the dipflef]. As a result, -
when two surface defects are considered and the total surf: 4:10 o
strain and the applied strain denotedez%sand siFf, respectively,

the strain due to the defect dipole is represented by

. -¥5-100
8015 = S-Lrvﬁ - Sal,g) (15) dr : driving force (unit: ev/»&)
0 : orientation between
or Si adatom and vacancy
saﬁzssﬁ+salé”) (16) @
where the superscripA(B) denotes the effect of defect “B” at z
location “A.” Therefore,sl'ﬁ(') and s;';”) represent the induced attraction L;Y
strain at defect | due to itself and due to defect II. 9" 0.00001
In this study, only mechanical interactions between defects ¢ o
considered without the inclusion of coupling effects from othe
surface processes. It is noted that surface reconstructions arerepuision
considered but are readily amenable to the analysis. In the contregion .
of the present model, dif¥erently reconstructed );urfaces result ‘”m iZSEfi'“
different constitutive constants for an adatom, which can be eva -0.00001 0.00001
ated from an atomistic model as discussed earlier. Adatom prc
erties depend on its species and also on the species and struc
of its substrate.
Following Eq.(14), the induced strain by defect Il at defect | is )
expressed as -0.00001

attraction

* 1 * * y
801'[(3”) - E{D(”)%( + ZF(“)[SF;X + 8Wl)l((l)] + H(ll)[85y+ 87|‘|V<I)] 57])(} region

X(Ganxs* Gy xadx=x(t 1

where the dipole coefficienB", FIV, andH"" are atomic prop- Fig. 2 The‘ strain effect on the driving force: _ (a) Si on Si,_
erties associated with defect Il. The equations for the induc&giaxial strain  &,,=0.005, r=3a,, always repulsion, and  (b) Si
strain at defect Il due to defect | have the same format aglg. ©°n S uniaxial strain - £2,=0.02, r=3a
and can be obtained just by switching the superscript | and Il. A
detailed discussion on solving E@.7) for two different types of
defects can be found in the Appendix.

For the simple case when the two defects are identical i
DW=pW=p, FO=F=F, HO=HI=H, reciprocity simplifies dh=— 1D“)D“”(GMW+G

a 27 By~ X
(17 to - 0 )
. 1 R R where dipoledD,, andD’ ’ of defect | and Il can be calculated
Eap= 2Dy + 2F (e, + 8,)) +H(e, +£,)) 85, ] (Cayyp from (21) when the two defects are of the same type. It is impor-
+ Gy et (18) tantto point out that Ec(22) is valid for general cases where the
’ physical and atomic properties of the two defects differ, i.e.,
Superscripts for the induced strain are omitted for S|mpI|C|ty Fup® D(”)_ The Appendix includes a discussion on how to obtain
thermore, if the two defects are far apart, the induced strainstie general solution for two defects in such cases.
very small compared to the applied strain, since the induced strain
decays with the inverse cubic of the distance. As aresult(BB). 5 Results and Discussion
yields a simple long-range solution for the strain

(b)

a homogeneously applied external strain, the driving force at de-
éect | is given by
(22)

vv,xﬁa) | x=x!(t)

Many surface processes occur due to the motion of defects and
8;&9 = %[D577X+ 2|:8§]X+ Hesy%] (Gupys* G,Bmxoz)|x=x'(l) their con_tinuing re!opation._The in_teraction among de_fects plays a
key role in determining their relative movement and final equilib-
19 fjum positions. In order to investigate how defect interaction af-
This long-range solution can be used for a far-field analysis of tifécts motion, we have utilized the driving force derived in previ-
defect interaction. ous sections for the cases of Si adatoms and vacancies. Figure 2
With no simplifying assumptions associated with the distandBustrates the magnitude of the driving force at the location of the
between the two defects, the general solution of the induced str@eancy, due to its interaction with an adatom and under far-field
can be obtained in terms of the long-range solution as uniaxial strain. It is a polar plot that presents the driving force
dependence on the relative angle between the line connecting ada-
e = 1[8%0) +Q,p,.60 (20) tom and vacancy and the coordinate axes. The distance between
ap ,-eB apux® x the two defects is constant and equal to three lattice spaces. If the
) __applied strain is small, there is only repulsion between the Si
where parameters and Q.. depend on the dipole properties,gatom and vacandiFig. 2a)]. As the applied strain increases,
and Green function and are provided in the Appendix. In terms giraction can develop. Figuré illustrates clearly the division
the long-range solution, the dipole can be expressed as in attractive and repulsive regions for uniaxial straip=0.02.
1 . X Depending on their initial angular position, the two defects can
Dos=D8,5+ 2F) eRgt+ ~[ed + Quape ] either attract or repel each other.
w A schematic of the predicted motion between the adatom and
R .1 .o -0 the vacancy is shown in Fig. 3. Initially the adatom and the va-
+Hyel + ;[Sw + Q& 1 ( Sap (21)  cancy are oriented so that they repel each other. The angular align-
ment will drive the adatom and vacancy into the attraction region
The energy change of a defect with respect to its position providesere they will start to approach each other to shorten their sepa-
the driving force associated with its motion on the surface. Undeation. The stable equilibrium orientation s 0 along theY axis.
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Fig. 3 The interaction between Si adatom and vacancy under

large uniaxial strain ) ) )
Fig. 6 Adatom-adatom interaction

To observe how the magnitude of strain influences defect inter-Figure 6 illustrates the interaction between adatoms. The stable
action, a detailed investigation has been undertaken for the cas@éntation for Si adatom interaction is quite different from that
uniaxial strain. The notation and geometry are illustrated in Fig. dbtained from the interaction of vacancies. The direction perpen-
The orientation driving force and radial driving force have beedicular to the applied strain corresponds to stable orientation un-
used to determine stability and to identify attraction or repulsiotler small tensile loading.
regions. Figure 5 illustrates the interaction between two vacanciesThe results of the adatom-vacancy interaction are presented in
Solid lines denote stable orientations, dashed lines unstable edtig. 7. They indicate that the stable orientation between adatom
librium orientations, while shaded regions denote attraction amaad vacancy is quite similar to that between two adatoms. It is
unshaded regions denote repulsion. It was found that if comprésyportant to note that adatoms and vacancies always attract each
sion is applied, the two vacancies are stable along the directiother under compression strain. Even when a small tensile strain
perpendicular to the applied strain. This result is independent isf applied, their attraction region still dominates. This suggests
the magnitude of the applied compression. If a tensile strain tisat adatoms have the tendency to fill nearby vacancies in order to
applied, a region of stable orientation exists that depends on g@mplete a perfect lattice structure. Even though the illustrations
magnitude of the applied strain. It was also observed that tfreFigs. 5-7 are based on far-field analysis under uniaxial loading,
attraction region increases with increasing strain. the numerical calculations of the near-filed under various of ap-
plied strains have produced very similar results.

For large separation distances, the effect of direct defect inter-
action is small compared to the effect of the applied strain. By
- ignoring this interaction when deriving the dipole properties, a
1 far-field analysis can be easily obtained. For purposes of compari-
d son, a near-field analysis has been performed. The calculation in-

0 d cluded defect-induced fields and defect interaction, for a variety of

r applied strains and separation distances. Results of the compari-

son between near and far-field are illustrated in Fig. 8, for differ-

Et— . ent applied strains with a separation of two lattice spaces. It is

r clear that even for very small separations the differences are
0 small. When the separation goes beyond five lattice spaces, even

the quantitative differences between far and near-field become

@; >Y negligible. This confirms the fact that, in these problems, the far-

field approximation can capture the nature of defect interaction

Fig. 4 Configuration to illustrate defect orientation and driving qualitatively as well as quantitatively, as long as the defects are
forces not located essentially next to each other. Nevertheless, one needs

120 - 0

- T

\\ 0.02 0.04 0.06 0.

-0.04 -0.02

¥ il
S

Fig. 5 Vacancy-vacancy interaction Fig. 7 Adatom-vacancy interaction
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Compression strain is applied along X direction

to keep in mind that other effects like electronic interaction ca
have a substantial influence on the driving force of the interactio

In addition to the model described earlier, atomic simulatior
were performed in order to investigate how surface defects behs
under the effect of applied strain. Figure 9 illustrates the motion |
two Cu adatoms on a fred11) surface of a Cu substrate. In this
simulation, an EAM molecular dynamics methodology has bee
implemented, utilizing the Johnson atomic potenfiz®,24. All
the modeling parameters used for the simulation originated fro
Johnson’s semi-empirical resulf23]. To implement the strain
boundary condition, the Parrinello-Rahnm&s,26 algorithm was
used, with the volume of the modeled cell allowed to change wij,
time. It can be found that the motion of the two adatoms permi
them to align, in accordance with the influence of the applieO o o
strain. The simulation had been run long enough to confirm th )
the alignment corresponds to a stable orientation. This result w @
in agreement with the prediction by the continuum analysis.

Figure 10 illustrates how the two clusters of Cu adatoms behd
on a(001) surface under applied strain. The simulation has shov
that the applied strain did “help” the two clusters congregate
form a bigger cluster. This result further clarifies the possibility @
manipulating the assembly process of nanostructure through c
trolling the external effects such as the applied strain. The cd
tinuum analysis of the interaction among clusters of surface d
fects is currently under investigation in our group.
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6 Concluding Remarks

The purpose of the study presented in this manuscript is © @
quantitatively characterize the elastic interaction between surfe
defects in the presence of a mechanical field. It is a fully thre: o Ao
dimensional analysis that has emerged from the discrete adatom
model developed earlier by the authors. The interaction betwegig. 9 Molecular dynamics simulation of adatoms’ alignment
adatoms and vacancies has been examined @l Bj as a func- under applied strain

o
0
o
]
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YT is high for Si, it is clear that such a general result will quite
X possibly apply to other systems, not yet examined, for far lower
Compression strain is applied along Y direction levels of strain. The phenomenon is not only due to the adatom or

> B o b o & 6 o o 8,0, 0. 9,750 ;/r?can%ytpr?pertifs 'bIUt also depends on the elastic properties of
o o o o o o o o o o o o O o e supbstrate material.
°6%6°%09820%°%6% |20%0 S%¢0 %0 The strong strain dependence of the defect interaction shown in
o 0 o 0e0 o o o Z o Z o2e%0 o o thisinvestigation is important in that it could provide an inexpen-
6 06 0 06 0 0 o o 4 e B9, &y & swe_me_chanlsm for co_ntrolllng_ surface growth. Consequently, the
R R AR ° 0%0e°,%0 ©, application of appropriate strain levels can lead to the controlled
6 0o oceoeo O o o 0 @5 0%S% © %% formation of atomic clusters of a larger scale such as quantum
? %% B e e 5 s 6 °95°,°,°%6 ©°4| wires and dots as well as other desired surface structures. The
0o o o 0o o 0o o o °6 %0 o° 6% 6%s° possible applications, particularly in the electronics industry, are
0%6%6%6°0%0°%6%,° Joc0,%5°,%0 of major significance, given the typical methods currently used
© 0o o o o o o o o "o "o ©° ° 9 likethe expensive lithography and the typically uncontrolled self-
@ ® organization of certain nanostructures.
This work is being extended in order to examine the behavior
o o © O 5 g 5 5o of surface defects of larger size. In principle, the analysis of larger
%0 0o 0 o o e o 5% o° o © S defect clusters will involve additional mathematical complexities
°5%o °5°%6%0 o o o " 50 o 0° 0% but should not dramatically alter the physics of the problem. So
° %, O.O 502 6 °©o0° 0 ° = 0 ° e - far, t_he results pro_wded by atomic simulations agree well with the
o o oe Oe ©,%6° °0w® 9 00® 0 " o° continuum analysis. We expect that the study of larger scale sur-
OOOOOO oe 0 © g 0 P _® ‘o‘z 0° o © ©| face defects using both approaches will provide additional light to
Po° OO'O.O'O o % ° OOO 5 © 'D.Oo 0° o © o®| thequestion of how the applied strain affects the assembly process
0%0 0%0 >0 o0 . ;) 5 o © ‘;% 0° z o of growing nanostructures on surfaces.
o © o © ® o oo
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O :surface atoms

Appendix
Ffig- 1|0 Molecular dynamics simulation illustrating the growth Equation(17) provides the strain evaluated at the site of one
of a cluster

defect, induced by the other. For the most general case where the
two defects are different, as in an adatom versus a vacancy, Six
. . . . . . . unknowns need to be determined for a surface since each strain
tion of applied strain, angular orientation, and separation distan¢gs three components. The equation for solving the induced strain
The far- and near-field behaviors have been compared succegpag the following general form:
fully. Results indicate that in most cases, the differences are not '
significant, at least when only elastic effects are considered. I3 UO 1O fct
According to the near-field evaluation, defect interaction is in- Ui g, [l | d (A1)
fluenced by a number of factors including the applied strain, sepa- ) . i - ) )
ration, relative orientation between defects and defect propertiddlerels is the 3x 3 identity matrix,U"™ and U™’ are matrices
Increasing applied strain can either strengthen or weaken this iglated to the dipole properties of defect | and defect Il and the
teraction; it depends on how the initial orientation of the twéreen functionse ”(*') is the induced strain at the site of defect Il
defects with respect to the applied strain. The study also suggedte to defect | ana™!V is the induced strain at the site of defect
that the interaction decays rapidly with the separation distantgue to defect Il; each contains three surface compon@ftsind
between the defects. An important conclusion emanating from thé are constant vectors determined by the dipole properties and
analysis is that the nature of the interaction can be changed Gyeen functions evaluated at the defect sites.
increasing strain, e.g., increased strain can switch the character dfVith the surface represented by thieZ plane, the matrices)

adatom-vacancy interaction from repulsion to attraction for trendU"" can be expressed through the isotropic dipole properties
examined Sil11). Even though the level of strain for this changeH andF as follows:

G

yyyy + Gyzyz Gyyyy* Gyzyz 0
Uk = Hk Gyzz:+ Gyzyz Gizz:+ Gyzyz 0 +Flk)
1 1
E(ny,yz+ Grzyz+ Gyzyy * Gyzzz) E(ny,yz+ Grzyz+ Gyzyy * Gyzzﬁ 0 x=xKa(t)
2Gyyyy 2Gyzy, 2(Gyyy,+ Gyzyy)
X ?—Gyz,yz ?—Gzzzz 2(G‘zz,yz + Gyzzz) (AZ)

Gyyyz* Gyzyy Grzyzt Gyzzz Gyyzzt 28yz2y2% Gy || xexarty

The superscripk; andk, vary from | to Il in order to identify the Green function are evaluated at the defect site where induced
different properties of the two defects. All the derivatives of the
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strain is calculated. The three components of the constant vector

are given by

i =[D*) + HER T(Gyy .y + Gy ey + 2F XY
XLy Gyyyyheratt + €52 Gyzyarartatt + £y Gyyyz

+ Gyayy)leexart
C(zkl) =[D") + H(kl)SEfa] (Gpzzr+ Gyzyz)|x=xkz(t) +2F
X [ssy Gyzyz|x:xk2(t) + 8sz Grzzdxedat) + ‘952 (Y
+ Gyzzz) |><:xkz(t)]

C(3k1) - %[D(kl) + H(kl)sga](ny,yz"' Gyz.yy+ Gyzzz+ Gzzyz)x:xkz(t)

+ FY el (Gyayz+ Gyayy oot + 874 Gyzzz+ Gazydrentarty

R
+ t’:Jyz(ny,zz"' 2Gyzyz"’ Gzzyy)x:xkz(t)

(A3a)

(A3b)

(A3c)

The numerical results following the solution of E@1) for two
different types of defects were discussed in Sec. 3. If the two

Qyyyy= ~ (Ozz2+ U3z + U302 ~ U220133) (A8a)
Qyyzz= G12+ 013032~ 012033 (A8b)
Qyyyz= O3+ G223~ 13022 (A8c)
Qzzyy= O21 % U23031 ~ Y1033 (A8d)
Quzy7= U3+ U13021 — Q12023 (A8e)

Qyzyz= — (C11+ Gop+ G101 ~ U11020) (A8f)
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A Comparison of the Structural
Response of Clamped and Simply
Supported Sandwich Beams With
oL | AlUMINium Faces and a Metal
. L. Tagarielli
vareck | FOAM Core

e-mail: naf1@eng.cam.ac.uk
Plastic collapse modes for clamped sandwich beams have been investigated experimen-

Eﬂgiﬂeéfiﬂg Department, tally and theoretically for the case of aluminium face sheets and a metal foam core. Three

University of Cambridge, initial collapse mechanisms have been identified and explored with the aid of a collapse
TfoﬂpiﬂgtOﬂ Street, mechanism map. It is shown that the effect of clamped boundary conditions is to drive the

Cambridge, CB2 1PZ, UK deformation mechanism towards plastic stretching of the face sheets. Consequently, the

ultimate strength and level of energy absorption of the sandwich beam are set by the face
sheet ductility. Limit load analyses have been performed and simple analytical models
have been developed in order to predict the postyield response of the sandwich beams;
these predictions are validated by both experiments and finite elements simulations. It is
shown experimentally that the ductility of aluminium face sheets is enhanced when the
faces are bonded to a metal foam core. Finally, minimum weight configurations for
clamped aluminium sandwich beams are obtained using the analytical formulas for sand-
wich strength, and the optimal designs are compared with those for sandwich beams with
composite faces and a polymer foam cdi@Ol: 10.1115/1.1875432

1 Introduction tions and finite element simulations. The analytical formulas for

A large amount of research has been conducted recently on &-lﬁlltlal collapse are then used to determine minimum weight de-

mechanical performance of sandwich structures, stimulated by ns for clamped sandwich beams as a function of an appropriate

development of stiff and strong, lightweight core materjals3) uctural load index. These minimum weight configurations are
For example, Chen et al4] and Bart-Smith et alf5] have ex- compared with minimum weight designs for clamped sandwich

. ; . ; .. beams with composite face sheets and polymer foam cores. The
plored the quasi-static behavior of simply supported aluminiugy, 4, concludes with a short experimental study on the degree to

sandwich beams in three-poi.nt bendin.g. The ‘?O”‘Pe““g collapzich the foam core stabilizes the faces against necking.
modes of core shear, face yield, and indentation were observed,

and the sensitivity of the collapse strength to geometry and to

material properties was determined. However, there has been little

prior attention paid to the effect of the support condition upon the

collapse mechanism. Sandwich panels are often clamped to a s§iff .

and strong support framewofk.g., a ship hu)l and this can be sj Analytical Models for the Collapse Response

represented in the laboratory by a fully clamped end condition. We begin by summarizing analytical formulas for the elastic
In the present study, the response of sandwich beams compsiéifness, initial collapse load, and postyield behavior of sandwich

ing aluminium face sheets and an aluminium alloy foam core Bgams, assuming that both face sheets and core can be considered

explored for both simply supported and fully clamped bounda@ds elastic—perfectly plastic materials, and the beams are either

conditions. Potential modes of initial collapse are identified, ar&imply supported or fully clamped. The analytical formulas are

simple analytical models are stated. A mechanism map for initiged to construct collapse mechanism maps, and to enable the

collapse is generated from these formulas in order to relate tlesign of specimen geometries so that a variety of failure modes

governing collapse mechanism of clamped beams to their geoie activated.

etry and material properties. Three sandwich geometries are seConsider a sandwich beam of lengthand uniform widthb,

lected from the collapse map, with each one lying in a differeomprising two identical face-sheets of thicknéssonded to a

regime. Sandwich specimens with these geometries are manufaetal foam core of thickness, as shown in Fig. 1. A flat-

tured and tested with both simply supported and clamped ehdttomed punch of widtla is used to load the beam transversely

conditions. The operative collapse mechanisms and measured laathidspan by a forcE and corresponding deflectian The outer

versus deflection curves are compared with both analytical pred&tpports react with two vertical forcds/2 in the simply sup-

ported case plus bending momers and in-plane horizontal

_ ) o forcesP in the clamped case. When the beam is simply supported

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY i length exceeds the spdrby an overhangd at each end.
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Meeking, Journal of Applied Mechanics, Department of Mechanical and Enviro i ; ; i
mental Engineering, University of California—Santa Barbara, Santa Barbara, (?Lensn_y of .the faces and c_ore, resPeCthely' It is useful to nond.l
93106-5070, and will be accepted until four months after final publication in thB1€Nsionalize the geometrical and material parameters according
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Fig. 1 Geometries of simply supported and clamped sandwich
beams transversely loaded by a flat punch
M,
Fig. 2 Initial collapse by face yielding of sandwich beams (a)
el gnd gl g% e (1) Simply supported case and  (b) built-in case
¢’ C, ¢’ ¢’ O'f7 Pt
Furthermore, we define the following nondimensional indices for
the loadF, energy absorptiolV, and masd as: I .
or ceramic-fiber composites.
F= F : W= VZ\/ ; M= L= (ZT+p)C ) Facg yield Consider the plastic collapse o_f a sir_nply supportt_ad
bl o¢ bl<oy b€<p; sandwich beam, with the collapse mechanism given by rotation

about plastic hinges adjacent to the central punch, as sketched in
2.1 Elastic Regime.Elastic theory for sandwich beams isFig. 2(a). The plastic bending moment for the beam is given by
well established6], and the transverse deflectiarat midspan of

the beam is ?

c
M, = dtbo; + szrC (6)
R Fe
u= 48E| + AAG ® A straightforward work calculation gives the plastic limit load
ed ed Feys for face yield of the simply supported beam as

in the simply supported case, and
, . 4bt(c+1) . bc? o
=——0;+t——0
u= F¢ . Fe @ FYs (-a T e=a’
384Ely, 4AGy ) . . .
) ] . which can be re-expressed in nondimensional form as
in the fully clamped case. The equivalent flexural and shear rigidi-

ties are given b — 2
e Frvs= 0= S [4f(1+0 + ] ®
£, JEbtf EbC EbS  Ebte? blor 1-a
ed 2 6 12 2 The same result can be obtained by considering equilibrium and
(5) Yyield, via the lower bound theorem, but this is not detailed here.
bd? Consequently, this formula is exact within the context of rigid,
AGgq= TGC ~ bcG, ideally plastic beam theory.

A closely related result follows for the clamped sandwich beam.
whereG; is the shear modulus of the core athdc+t. The flex- Now, however, four plastic hinges exist, two at the punch and one
ural and shear terms have comparable magnitudes for the samideach support. The collapse load is twice that for the simply
wich beams considered later, and so it is necessary to incluglgpported beam, and is given in nondimensional form as
both.

— F 2
2.2 Mechanisms of Initial Collapse.Consider the response Frye= b'(,jJ: = —5[4t(1 +t) + 7] 9

of an elastic-ideally plastic sandwich beam, with an end condition o 1

of either fully clamped or simply supported. As the applied load ifr face yield of the clamped beam.

increased a limit load is attained, corresponding to initial plastic ) )

collapse. For the case of a clamped beam, membrane effects bd=Cré shear The transverse shear force on a sandwich beam is

come significant with continued deformation beyond initial colc@rried mainly by the core, and plastic collapse by core shear can

lapse, and a subsequent hardening behavior is observed. result. C_:on5|der first the case of a simply supported sandv_vlch
The initial limit load for initial plastic collapse is calculated forP€am with an overhangi beyond the outer rollers, as shown in

a number of trial collapse mechanisms using the upper bouft§- 1. Two competing collapse mechanisms can be identified.

theory of plasticity. The face sheets and core are taken to be righic de A entails plastic shear of the core and rotation apout plastic

ideally plastic with uniaxial strengthr; for the faces andr, for hinges in the face sheets at the central punch, see f&y. /®te

the core. Ashby et a[1] have identified the competing collapsethat the sandwich beam shears beyond the outer supports. Alter-

modes for sandwich beams with metallic face sheets and cored'a8vely, in mode B, the sandwich beam does not shear beyond the

face yield, core shearand indentation We calculate collapse outer supports_but this necessitates the formation of addltlonal

loads for each of these mechanisms, for both simply supportB@stic hinges in the face sheets at the outer supports, see Fig.

and clamped boundary conditions, and since the transverse deffég). Simple work calculations give the collapse loads for modes

tions are small, we neglect membrane effects. A and B, respectively, as

In the current study only plastic collapse mechanisms are con- )
sidered. Alternative failure modes are expected when the face Fa=2 U'f+2bc’7'c<1+ H ) (10
sheets or core are made from elastic-brittle solids such as ceramics {-a {-a
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Fig. 3 Two alternative modes of initial collapse by core shear

Fig. 5 |Initial collapse mechanism map for simply supported B

bi2 and clamped sandwich beams in three-point bending. o
Fg= 4€—(7f +2bcr, (11) =0.034 and a=0.1. Test geometries are marked on the map.
-a

A comparison of these formulas confirms that mode A is more
likely to occur at short overhangs; Chen et[dl] have found the
characteristic overharig; associated with transition from mode A

to mode B 2.3 Mechanism Maps for Initial Collapse.The observed ini-

20y tial collapse mechanism for a sandwich beam is the one associated
— (12)  with the lowest collapse load for a given geometry and material
properties. The active modes can be shown graphically by plotting
in which the shear strength of the corg can be taken asc 5 npondimensional measure of the upper bound collapse Foad
~20¢/3. =F/(bfo;) on a diagram with the nondimensional axeandt,

For the case of clamped beams the only possible collapse —  — . .
mechanism is mode B, with the associated collapse load givenfs r selected values af anda. This method follows that pioneered

Eq. (11). In the present study we consider simply supported bearﬂ Glbson and Ashby7] for polymeric foam cores and alu-
with an overhang lengthl exceeding the transition valug,, so minium alloy face She?ts- .

that the collapse mechanism is again mode B. The initial collaps A collapse me(_:har_llsm map, for both SImpIy_supported and
load is insensitive to the boundary condition, and is given by tfe@mped beams, is given in Fig. 5, for the chotee0.034 and

H,=
2cT

nondimensional form of11), as a=0.1, and the map is representative of the materials used in this
_ . study. It is assumed that the overhdidor the simply supported
Fos Fs _ ic i a (13 case exceeds the transition valdeso that core shear mechanism
es” blo; 1-a 3 is mode B. The regimes of dominance for each collapse mecha-

nism are marked, and the three data points marked on the figure
Indentation An alternative collapse mode is plastic indentadive the three structural geometries tested and analyzed later.

tion of the upper face sheet beneath the central punch, as sketchddote that the maps for simply supported and fully clamped
in Fig. 4. Again, a simple analytical formula can be obtained fdtoincide along the indentation—core shear boundary, since only
the plastic collapse load using an upper bound approach, $ee face yield collapse load changes when we switch from the
Ashby et al.[1] and Bart-Smith et al[5]. The mode involves Simply supported to the clamped boundary condition. The regime
plastic crushing of the core over a length(@h +a) and the for- Of face yielding is significantly larger for the simply supported
mation of four plastic hinges in the upper face sheet. The spacifgam than for the fully clamped beam.

\ between the hinges is obta}ined by minimizing the upper bounds 4 Finite Deflection of Clamped Sandwich Beamslt is
collapse load. For both the simply supported and clamped beaygen experimentally and theoretically later that simply sup-

the nondimensional indentation load is ported beams undergo continued plastic collapse at nearly con-
FN _ m e o stant load; eventually, the transverse deflection becomes suffi-
= t\/— (14  ciently large that the structure fails by fracture of the face sheets
c or core. In contrast, clamped beams undergo membrane stretching
of the face sheets beyond initial yield, and this gives rise to a
F i hardening macroscopic response. We now analyze the postyield
’ response of clamped sandwich beams.
A Initial plastic collapse of clamped sandwich beams occurs by
—= — face yield, core shear, or indentation at small transverse deflec-
__W tions. Subsequent transverse deflection, however, involves tensile
T T stretching of the faces and core. The stress distribution within the
beam evolves from that associated with the initial collapse load to
c that of pure membrane action, with the membrane solution
achieved when the deflection is about equal to the thickness of the
beamHg=C+2t. Thereafter, the beam deforms in a membrane
—= mode, and yields axially until the face sheets tear when the axial
plastic strain attains the material ductility. Equilibrium consider-
Fig. 4 Initial collapse of sandwich beams by indentation of the ations give an expression for the load versus deflection response
upper face sheet in the membrane phase as
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Fig. 6 Stages of collapse of simply supported and clamped true strain
sandwich beams ) . -
Fig. 7 Tensile response of the annealed aluminium face
sheets
_ 8tb0'f
Flu=>2_"u (19 3 Materials Characterization and Test Technique
assuming that the deflectianis small compared with the spdi Tk:rr]‘eae sotfrllj:(.:turgl g(.etﬁrggtcrlfs :;)T/]the?nnse!ﬁcgegﬁvé'tg;ﬂ tge.gall-
and that the net axial force in the faces is much greater than thatif, 2P o F19. 5, with €ach g ry ying | ITerent region
the core of the map. The sandwich bearnsf width about 50 mm were

It is difficult to obtain a general failure criterion for the beamrq%nuiggrl:]recdorg bggg”\:\?ef;u;mg's%m feanctle Stggteéz E?} ?#:g_mzmt
since the plastic strain distribution within the sandwich structur% Y ' ubsequently P

depends upon both the initial collapse mechanism and the metllr?-r;dmsge' dAtoCr?wrQrT?;f:Ita”r)é Fhugefafcu;g aﬂg?:;esdthiufrg;mu::norzhegts a
brane stretching phase of deformation. Here, we state a sim as u utactu » W w

failure criterion based on an estimate of the strain in the fa ostgd-c(;ell a!tu )(rr(;lnlur_?-allfot)r/] fofam, V(\;'.th. dtrzds-r;ﬁmg AIp_(t}rasfsth
sheets due to stretching of the beam, and neglect the plastic stréﬂ% Ive densittdensity o f oam divided by the densily ot Ine
due to bending. For an assumed ductility of the face sheet cell wall materia] was p=119%, and the average cell size was 3

material, the deflectiony at failure is given by mm. .Anneale.d aluml.nllum was us.e.d to ensure that the clamped
specimens did not fail in the transition phase, in order to observe
U = fv‘%(l ~Aer (16) the membrane regime.

The aluminium face sheets were degreased and abraded, and

2.5 Summary of Clamped Beam Respons@he load versus were then adhered to the foam core using Redux 322 epoxy ad-
deflection response of clamped beams may be subdivided i[q[%swe on a Dylon carrier mesh. The sandw[c_h beams_ were air-
three phases, as sketched in Fig. 6 cured at 180 C for 1 h, e_lnd bonding was facilitated by imposing

' a dead load with a nominal contact pressure of 0.01 MPa. The
. : : . shear strength of the cured Redux 322 adhesive was taken to be 20

@ E|Ii2?jm|:oz(ejnglt?§i:2 ethbee?mtigffé%(ﬁtaspifﬁg?ﬂyaggcﬁgﬁegp MPa, from Hexcel's data sheets: this strength is about one order of

with the operative collapse mechanism. The Idad is magnitude higher than that of the Alporas foam, and so no adhe-

reached at an elastic deflectiop as dictated by Eq4). sive failure was observed.

(2) Plateau phaseOnce initial collapse has been attained, itis 3.1 Face Sheet Material.The mechanical properties of the
assumed that the load remains constant under increasiighealed aluminium face sheets material were measured as fol-
transverse deflection up to a transverse deflectignat lows. Tensile specimens of dog-bone geometry were cut from the
which the load predicted b§15) equals the initial collapse aluminium face sheets. The tensile tests were performed in a servo
load. hydraulic test machine at a strain rate of 10-4/s; the axial strain

(3) Membrane phaseThe beam stretches in the manner of avas measured using both strain gauges and a laser extensometer,
plastic string and the load versus deflection response vighile the transverse strain was measured with a strain gauge.
given by Eq.(15). The sandwich beam deflects until there The measured true stress versus true strain response is given in
is a sudden loss of load carrying capacity due to face shegty. 7. The Young’'s modulus i8=70 GPa, and the Poisson ratio
tearing when the deflection attains the valye is 1;=0.33. The annealed aluminium has a 0.2% offset yield

S strength of 30 MPa, an ultimate tensile strength of 85 MPa and an
The energy absorptiow is the area under the load versus deejongation to failure of about 40%.

flection curve of the sandwich beam. Upon neglecting the elastic ) ) ]

contribution to energy absorption, the nondimensional measure3-2 Core Material. The tensile, compressive, and shear stress

W=W/b¢20 for a clamped beam. is taken as versus strain response has been already reported by Chen et al.
- f P ' [4]. In brief, the Young’s modulus of the Alporas foam k5

— — ¢ -, =1.06 GPa, and the compressive and tensile yield strength is
W=Feur+ Uz ~up) (17)  =2.1 MPa, with a tensile ductility of 1.1%.
where 3.3 Test Method for Sandwich BeamsThe sandwich beams
—_ UT. — _ Ur T . . .
Ur=—; Ug=— (]_8) European supplier, Karl Bula, Innovation Services, Ch-5200 Brugg, Herrenmatt
4 € 7F, Switzerland.
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sponse. Both the simply supported and clamped tests were ar-
rested prior to tensile tearing of the face sheets. Fig(ag if-
cludes photographs of two duplicate specimens tested under
different boundary conditions. The extent of deflection of these
duplicate specimens is labeled on the collapse responses. The two
different modes of collapse at large deflections are evident.

Clamped test

4.2 Core Shear Specimengrigure 9b) gives results for the

al2 sandwich beams initially collapsing by core shear. Again, the tests
I_)l were not taken to final failure and again photographs are shown of
ﬂ Simply supported two duplicate specimens. The degree of deflection of these dupli-

cate specimens is labeled on the load versus deflection curves to

aid their interpretation.

@ The simply supported beam was given a very large overhang in
>

order to inhibit collapse by core shear mode A. With this choice,
FE model of the initial collapse mechanisifand therefore the initial collapse
clamped test load) is identical for the clamped and simply supported cases. The
measured responses confirm this prediction, see Kiy. 8low
consider the collapse responses beyond initial yield. The load car-
ried by the simply supported beam increases slightly to a peak
Fig. 8 The loading configurations, with boundary conditions value at a large transverse deflection of 8 mm. The peak in the
used in the finite element calculations load versus deflection curve is due to shear fracture of the foam
core.

In contrast, the clamped beam undergoes axial stretching of the
were loaded in three point bending using a fully clamped rig arfdces beyond initial collapse and the load steeply rises above the
a simply supported rig, as sketched in Fig. 8. Selected specimémgal collapse strength, as suggested by Bd). After a transi-
were instrumented in order to confirm the mechanism of collapgé@n phase, of up tai=Hs, the load rises almost linearly with
Laser extensometers were used to measure the deflection anddgféection; this supports the assertion of the analytical model that
change in height of beam directly under the indenter, and)120he specimen is in a pure membrane state.
resistance strain gauges of length 2 mm were placed at midspaivisual observations during the tests on the clamped and simply
on the bottom face sheet. A clip gauge was used to measure stgported beams revealed that inclined shear cracks developed
relative sliding displacement of the face sheets, and thereby tighin the core once the core had sheared by a few percent. This
average shear strain in the core. is consistent with the fact that the Alporas foam has a shear duc-

The sandwich beams were loaded at a constant speedtiliy of 2%, see Chen et a[4].

0.3 mm/s by flat indenters of width @oller) to 18 mm. Fixed . . )
. . : 4.3 Indentation Specimens.The load versus deflection re-
rollers of diameter 19 mm were used in the simply supported tes(%%onses of the indenptation geometry are given in Fig), 9o-
i ,

4/2

€

while a stiff steel rig, bolted to an underlylng I-beam, was used ether with photographs of the as-tested specimens. It is clear
the fully clamped tests to restrain the specimens against end Sm the images that the specimens are squat in shape and col-
placement and rotation. lapsed by indentation. Visual observations during each test con-
o firmed that initial collapse was by indentation beneath the central
4 Effect of Boundary Conditions on Collapse Re- punch. The initial collapse load of the clamped beam is approxi-
sponse mately 20% greater than that of the simply supported beam, while

In order to investigate the effect of boundary conditions on tH&e analytical predictions for the rigid, ideally plastic case give an
response of sandwich beams, three geometries of specimen Hegatical yield load for both grip conditions. A possible explana-
been manufactured and tested in the simply supported &if@n is that the bending moment at midspan for the clamped case
clamped conditions. The geometries are summarised in TableisLonly half that for the simply supported case, at any given load.
For each geometry, we compare the measured load versus defldtgrefore, the higher bending moments in the simply supported
tion response of the clamped and simply supported beams. beam give rise to higher compressive stresses within the upper

) ) ) ) face sheet, and this facilitates the indentation mechanism.

4.1 Face Yield SpecimensConsider first the measured col-  Now consider the finite collapse response of the beams subse-
lapse response of beams undergoing face yield, see @g.The quent to the initial collapse. For the simply supported specimen,
two beams initially collapse at different load levels; as predictafle separation of the faces diminishes with increasing transverse
by Egs.(8) and (9), the collapse load for the clamped beam igeflection, and so the plastic collapse mom@mtd consequently
about twice that for the simply supported beam. After initial Colthe applied loayidrops. Finally, the bottom face tears at midspan.
lapse, the simply supported beam deflects at almost constant loadj, the clamped beam test the continued activation of the inden-
it fails by tearing of the bottom face at midspan when the tensilgtion mechanism is inhibited by the development of membrane
plastic strain has attained the material ductility. The clampegnsjon within the faces. At sufficiently large transverse deflec-
beam first undergoes face yield; then, at deflections exceeding {{3fs the stress state again approaches the pure membrane state.
to plastic stretching of the faces and core. This stretching phasenighough the total transverse deflection is very similar in the two
characterized by a steeply rising linear load versus deflection Khecimens, the degree of core crushing in the clamped beam is
much less than that observed in the simply supported beam. This
is consistent with the fact that tensile membrane stresses within
the indented face of the fully clamped specimen have stabilized it
against indentation.

Table 1 Geometry of sandwich beam specimens

No. t(mm) c(mm) I(mm) a(mm)
1 (FY) 0.8 3 200 O(rollery 5 Numerical Simulation of Beams Response
2(CY 0.8 4 70 18 . . .
3 (IN) 0.8 15 100 35 The three-point bending response of simply supported and

clamped sandwich beams has been modelled with the commercial
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Fig. 9 Measured load vs deflection response and photographs of simply supported and clamped sandwich beams.
Initial collapse is by (a) face yield, (b) core shear, and (c) indentation

finite elements codeBAQus in order to compare it with analytical a uniform vertical displacement to the appropriate boundary nodes
predictions and experiments. Due to symmetry, only half thef the upper face sheet, as sketched in Fig. 8. In the simply sup-
length of the sandwich structure has been modeled. Eight-nodsatted case, contact between the beam and the rollers is modeled
two-dimensional rectangular elements, with full integration, havey the contact surfaces provided byaQus. In the clamped case,
been used to discretize the sandwich core and the aluminilooth the vertical and horizontal displacements of nodes along the
skins. Typically, each face sheet has three elements in the thiekds of the beam are constrained to vanish. This boundary condi-
ness direction and 200 elements along the semi-span, while ttom is somewhat stiffer than the actual clamped condition used in
core is twenty elements deep by 200 elements along the sethie experimental investigation, see Fig. 8. A preliminary mesh
span. sensitivity study has been performed to ensure an accurate repre-
Loading by the frictionless flat punch is modeled by prescribingentation of the sandwich specimen.
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In the finite element model, the aluminium skins are modeled (a) 1400 ‘

by the J, flow theory of plasticity, and the foam is described by ====:FEM i
the metal foam constitutive model of Deshpande and Fl8tkas 1200 | +msms Analytic q
implemented inaBaQus by Chen[9]. In this model the yield e Meaisured .
function ® is assumed to be 1000 - P
R z
b=0-Y=0 (19 W 800 | /.‘ ]
whereY is the uniaxial yield strength andl is the effective stress, B ’."
defined by G 600 - , 4
1 e
0= O'2+ 20'2 20 400 [ smima ---‘_’_—"' b
T+ (afap 7+ o 20 7 ali

where « defines the aspect ratio of the elliptical yield surface in 200 F Tu —H i
the Mises stress, and mean stress,,, space. For the case=0, 0 ‘ ‘ ‘ ‘ ‘ ‘
the effective stressr reduces too. and theJ, flow theory is 0 2 4 6 8 10 12 14
recovered. For simplicity, isotropic hardening is assumed, i.e., the deflection u, mm

yield surface grows in a geometrically self-similar manner with

strain. To model the postyield behavior, an effective plastic strain (b) 4000 ‘
- : P B L L LLL FEM
rate e, the work rate conjugate t0, is introduced as 3500 (|,.... Analytic
22:[1 +(a/3)2](é§+éﬁ1/a2) 3000 || == Measured
£2=(23hef, em=if (21) z 2500 - -
whereéﬁ is the plastic strain raté, j=1,2,3, and the convention - 2000 - .
of summation over repeated indices applies. With the assumption 3
of normality, the plastic strain rate is given by — 1500 | - 7
A 2 1000 + A o -
po:0®_ & (3§ o on 27 - -
&j=¢ 2\ 5 ~ i~ (22)
(70'”' 1+(ald)*\2 o 3 o 500 Tu —H *
wheres; =oj; — 0, is the deviatoric stressj; is the Kronecker 0 ! ! ! !
delta, and the effective strain rate is connected to the effective 0 2 4 6 8 10
stress rate by deflection u, mm
.5 (c) 4000 ;
&= 23 7 e FEM 77’
H(o) 3500 H _ 7
smums Analytic .
Here,H(o) is the tangent of the uniaxial true stress versus loga- 3000 L Measured g i
rithmic plastic strain curve at stress leweko. The constitutive r
models for both the aluminium faces and the foam core were > 2500 - __.-“.,-’ -~
calibrated against measured uniaxial data. w LT
2000 - . ]
k=] . e
® .7 K
6 Comparison of Experiments and Predictions S 1500 [ .-° 7 8
It is instructive to compare the analytical predictions of the 1000 T 4
elastic-plastic collapse response with detailed finite element
analysis for the three clamped beam geometries as detailed in 500
Table 1 and shown in Fig. 5. A similar comparison has already u=H
been presented by Chen et[a] for simply supported aluminium 0 0 ‘5 1‘0 1‘5 20

sandwich beams, where excellent agreement is demonstrated.
Figure 10 shows the measured and predicted load versus deflec-

tion response for a specimen initially collapsing by face yieldfig. 10 Comparison of measured and predicted collapse re-

core shear, and indentation, respectively. Each plot includes gR@nses for sandwich beams collapsing by (&) face yield, (b)

analytical predictions of the elastic stiffness, the initial collapsg®re shear, and (c) indentation

load and the large-deflection membrane solution. The predicted

transition point between the end of initial plastic collapse and the

start of the membrane phase occurs at a deflection equal to thserved previously for simply supported beams by Chen et al.

height of the beam, and this transition point is marked in tHe], and has been analyzed in detail by Chen and Hl&6k They

figures. have discussed boundary layers for sandwich layers subjected to
It is clear from Figs. 1) and 1@b) that, for the cases of face simple shear and shown experimentally and theoretically that the

yield and core shear, there is a good agreement between the ati@ngth is enhanced when the thickness of the core is comparable

lytical predictions, the numerical model and the measured r& the cell size. A similar elevation is expected when the width of

sponse. In particular, the prediction of the membrane phase acthe indenter is comparable to the cell size, as in the present study.

rately captures the measured response>aHg, In contrast, both The source of the boundary layer is the fact that the foam cell

the finite element predictions and analytical formulas underestiralls are adhered to the face sheets and behave as encaster beams.

mate the measured initial collapse load for the specimen collapsr the indentation geometry the membrane solution is recovered

ing by indentation, see Fig. 1© It is argued that this is due to the when the transverse deflectians comparable to the heights of

fact that the predictions neglect the presence of a strengthertled sandwich beam; the predicted large deflection solutions are

boundary layer within the metal foam. This phenomenon has beagain in reasonable agreement with the measured response.

deflection u, mm
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Table 2 Geometry, face sheet strength, and observed mechanism of initial collapse for an additional set of experiments

= simply supported, CL

= clamped, FY = face yield, CS = core shear, IN = indentation )

(key: SS

Spec. No.  t(mm) c(mm) I[(mm) a(mm) b(mm) Face sheet alloy ov(MPa) Support conditions  Observed collapse mode
1 0.5 7 240 19 56 1 110 SS FY
2 0.5 7 240 19 56 1 110 CL FY
3 2 10 160 12.6 49 2 287 SS CS
4 2 10 160 12.6 49 2 287 CL CSs
5 0.5 40 160 12.6 50 3 90 SS IN
6 0.5 40 160 12.6 50 3 90 CL IN
7 3 19 220 19 57 1 120 CL CS
8 2 10 160 12.6 49 2 287 CL CSs
9 0.5 7 100 8 50 3 90 CL CS
10 0.5 40 160 12.6 50 3 90 SS IN
11 0.5 42 220 19 57 4 70 SS FY
12 3 19 220 19 57 1 120 SS CS
13 0.5 42 220 19 57 4 70 CL FY

Additional Tests. Additional tests have been performed on The first step is to construct a collapse mechanism map in terms
clamped and simply supported specimens, using Alporas foaihthe nondimensional geometrical parameigrs/¢ andt=t/c,
core and four different grades of aluminium alloy for the facgor a given a set of material properties of face sheets and core. A
sheets (the alloys are labeled in Table 2 as alloy ltypical map is given in Fig. 12 for a clamped sandwich beam with
=BS HH/S1C, alloy 2=BS HE30TF, alloy 3=BS HBAC, and aluminium alloy faces and an Alporas foam core, with the choice
alloy 4=commercially pure, fully annealed aluminiunThe ge- o=0./0¢=0.034,a=a/€=0.1,p=0.11. The dominant collapse
ometry and strength of the faces have been varied over a wigiedes are shown, as in Fig. 5, along with contours of non-

range in order to explore the accuracy of the analytical prediCtiOHﬁnensional collapse lodg=F /bc; and masl=M/bZp;. The
of initial collapse strength. A summary of the specimen geom- — f pr-

etries and the associated face sheet properties is presented in Tagfmetry which minimised! at any fixedr is obtained by scan-
2. The predicted mode of collapse is in agreement with the ob@ along the contour df to locate the point where the gradient
served mode. In Fig. 11 the predicted initial collapse loads &g\ is |ocally parallel toVF. Upon repeating this procedure for
compared with the corresponding measured values. It is evident —

that the analytical predictions are adequate for design purpose€icreasing values of a minimum mass trajectory is located, as
shown in Fig. 12. Algebraic calculations, not reported here for the

. . . sake of brevity, give explicit analytical expressions for the depen-
7 Minimum Mass Design of Clamped Sandwich Struc- Y g_ ) P _yt 2 exp _ P
dence on the minimum mass indé4,,, as a function of the

tures i,
. . _ . . _required structural strength.
A common requirement is to optimize the design to achieve a —

minimum mass for a given structural stiffness, strength, or level of 1N€ definitions(2) for F and M involve the strengtho and
energy absorption. Here we make use of the formulas develogd'Sity P Of the face sheets. To allow for a direct comparison of
in Sec. 2 in order to design clamped sandwich beams of minimdftf Performance of various material combinations, the normalized
mass for a given initial collapse strength in three point bending. valuesFN of F andMN of M are introduced, by using the strength
complementary optimisation task has already been performed farand densityps of a medium strength steel, taken as 400 MPa
simply supported aluminium sandwich beams by Chen déél. and 8000 kg/r, respectively;

v

=TT MN=2y (24)
G Face yield - simply supported Os Ps
S e woporid The normalized minimum mass desidt, is plotted as a func-
W Core shear - dlamped tion of the structural load inde&N in Fig. 13. The figure includes
A Indentation - simply supported
A Indentation - clamped
5000 5 0.25
Z, 4000 - e i 02—
ko] 1
©
ke 1
g 3000 - Ny 1 -
ko] S
= z g (
L 13
o 2000 - ro 4 1 0.1 ks <o
3] - - T
g —> —» N &\’;-';'
5 1000 - 8 FACE < ‘\5.J§RENTATIGN‘
YIELD N o=
0 ‘ ‘ ‘ ‘ 0 01 _— 02 03
0 1000 2000 3000 4000 5000 (84

collapse load, N Fig. 12 Collapse mechanism map with contours of the nondi-

mensional strength and mass index  (¢=0.034,a=0.1,p=0.11).
The minimum mass trajectory is included.

Fig. 11 Comparison of measure and analytical prediction of
initial collapse strength for the specimens listed in Table 2
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Fig. 13 Normalized minimum mass vs structural load index for B
a clamped sandwich beam of metallic construction and of com- S 3000 ¢ 7
posite construction (key: FM = face microbuckling, FY = face
yield, CS = core shear, IN = indentation ) 2000 - .
w00l predicted | |
= measured
the minimum weight design plot for a clamped beam with glass- 00 0 0‘05 0 61 0.015
vinylester composite faces and H100 Divinycell foam core, taken : strain ) )

from a parallel study11]. The metallic sandwich performance is
similar to that of the composite construction, and additional befig. 14 Scanning electron micrographs of the tensile necks in

efit would accrue from the use of heat-treated aluminium alloy?) aluminium alloy face sheet with no foam support, and  (b)
face sheets. aluminium alloy face sheet as part of a sandwich plate. (c) Mea-

sured tensile load vs strain response for a sandwich dog-bone
specimen. The predicted response by an upper bound, rule-of-
mixtures calculation is included.

8 Effect of Foam Core Upon Plane Strain Necking of

Face Sheets
The present experimental study made use of annealed aEzssandwich specimen remains stable up to a strain of 1.45%.

minium alloy face sheets. These possessed adequate strain h .-. supports the hy_pothesis that the foam core stabilises the faces
ening capacity to maintain stability and not undergo necking dufgainst tens[le necking. . Lo .
ing the beam bending tests. Preliminary experiménts reported The magmtude of the delay in .necklng is dependent upon ratio
here using high strength aluminium alloy revealed that the pe face_s_heet thlckm_ass to core thickness as shown by_the ratio
load of clamped beams is set by sheet necking of the faces. o du.ct|||ty of sandw[chasw to that. of the facesfs, see.Flg. 15. It .

It is anticipated that the presence of a foam core delays t evident from the figure that this ratio increases with decreasing
onset of tensile necking of the face sheets in the membrane ph%& Sh?]et tfr;lckness banld W't.h hdecrea5|ngddcljjctlllllty Off tlt:e facg
of the response. Sheet metal necking involves a local reductionSicet: The effect can be large: the measured ductility of the sand-

thickness of the sheet, and a foam core provides resistance to J{i§h Specimen can be almost doubled by the presence of the

instability. This phenomenon has been explored experimentally '2&M:
follows. Dog-bone shaped tensile specimens were made from a )
sandwich plate with faces comprising a BS HH/S1C grade & Concluding Remarks

commercially pure, cold rolled aluminium of thickness  Thjs study has focused on the effect of boundary conditions on
=0.9 mm, and Alporas form core of relative density 11% anghe flexural response of sandwich beams comprizing aluminium

thickness in the range 3—-25 mm. The dog-bone specimens hag@es and an aluminium foam core. For both simply supported and
gauge length of 70 mm and a width of 25 mm); testing of the

sandwich specimens was performed both along the rolling direc-
tion of the faces and transverse to the rolling direction. 2
The choice of material for the face sheets of the sandwich
specimens was dictated by the requirement for the faces to un-
dergo tensile necking at a low ductilitpf the order of 1% prior 181 ® 5 =112%
to tensile rupture of the foam core. The measured tensile ductility
of the faces waseg=0.82% in the rolling direction and:g 166 ]
=1.12% in the transverse direction; for the two orientations the 8SW
0.2% offset yield strength equals 100 and 120 MPa, respectively. e O
Longitudinal sections of the necked face sheet are shown in FS 147 &
Fig. 14a) (no foam core presen@and in Fig. 14b) (foam core
presenk A typical load versus nominal strain curve for the sand- 12
wich specimer(core thicknes€=25 mn) is given in Fig. 14c), ' ®
for the case of loading transverse to the roll direction of the faces.
The figure includes a simple rule-of-mixtures estimate for the ten- 15 = : o
sile response of the sandwich plate, based on the assumption that 10 10 5x10
the axial strain is uniform across the section. It is evident that the t/c
prediction is accurate up to an axial strain of about 0.8%; beyomg. 15 Sensitivity of tensile ductility of dog-bone sandwich
this strain, unsupported face sheets undergo tensile necking whipecimens to the ratio of face sheet to core thickness

O g = 0.82%
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1 Introduction 2 Sternberg and Eubanks’ Limit Definition and the

The classical uniqueness theorem does not hold 4pProved One
concentrated-load pointsingularitie$. To assure the unique so- 27 pefinition 1 (Sternberg and Eubanks’s Limit Defini-
lution to a concentrated-load problem, each concentrated loadih [1,3-5]). A concentrated loa& applied at the point, in the
often replaced with a sequence of distributed loadings over thfitire spaceE® can be replaced with a sequence of body-force
load region surrounding the load point, and the solution to thelds f,(r—rq) with the properties:
original problem is reached by considering the limit solution t?a) f(r=ry) e CAE)
the modified problem. Sternberg and Eubahksgave their cel- n o< '
ebrated limit definition which was analogous to Kelvin’s defini-b)
tion through a limit process of the solution associated with a cosn-

centrated force applied at an internal point of a medium occupying
fff fo(r —rg)dn, — F asn— o
ES

fa(r—=ro) =0 forr & 3q,(ro),

the entire space. Sternberg and RosentBhgave an infinite ag-

gregate of distinct “solutions” corresponding to the half-space and

sphere under normal concentrated loads, each of which possesses

Kelvin's three conditions, but not their new forth condition. The .

limit definition of concentrated surface loads was obtained by Tu(rq) f J f3 [fo(r = ro)lds; remains bounded as— <
teltaub and Sternber{]. Their work shows that the traditional 8

concept of concentrated loads is not sufficient, and if the addierer is the position vector of an arbitrary point from the origin,

2(E3 i : i -
tional property is neglected, the solution to such a problem wiff (E") denotes an aggregate of twice continuous differentiable
not be unique. functions in three-dimensional Euclidean space, 2ag(r,) de-

In contrast to the Sternberg and Eubanks limit definition, af°teS @ sphere region with its centgrand radius 1.
improved version with their additional property being relaxed is 2.2 Definition 2 (the Improved limit definition). The con-
proposed in this paper, and the amended expression is vegntrated loadF applied at the point, in the entire spac&® can
simple. We also give a counter-example that satisfies the relaxesl replaced with a sequence of body-force fidlgs-rq) with
property but fails to agree with the foregoing limit definition toproperties(a), (b), (c), and amended property’)
show that the new definition is more reasonable.

By the way, we argue about the polar symmetry counter- ) lf ff [fo(r = ro)|dr, — 0 asn — o
example which was used by Sternberg and Eubanks to prove that n =]
the fourth condition should not be neglectdd, and get the exact where symbols have the same meaning as before.

solution of the displacement which is different from theirs. It compared with the first definition, the requirements of the sec-
should be noted that this counter-example itself supports th@id is relaxed obviously.
final conclusion. Theorem 1:The displacement under the action of the sequence
of body-force fieldd,(r —rg) with properties defined by Definition
2 tends to the Kelvin solution as— .
Proof: The displacement under the action of the sequence of
body-force fieldsf,(r—rg) is

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY un(r) =Pp(r) - al-» V [Pon(r) +1 - Py(r)] D
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF AP- v
PLIED MECHANICS. Manuscript received by the Applied Mechanics Division, i ; f
April 18, 2004; final revision; September 27, 2004. Associate Editor: Z. Suo. Di§a-nd the Kelvin solution is
cussion on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, 1
Journal of Alpplie'd Mechar}ics,lDepartment of Mechanical and Environmental Engi- uF(I’) = P(l’) -V [Po(r) +r - p(r)] (2)
neering, University of California - Santa Barbara, Santa Barbara, CA 93106-5070, 4(1 - y)
and will be accepted until four months after final publication in the paper itself in the
ASME JOURNAL OF APPLIED MECHANICS. where
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and Pg,(r) are convergent to their corresponding derivatives of
P(r) and Py(r), respectively. Then, Theorem 1 is proved.

3 Counter-Example and Analysis

In this part, we give an example that satisfies the relaxed prop-
erty but fails to agree with Definition 1 to show that the relaxed
result is effective. This example also supported that Theorem 1 is
false if the hypothesi¢d’) is omitted.

Fig. 1 Geometry of the Ioadlng region

1 fo(E-r i , '
P.(r) = - f f f n(§ O)dTg (38 Let the sequence of body-force fieigr) be defined by
T
fo(r) =11, 1 e 214(0)
1 fa(&-r
Pon(r) == f f J EhE=ry (g £()=0, T & 3,,(0) @
A 0 R
where,
1 F 1 rg-F 3
Pry=——, Por)=——— 3c __336 @ 1 3 .1
O mary =R (30) fo(n) == =@ r= ) {67+ Tre
with wherer? is the unit vector of the position vector point O is the
R=r-§ Rg=r- origin of coordinates, and€ a«<1. By direct computing the first
where w and v are the shear modulus and Poisson’s ratlé"md second derivative 6f(r), we get
respectively. 1 1 1
From the geometry relation of variables in Eg) (Fig. 1), we fn<—) :fr’1<-> :fﬁ(—) =0 (5)
get n n n

whencef,(r) satisfies the first propert§a) and (b). For the polar
symmetry off,(r) aboutO, the integral of the load sequence is

1 1
|R—Ro|$\§-fo|$ﬁ. R= ‘Ro‘a

wherer is in the entire spac&2, but not in the sphere region
21/n(r0)- f f f n(r)dTr (6)
From[1,5] and with some manipulation, we get
1 so thatF =0. From Eq.(2), the Kelvin solution is
|Pn(r) - P(I’)| = 4_ f f f fo(&- rO)dTg_
TuR S u(n=0 @

In order to calculate,(r), denotingP to be an arbitrary point
out of the sphere regioz1,,(0), and its position vector is
=r(P) with the unit vector denoted by; leti be an arbitrary unit
vector perpendicular to° andj equal tor®Xi be another basic
vector. So, the orthogonal coordinate systénj,r® with the
load-point origin is established) is an arbitrary point in the
sphere regiort,1;,(0), and its position vector i§=£(Q) with the
unit vector denoted bg¢®°. Then

1
f(&-1o) —‘_>d
[]], weralzg)e
1
<47TMR0UJL fol€=To)dr, -

1in

| [ mierol o

1n

1
mwﬁ

in

f f f where § and ¢ are sphere coordinates of poi@t Substituting of
fo(&-ro)|dT,
s | n f 0. | §nR)(R0 1/n)

47T,LL

=|r—&=\r2+ & -2récosd

& =isinfcose+]jsindsing+rcosh 8)

Eqg. (8) into Eq. (3a) we have
1n

Before the final inequality is obtained, the geometry relation has P.(r)= 1 f f f f“(g)dng ~ 3361 - yn®
n
T,

been used. When>2/R,, we have
J 52(5 1) (6§2+ §+i)

RNy -
3

1n

[Po(r) = P(N)] = 7

2lf(&-ro)| (§ r )\ " r%in6cosd
*3 f f f =0 X f ———27 e
e i o \r2+&-2récosd
By the hypothesigc), the first term at the right side of the above 21-v) _ (1
inequality tends to zero; by the hypotheéit), the second term == 3an® (F) 9

tends to zero too, as— .
With the same method, it is easy to proRg,(r)— Po(r), as According to the potential theor], Eq. (3b) can be simplified,
n—oo. We can also prove that the first-order derivative®gfr) and we get
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1 -f 1\° 6 3 1
pOn(r):_mfffE3§Tr@dT§ fn(r)=Cn11(r—E> (30‘3_Er2_mr_ﬁ)

with

1
= Ampr f f &fa(&dr, C=-19801-v)u
1 wherei is unit vector with constant direction. So, this sequence of
21-»1l1 the body-force field has a constant direction that is different with
= “ e (10 Sternberg and Eubanks’ counter-examfdl¢ And this example
o ) ) ] supports that propertgd’) should not be neglected, too.
Substituting Eqs(9) and (10) into Eq. (1), the displacement field  Next, we will reconsider Sternberg and Eubanks' counter-
IS example. Wheny=0, the foregoing counter-example defined by
1-201 1 Eq. (4) will be simplified to Sternberg and Eubanks’ counter-
unn=-—/—- (—) (11 example defined by Eq$4.9), (4.9), and(4.10 in the article[1].
3w n r Substitutea=0 into Egs.(9) and(11), we get
On the other hand, the absolute integralf¢f) can be calcu-
lated directly, and yield -1 f f f fW®, 1o (l)
8m(1-v) e R O3 \r
- — 1-a
ff J‘E3|fn(l’)|d7'Ir 16m(1-v)n (12 12 (1>
u(r)=- - (19
By Egs.(11) and(12), the displacement field and the absolute 3u r
integral of the load sequence depend on the valuer,08s n However, the corresponding expressions in the arfit]eare
— o0, SO two cases are discussed in the following part.
Case l:0<a<1 V.(P) = -1 ﬁd’r
By Eq. (11), we have " 8m(1-v) e R ¢
up(r)=0, asn— o (13 1
This result shows that the displacement figjdr) tends to the = 81— w)r J f J fo(§dr=0 (20a)
Kelvin solution asn— <. It means that the body-force sequence 1
processes full four properties what the amended limit definition
requires. Indeed, uin=V <-) (20b)
lim }f f f If.(n)|d7, =0 (14) The above Eq(20a) is obtained from Eqg4.4b), (4.13), (4.1%)
n—en g3 in [1] directly; and Eqg.(20b) is the formula(4.17) in [1].

. . . . Comparison with Egs(19) and (20), the two solution to the
However, this conclusion that the displacement figitt) tends ¢, 0 pFr)obIem are conct]rary; and we think the later is wrong. Based
to the Kelvin solution, as— o, cannot be deduced by Definition 5y 1], the first equation in Eq20) is obtained through potential
1, .because the body-force sequence violates their fourth hypoﬂh‘éory, forV,(P) being equivalent to a Newtonian potential at a
esis(d). Indeed, as &ca<1, we get point of free space of mass distributions over the sphere, whose
densities have polar symmetry about the ce@eand the value
f f J [f(n)]d7, — o, n—c (15) of such a potential & equal to the value of the potential associ-
= ated with a single particle &, whose mass is equal to the total
twahass of the distributiopl]. In fact, the above deduction is right,
d)@ly when the densities are scalar fie[@$ or vector fields with
nstant directior{tensor fields are not considered hergo our
problem, the density of mass distributity{€) is a vector, and its
direction varies with the position of poir@, thus this deduction

Comparison with the distinct different results derived by
different definitions in solving the same problem, we can conclu
that Sternberg and Eubanks’ limit definition is too strong, and t
amended propertid’) instead of the propertyd) is effective.

Case II: =0

Bv Eq. (11 h cannot be used in this integral, i.e., the expression(#&op) can-
y Bq. (11), we have not be derived by potential theory. So, the latter formula of the
o 1-2v_ (1 displacement field Eq20b) which is related to the former cannot
Un(r) == 3 v T (18 pe obtained, too. However, it is worth mentioning that this attrac-

. . ) tive counter-example itself is very good to support their final con-
According to Egs(7) and (16), this result of the displacement cjysjon that the fourth requirement should not be omitted.
field does not tend to the Kelvin solution, as-. In fact, the

sequence of the body-force fiefd(r) processes the first three

properties, but violates the fourth of@ ). Indeed, 4 Conclusion and Discussion
1 Sternberg and Eubanks’ limit definition is monumental. They
lim = f(ldr = 16m(1 - 1 clarified_ the cc_)nfusior] about the concept of (_:or_1cent_ra_t_ed loads.
e f f LJ n(Dld7 (1-7) 7 But their condition(d) is too strong. The new limit definition of

) ) ) _concentrated loads with the fourth condition being relaxed can
So, if the property(d’) is neglected, Theorem 1 is false. In hiszssuyre the limit solution to the modified problem convergent to the
book([5], M. Z. Wang gives another example with a different formkelvin solution. Our counter-example shows that the improved
to support this view. The example is defined by version is more reasonable than the previous one. By establishing
f (N =if.(r), re 3y (O0) an appropriate _coordinate, arjd computing the_integral directly, we
n mea L get the exact displacement field of the attractive polar symmetric
f()=0, &3y (0) (19) counter-exampl_e. Moreover, the limit definition of concentrated
n ' 1n surface loads given by Turteltaub and Sternij&lgcan be relaxed
where in the same way.
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A Unified Formalism of
Two-Dimensional Anisotropic
Elasticity, Piezoelectricity and
Unsymmetric Laminated Plates

A unified formalism is presented for theoretical analysis of plane anisotropic elasticity
and piezoelectricity, unsymmetric anisotropic plates, and other two-dimensional problems
of continua with linear constitutive relations. Complex variables are used to reduce the
governing differential equations to algebraic equations. The constitutive relation then
yields an eigenrelation, which is easily solved explicitly for the material eigenvalues and
eigenvectors. The latter have polynomial expressions in terms of the eigenvalues. When
the eigenvectors are combined after multiplication by arbitrary analytic functions con-
taining the corresponding eigenvalues, one obtains the two-dimensional general solution.
Important results, including the orthogonality of the eigenvectors, the expressions of the
pseudometrics and the intrinsic tensors, are established here for nondegenerate materials,
including the case of all distinct eigenvalues. Green’s functions of the infinite domain, and
of the semi-infinite domain with interior or edge singularities, are determined explicitly
for the most general types of point loads and discontinuities (dislocations).
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1 Introduction wheren is areduced eigenvectarhose elements form a subset of

the eigenvecto, and M(w) is a symmetric matrix whose ele-

It is shown in this paper that, in the plane equilibrium probleml%ems are polynomial functions. For example, in 2-D anisotropic
of anisotropic elasticity and piezoelectricity, laminated plat: lasticity, M () is a 22 matrix whose eleménts are the well

theory with or without bending-stretching coupling, and Otheknown polynomialsl ;(12), —la(x) and I,(x) in Lekhnitskii's

two-dimensional theories of continua, the differential equatio . ! .
governing the kinematical and kinetic variablesd additional ?Eﬁé)g’dl]—:tfo?ate”al eigenvalues are determined by the character

variables characterizing the electric and other sjatéien show
analogous mathematical forms, implying that the stress, strain,

electric field, electric displacement and other physical variables _

appear as two-vectors and three-vectors of the gradient type or the DefM(u)]=0. (1.2)
solenoidal type. The gradient vectors possess a scalar potential

whereas the solenoidal vectors have a skew potential. An €igfihis equation has only simple roots, then teelucedeigenvec-
solution x consisting of all potential functions of the physicalg 4 for each root is obtained easily from E¢L.1), and the
fields is expressed as an analytic function of a complex variablgyenvector, unique except for an arbitrary scalar factor, follows
x+ uy multiplied by a(constant eigenvector. When the linear from a simple relation. Even if the characteristic equation has
constitutive equation of the material is used to relate the derivaytiple roots, Eq(1.1) may still give a full set of independent
tives of the potentials, one obtains an algebraic eigenrelation thadenvectors, provided that such roptgare double roots and the
may be solved easily for the eigenvalueand the eigenvecta. rank of the matrixM(uo) is lower than its dimension by two
The two-dimensional general solution of the material is obtaingdych cases are called semi-simpith rare exceptiong18],
by combining the eigensolutions associated with all eigenvalueggst of the studies in the vast literature on anisotropic elasticity,
_This unified formalism includes, as special cases, the Lekhpg aimost all works on piezoelectricity and anisotropic plates, are
nitskii and Stroh formalisms of anisotropic elastic[ty—5], the concerned only with this relatively simple casenmindegenerate
extended Lekhnitskii and Stroh formalisms of piezoelectricity,aterials.
[3,6—8, and anisotropic laminated plate theory in different for- There are, however, abundant cases of degenerate materials,
malisms including those of Beckg®], Lu and Mahrenholt{10],  inclyding all isotropic materials in elasticity, all symmetric quasi-
Cheng and Redd}11], Chen and Shefl2], Hwu [13] and Yin isotropic laminates, and unsymmetric laminates composed of dis-
[14-17. In all such particular theories, the complex-variable forgimilar isotropic layers, for which the general solution contains
malism leads to an algebraic eigenrelation higher-order eigensolutions that cannot be obtained from Eqg.
(1.1), and must be obtained from more complicated eigenrelations
for multiple eigenvalues. For such materials and laminates, the
M(u) =0, (1.1) complete results for the general solution and for Green'’s functions
" Contributed by the Applied Mechanics Division offf AMERICAN SOCIETY OF of simple domains are obtained in the author's recent papers on
MECHANICAL EN)élNEERpseor publication in the ASME QURNAL OF APPLIED ME- anisotropic elasticitf4,5,19, anisotropic laminated platgd4—

CHANICS. Manuscript received by the Applied Mechanics Division, May 18, 2004;-7] and piezoeleCtriCit)W‘S]- )
final revision, July 18, 2004. Associate Editor: Z. Suo. Discussion on the paper These results of nondegenerate and degenerate materials of the
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appliggarious physical theories follow from the common mathematical

Mechanics, Department of Mechanical and Environmental Engineering, Univers f ; ; : o
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acceprééc?tures of the governing differential equations, and from the lin

until four months after final publication in the paper itself in the ASME/@NAL OF €4 constitutive matrix relating the primary and secondary vari-
APPLIED MECHANICS. ables. The theories generally involve various types of physical
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coupling, for example, electro-mechanical coupling in piezoeleof the Eshelby-Stroh formalism in anisotropic elasticity, and must
tricity and bending-stretching coupling in unsymmetric laminatedse the extended Lekhnitskii formalism in other thegri@his
plates. common mathematical form of Green'’s function is automatically
In the unified formalism developed in this paper, the governingxtended to a general expression valid for a wide range of theories
differential equations are first reduced to algebraic equations convolving more general linear coupling effects of mechanical,
taining the eigenvalues, eigenvectors, and the constitutive mat@tectromagnetic, and other physical types.
The potentials and skew-potentials of the unknown physical vari- Only nondegenerate materials are considered in this paper. The
ables are separated into conjugate groups of primary and secomany classes of degenerate materials involve more complicated
ary variables. The secondary variables are then eliminated, to refations and results, and the complexity increases rapidly with the
sult in an eigenrelation governing a reduced set of the primamumber of variables. Thus, the complete analysis for nondegener-
variables, which has the form of E(L.1). The equation yields all ate and degenerate piezoelectridify8] is significantly lengthier
eigenvalues, and all zeroth-order eigenvectors. Many importahtan the complete analysis for anisotropic elastif#yb| or un-
results, including orthogonality of eigenvectors, projection operaymmetric laminated platd44,15. No complete solution can be
tors and intrinsic tensors, may be obtained in a contextiven for all degenerate cases in a theory unless the complete set
independent manner, regardless of the specifics of the theory, sotleigenvalues and their multiplicities are explicitly found. How-
as the number of variables and their physical meanings. ever, many important analytical results including the derivative
The importance of the unified formalism is that it allows theule, orthogonality and the structure of eigenspaces, pseudomet-
material eigenvalues and eigensolutions, the general solution, thes, projection operators and intrinsic tensggsl5,19 may be
intrinsic tensors, Green'’s functions and the solutions of the bounestablished in a unified way independent of the particular theories.
ary value problems of various domains to be found in a common
form for a diverse range of theories, including the three examples
mentioned above. Thus, in the nondegenerate case, the gengral . . . .
solution y of the potentials and skew potentials is expressed in‘a ReducFlon of the Governing Equations to a Single
unified way as Eigenrelation

X=2RdZ (fi(X+pmy), - .. Fu(X+uny))], (1.3) S-Vectors and G-Vectors. We consider two-dimensional
hequilibrium problems of a continuum, in which all physical vari-
ables that directly participate in the linear constitutive relation
(stress, strain, electric field, electric displacement, curvatures and
(asnding and twisting moments in thin plates, eéee functions of

0 rectangular coordinates andy only. These variables may
elong to one of the following four categoriéa which S stands
or “solenoidal,” implying that the two-dimensional vector or ten-

where {uq, ...,un} is the complete set of eigenvalues wit
positive imaginary parts,fq, ...,fy) is a diagonal matrix con-
taining theN arbitrary analytic function$,, ... ,fy, andZ, is a

2NXN matrix whosekth column is the eigenvector associate
with u,. The general form of Green’s function in the infinite
domain is given for all three theories by the common expressio,

x=1/m)R4Z, {—ilog[ x+puy], ..., sor has a vanishing divergence; a 2-G vector is the gradient of a
) 4 scalar function ofk andy, and a 3-G vector has its components
—iloglx+unyD)Z1 “Ixo, (1.4)  given by the symmetric part of the gradient of a two-dimensional

where the elements of the constant vegggrare the concentrated VECtoD:

point fprces, dislocations, or po!nt charges ir_nposed at the_ origin.q 3.5 vector. Examples are

Other important results of the different theories are also given by (00,0 el T=1F U F o —F ol T

unified expressions in a context-independent manner. e L Y X
Furthermore, a solution of the boundary value problem for a

certain domain in one theory may be converted directly to a cor-

responding solution for the same domain in another mathemati-

cally equivalent theory. Such a correspondence of solutions exists;

for example, between 2-D anisotropic elasticity having in-plane

and anti-plane coupling and 2-D piezoelectricity having no such .

coupling.pThe anti-glar?e shear steesses and %ear stgrjains of the {DX'DY}T:{O:V'_QX}T’ _Where 0(x,.y) is the skew-

first theory are replaced by the electric displacement vector and potentlal of the electric displacement; ,

the electric field vector, respectively. Another example is given by _ {Bx.By} ", two-dimensional magnetic flux density vector.

anisotropic laminates without bending-stretching coupling. For 3- 3-G vector.TExampIes are .

such mid-plane symmetric laminates, stretching solutions may be {&x:&y. ¥y} ={Ux.,vy,Uy+v ', where u(x,y) and

converted into bending solutions, and vice versa, but the roles of v (X.,y) are the displacement components,

kinematical and kinetic variables must be interchaniges. In a {My My, =2M, M T={W Wy W+ W50 T, where

more general context, if a singularity solution or an analytical ~ ¥1(X,y) and ¥,(x,y) are the moment potentials in plate

solution of a boundary value problem is found in one theory, it ~ problems.

may suggest the corresponding solutions in other theories with & 2-G vector. Examples are

different set and number of variables through the mathematical {¥x;, 7y ={Wx. W}, wherew(x,y) is the out-of-plane

analogy of the unified formalism. For example, it is found in Sec.  displacement in 2-D elasticity,

7 of this paper that Green’s function of the semi-infinite region of  {E, ,Ey}T={— by ¢>,y}T, where ¢(x,y) is the potential

a nondegenerate material with free, fixed or mixed boundary con- of the electric field,

ditions has the general expression of E8) for different theo- {H, ,Hy}T, two-dimensional magnetic intensity vector in the

ries. Besides the material eigenvalues and eigenvectors, the ex- absence of free current.

pression involves a constant matiTx which is defined by Eq. . i
(7.7b) in terms of the boundary condition matii and the eigen- | N€ vectors that belong to a particular category all satisfy govern-

vectors. Thus, all expressions of Green’s function for the ha{%g differential equations with identical mathematical forms,

where F(x,y) is
Airy’s stress function in plane elasticity,

{Ky K, = Kyt T={W g Wy, =W, } T, Where w(x,y) is
the normal displacement of a thin plate.

2-S vector. Examples are

{rxz. 7y ={thy,— T, where y(x,y) is the skew-
potential of anti-plane shearing stresses,

space previously obtained in the various particular theories BUdh their physical meanings may be entirely different. Thus,
elasticity or anisotropic laminates are mathematically identicd'® €quations

provided that the physical variables and constitutive matrices are Tyx T Tayy=0, (2.18)
chosen strictly in the manner described in this pdfies requires, ' '
in particular, that one must use the Lekhnitskii formalsim instead Tyyxt oy y=0 (2.1b)
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are also satisfied when the two dimensional stress compondrit§ in terms of the conjugate 3-S and 2-S vectors. The latter are
oy, oy andr,, are replaced by the curvatures, «, and—«,,, called the primary variables, and their components are joined to
respectively, of the plate bending problem. The equilibrium equérm an S-vector of dimensionm3+2n. The conjugate 3-G and

tion of the antiplane shearing stresses, 2-G vectors are called the secondary variables, and their compo-
nents are joined in the corresponding manner to form a G-vector
Tzxt Tyzy=0, (22)  of dimension 3n+2n.

is mathematically identical t®, ,+ D, ,=0 for the electric dis- _ Theith 3-S vector and théth 3-G vector have the following

placement vector, and to a similar equation for the magnetic fl§XPressions, respectively,
density vectorB,i+Byj. The compatibility equation of the in- =({F0) FO _pinT (2.5)
plane strains, yy o xS
(i) — U(i),V(i),Um+V(i) T’ i=1,...m 2 5y
Exyy T €y xx™ Yxyxy= 0, (2.3) g { XY _ Y ,x} ( ) ( )
where F®), U® and V(" are scalar functions ok andy. The

corresponds to the moment equilibrium equations of plate : S o o i
My yy+ My xx— (— 2Myy) x,=0, whereas the compatibility of the &pressnons of th@gh 2-S vector and thgh 2-G vector are, re

out-of-plane shear strains spectively,
D=y — g (NT 2
Yyzx— 'yxZ,yzo (2.4) ! {l//y ' l/jx} , (2.6)

5 i T
is formally identical to the equatioB, ,—E, ,=0 for the electric h<J)—{Wf;> 'ny} (=1...n), (2.60)
field. Such differential equations that define the mathematio@herew(j) andW() are also scalar functions afandy. Let
character of a particular two-vector or three-vector of the S or G

type will be called the “inherent equations,” in contrast to the s={sVT, ... gMT LT fmT, (2.79)
material-dependent constitutive equations. In equilibrium prob- (DT (T T Ry T 27
lems, the inherent equations refer to the invariant spatial or bal- g={g™" ...g™", T b (2.70)
ance relations that connect a dimensionally homogeneous sefTbén the following linear constitutive equation is postulated in
physical variables independent of the specific material propertgrms of a symmetric, positive-definite matfio] which may
The constitutive equations are the relations among the differampresent fully anisotropic, coupled response:
sets of field variables based on measurable material response. All ~
transformation ruleginvariance under rotation, ejcthat govern g=[@]s, (2.8)

the constitutive equations belong to one of the two categdfiies: Consider the following two vectors composed of the anti-
those that are derivable from the inherent transformation rules ¢érivatives of the primary variables and the secondary variables,
the participating vectors or tensors, and therefore valid regardlgespectively:

of the material type, andi) symmetry relations that are valid only

for special types of material defined by groups of symmetric trans- {xe  xemen!

formation (orthotropy, isotropy, etg. ={F(1) —F® U R ,p(m}T
In systems with an energy function, a 3-S vector always appears R R '

in the constitutive equation together with the conjugate 3-G vec- (2.99)

tor. Similarly, 2-S and 2-G vectors also appear together in conju-

gate pairs. When a G-vector such{ag, ey, 'yxy}T is kinematical,

the conjugate S-vectofoy,o,,7y}" is kinetic. For the plate ={U® VD um vm W W T,

problem the roles are reversed: the 3-G vec{dmy,Mx, 2.%)

—2Mxy}T is kinetic, whereas the conjugate 3-S vector _ -

Wy W, — W} T is kinematical. Notice that the first & elements of(2.9a) and (2.90) occur in

o ) ) ) pairs, whose derivatives yield the components (8f5a) and
Constitutive Equations for Two-Dimensional Problems. In  (2.50), respectively. The derivatives of the lastelements of

the literature of the various subjects, different constitutive equep ga) and(2.9) yield the 2-S and 2-G vectors, respectively. Join-

tions involving the G-vectors and S-vectors have been widejig Eqs. (2.98) and (2.9%), one obtains a vector functiog of

used. The S-vectors may be expressed as linear functions of #i@ension 4n-+ 2n:

G-vectors through a matrix of constitutive consta@tsgthe stiff- T

ness matrix in elasticily Conversely, the G-vectors are expressed X={X1, -+ Xem+n Xemen+1s - - Xamizn) - (2.10)

in terms of the S-vectors using the inverse matix®. Mixed

formulations have also been developed where a combination o

S-vectors and G-vectors is related to their conjugate G-vectors x=f(z,n)& z=x+py, (2.11)

and S-vectors. Each formulation may have particular advantaﬁﬁ

{Xomens1s - - vX4m+2n}T

Yy

Figenrelation. We seek solutiong of the following form

- . ) . ere§ is a complex constant vector, afids a complex scalar
compared to other formulations in certain special types of prob-

. > Iy . ~function in which the complex parametgrmay occur both im-
lems. But the adoption of a particular form of constitutive relat'OBIicitl throuah z=x-+ v and explicitly as the second argument
in the literature is often a matter of convention, and is not alwa: y 9 ry plctty 9 '

based on compelling mathematical reason. Since - F=—®Df =—FQ=euf ,, the firstm odd-
However, if one undertakes fundamental studies aiming at tRdmpPered components gfmay be expressed in terms of the first

general representation of the solutions of diverse classes of mafs€ven-numbered components, i.e.,

rials, Green's functions of various domains subjected to point E2-D= _ @) (=1, m). (2.12)

loads and dislocations, as well as a thorough characterization of . o .

the mathematical structure of the solution space, then a suitafidbstitution of the spatial derivatives ¢2.9a) and (2.%) into

choice of the formalism dictated by the structure of the inherefds.(2.5 and(2.6) gives

equations may have decisive advantage over other choices, as §=g &2 (2.1%)
pointed out in recent works on two-dimensional elasticity, unsym- 2 '
metric laminated plates, and piezoelectricity by this author t(j>:to§(2m+”f,z. (2.1%)
[45,7,8,14-1F (2m+n+2i—1)

In these theories of two-dimensional continuum, all 3-G and (i) _ Ly (2.13)
2-G vectors are expressed through a symmetric constitutive matrix 9% gmEn+2) 1z '
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h(i):hog(4m+n+i)f’27 (2.13)
where

so={—n%-1u}", (2.148)
to={u,—1}", (2.1%)
ho={1.u}", (2.14%)

1 0
9= 0 nu|. (2.14d)

mo 1

Substituting Eqs(2.13 and(2.14) into (2.7a) and (2.7b), one
obtains

s=f,W(u)n, (2.1%)
g=f.0(n)é (2.1%)
where
7={é&.64, .. Eamibomets - Eamen) s (2.168)
& ={min+1 - Eamian}’s (2.1&)

i.e., & is the lower half of¢, whereasyn is obtained by deleting
the firstm odd elements from the upper half &fHenceé, and»
have the dimensionsn2+n and m+n, respectivelyW(u) is a
block-diagonal matrix formed byn identical blocks of X1 ma-
trix s and n identical blocks of X1 matrix ty, and ®@(u) is a
block-diagonal matrix formed byn identical blocks of X2 ma-
trix go andn identical blocks of X1 matrixhy. That is,

W 3m 2n)x (m+n) ={{S)m {to)n)>
®(3m+2n)><(2m+n) E<<go>m v<h0>n>l

(2.17)
(2.17%)

where the notation(s)),, stands for the block diagonal matrix

containingm identical diagonal blocks of the submatig, and
(®y, ... Py) indicates a block-diagonal matrix composedNof
diagonal blockspb,, ... @ . The subscripts o® andW indicate
the dimensions of the two matrices.

Sincet, is orthogonal tohy, ands, is orthogonal to both col-
umns ofgy, it follows that each column oW is orthogonal to all
columns of®. Consequently,

v'e=0, O'W¥=0. (2.18)
Substituting Egs(2.15) and(2.1%) into (2.7), one obtains
O(p)é =[o]W(u)n. (2.19)

Premultiplication of(2.19 by @(u)[®] ! and W(u)T yield,
respectivelyf after using Eq(2.18)],

O(w) (@] "O(1) £ =0, (2.20)
M(u)n=0, (2.21)

where
M(u)=W(w) [@]W(u) (2.22)

is a symmetric matrix becau$®] is symmetricM (u) is of cen-

tral importance in the present theory, and it will be called the

eigenmatrix Since M (w) is a function, it is different from, but

Then

[@1] [@i2]
(@127 [@22]
where [@,4] is a 3mx3m matrix with m* submatricesC;, (1

<i,p=m), [@y] is a 2x2n matrix with n? submatrices
Djq (1=j,q=m), and [wy,] is @ 3mX2n matrix with mn

[@]=

, (2.24)

submatricesE;; . The eigenmatrixM(w) is separated into four
submatrices
ME(w)  MEBI()
M = , 2.25
W= MBIy M) (2.25)

whereMM](x) is anmxm submatrix whose element in thith
row andpth column is

Mgl () ={=u? —1u}Cipf{—p? -1} (1<i,p=m).

(2.269)
M[2I(w) is annx n submatrix with the elements
MG () ={p, —1Dje{m,— 1}T  (1<j,q=<n), (2.260)

and MBl(x) has the dimensiomxn and has elements of the
form

M () ={—u? —LulEg{n,—1}7  (1<i=mi<q=<n).
(2.260)

Notice that the elements &1, M3l andM!?! are polynomials

in u of degrees 4, 3 and 2, respectively, and these elements have

forms identical to the polynomialk,(u), 15(n) andl,(w), re-
spectively, in Lekhnitskii’'s work in plane anisotropic elasticity.

3 Eigenvalues and Eigensolutions

Equation(2.19 has a nontrivial solution for if and only if x
is a root of the characteristic equation

8(u)=IM(u)|=0. 3.1

It is clear from Eqs(2.26a)—(2.26c) that S(u) is a polynomial of
degree 4n+2n. Let J;(x) be the block-diagonal matrix of di-
mension (2n+n)X(m+n), formed by m identical diagonal
blocks of the matrix—t, followed by the block ,:

Ji()=(~to)mIn)- 3.2

Let f, denote the X3 matrix having the first and second rows
{1,0,0 and{—x,0,1}, and letJy(x) denote the following block
diagonal matrix of dimension (B+n) X (3m+2n):

Jo =((fo)m ([ 1,01}n) 3.3)
Then it is easily verified that
Jo(m)O(w)=lomin- (3.4)
Define
Jo(p)=Jo(p)[@]W (1), (3.58)
J
aw={ 3] @)

related to, theonstantmatrix of the same name usually found inPremultiplying Eq.(3.5a) by ®(u), one obtains, after some alge-

the Stroh theory of plane elasticity. The relation betwaéfuw)
and the constitutive matrikm ] may be clarified by writing

g(i):21spsm Cips(p)'i_Elsqsn Eiqt(Q) (i=1,...m,
(2.23)

h(j)zzlspsm E1Tp§p)+21<q<n qut(q) (] =1,... ,n).
(2.2%)

Journal of Applied Mechanics

braic manipulation,

O(u) () =[@]W (1) + Ko, (3.6)

where Ky is a (3m+2n)X(m+n) matrix obtained from the
eigenmatrixM (u) by inserting zero row vectors in the row posi-
tions 3—2,3(j=1,...m) and 3n+2k—1(k=1,...n).
Hence, if is a solution of Eq(2.21), thenK,7»=0, so that Eq.
(3.6) yields

O(u) () p=[@]W (1) 7. 3.7)
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Premultiplying Eq.(2.19 by Jo(x), and using the last equation eigensolutions give the two-dimensional general solution of the
and Eqs(3.4) and(3.5a), one has the following expression for thematerial. In the contrary case where the characteristic equation has

lower half of the vectoi: repeated roots, the number of independent zeroth-order eigenvec-
_ - _ tors associated with a repeated root may or may not be equal to
§.=Js(W[@]W(p) n=Is(1) 7. B8)  the multiplicity of the root, so that higher-order eigensolutions

On the other hand, Eqé2.12 and(3.2) give the upper half of: may be required to make up for the deficiency. Such cases are
called degenerate of orddrif the number of higher-order eigen-

& ={&, - ament =D, (3.8)  solutions needed to supplement the zeroth-order eigensolutions is
The last two equations may be combined into one single expré’s-'n a.degenerate case, the sqlutlon space has a more general and
sion, according td3.50): compllcateq type of mathemancal structure. The various _degener-
ate cases, including the important case of isotropic materials, may
E=I( ) 1. (3.9) be treated in a manner similar tb9,7,14 for the various subjects

of plane anisotropic elasticity, piezoelectricity and laminated an-

If u, is a root of the characteristic equati@8.1), then Eq. isotropic plates

(2.18 with = u, has a nontrivial solutionp. The components of

the vector&=J(u,)» satisfy Eq.(2.195. Then, with the vector . ) .

function y and its components defined by E¢8.9—(2.11), their 4 General Solution of the Field Equations

spatial derivative$2.5) and (2.6) satisfy the constitutive relation

(2.8). The inherent equations governing the 3-S, 2-S, 3-G or 2-

vectors are automatically satisfied by virtue of the definitions

these vectors in terms of the potenti&®), y, U, V@ and  J1(p*) Jp(p)=(p* — ) “H{W(u*) "= W(p) @] W(p).

W), Consequently, Eq(2.11) yields the potentials of a two- (4.

dimensional field satisfying all field equations. We shall refer tpye to the symmetry of@], one has

the constant vecto€ and the vector-valued functiog, respec- T T

tively, as azeroth-order eigenvectcand azeroth-order eigenso- J1(p*) o)+ Io(p*) I1(p)

lution associated with the eigenvalye, . (k-1 %\ Tr~ *y_ Tr~ *
The eigenvalues occur in complex conjugate pairs because the (" =) W (p®) [ ]W(u®) = W) To]W(p®)

Orthogonality of Eigenvectors. Equations(3.2), (3.3) and
.5a) imply the relation

characteristic equation has real coefficients. Hence there rare 2 + W ()] () —W(w) [D]W(u)}
+n pairs of complex conjugate eigenvalues. Furthermde, _ q
the complex conjugate @, is an eigenvector associated with the = (" =) HM () = M(p)}- (4-2)

conjugate eigenvalugiy. Then, according to Eq(2.11), for |f 4 andu* are distinct eigenvalues, with and %' as the corre-
any complex analytic functiorf(x+ oY, uo), the following sponding solutions of Eq2.22), then, by virtue of Eqg(3.8a) and
expression (3.80), the eigenvectorg=J(u)p and & =J(u*) %' satisfy

X+ X=2 REF(X+ oy, o) €] (310)  [£,8=¢Tl &= T{u(u*) Do) + Io(u*) T Iu()} =0,
4.

yields real-valued potentials for Eq§3.8a) and (3.8), whose

spatial derivatives, as given by Eq2.5 and (2.6), satisfy the where
constitutive relation and all inherent equations including equilib-
rium, compatibility, divD,i+D,j)=0 andcurl (E,i+Ej)=0.

0 |

Il = (2m+n)X(2m+n) 2m+n , (4-4)

Proof of the Complexity of Eigenvalues. We now show that, 2mn Otzmenyx(2men)
if the material has a positive-definite energy density, then the eind the subscripts of the zero matrices indicate their row and
genvalues cannot be real. For suppose thatEd) has a real root column dimensions. Clearly
Mo- ThenM(uo) is a real, singular matrix and Eq.18), with Wi =1
M (u) replaced byM (xo), must have a nontrivial real solution am+2n
(if is a complex solution, then both the real and imaginary partsence any two zeroth-order eigenvectgrmnd&’ associated with
of n are also solutionswhich yields a real eigenvectof distinct eigenvalues are orthogonal in the sense of (B@). In
=J(uo) m becausel(w) is also a real matrix. The choide=x  particular,£ is orthogonal to its complex conjugate vector:
+ uoy givesf ,=1 and the real eigensolutigp= (x+ wgy) & For

this eigensolution, Eqs(2.15 and (2.16) imply that the energy [&8=£1£=0. (4.5)
density vanishes: In the following,[ £, &]=[£, £'] will be called the binary product
(1/2)s"g=(1/12) " O{éxmsnsts - - - Eamsont =0 of the two vectors¢ and &'. Orthogonality of eigenvectors is

- . always defined in the sense of the binary product.
for a nontrivial states with

T Tt 4. 2 5 2 ) Complete Set of Eigenvectors and Eigensolutions.The bi-
ss=np W Wy=(ugtpot1)(&+E+ ..+ 85y nary product as defined for two vectors by the first equality of Eq.
2 2 2 (4.3) may be extended to two matrices of the same row dimension

(ot D(Emiat oo+ &omin) >0. 4m+2n, regardless of their column dimensions. Equatidr®)
The contradiction proves the statement. becomes
In the following, we assume that the energy density function is *_ * _ 0y
positive definite. Then there can be no real eigenvalues. We let (7= W) AW ]=M(p) =M(w), (4.6)

{u}, denote the set of @+n eigenvalues with positive imagi- Differentiation with respect tou gives

nary parts(not necessarily all distingtand let{u}, denote the * 1\ 1 B % g

complex conjugate set. The two sets are joined to form the com- (= w)[I*), 3" () ]=13I(p*), ()] = =M" ().

plete set of 4n+2n eigenvaluegu}. 4.7)
In this paper, we restrict the attention to the case wrare Settingu* =y, the last equation becomes

eigenvalues are distinctin this case, each eigenvalue has a o

(zeroth-order eigenvector, and it will be shown that them4 [I(w), () ]=M"(w). (4.8)

+2n eigenvectors form a linearly independent set to span theThe matrixM (x) and its adjoint matridV(u) satisfy the poly-
(4m+2n)-dimensional vector space. Then the correspondimgmial identity
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M ()W () =W()M ()= ()l s p - (4.9) are obtained by taking spatial derivatives. gt and x, denote,

respectively, the upper and lower halvesyofThen
Differentiation yields P y PP °

Ixi=I{ED @ M _pm 1) (T
M GOW() MW ()= 8 (). (@20) P07 o TP P PPt Ui
— -1
If all eigenvaluesy, are simple roots of the characteristic equa- =[l2m+n 02msnyx2ms+ ) Z[If AIZ b, (4.189)
tion, then each matri# (w,) is of rankm+n— 1. Equation(4.9) _e(D) _ (D) m) _=(m (1) (M T
becomes ‘ Axu=1{Fyy,—Fly, - Fyy —F 8y )
M () W (i) = 0. (4.11) =[lam+n:Ozmsnyxems )2l 1 f 127D, (4.18)
Since the symmetric matri(u,) hasm-+n—1 independent Foa={U% VP, UV W wmT
columns, and4.11) implies that each column & (w,) has van- _ (71
ishing scalar products with all columns Bf(u,), it follows that =[O2m+nyx2m+ny ol 2menlZII Il 277D, (4.1%)
W () has only one independent column, i.e., all columns of f7yXL:{U(yl) ,V(J), N ,U(;“) ,V(g‘) ,W(yl). N ,W(;“)}T

W () are proportional. Then it is clear th&f(w,) must have at
least one nonvanishing diagonal elemqupJ-TW(Mk)pj at the =[02m+nyx2men} L 2menl ZI et JZ7 1D, (4.1%)
jth diagonal position. Hencg, =W (u)p; is a nontrivial vector,

wherep, is thejth column ofl . ,. Furthermore, where f , denotes the derivative df(x+ wy,x) with respect to

the first’argumenzzx+ ©y, evaluated af = u . As the compo-
W () =W(;Lk)pjpjTW(,uk)/Wk, (4.12) nents of two-dimensional tensors or vectors, all variables given by
Eqgs.(4.18) and(4.1&) have direct physical meanings. However,
the variablesv¥) andUY in (4.1%) and (4.1%) are not tensor
components unless they are combined.

Taking the binary product of, with itself, and using Eq44.8)

Equation(4.11) ensures that the nontrivial vectag =W () p;
is a solution of Eq(2.18 with u= u, . This yields an eigenvector
and an eigensolution for each eigenvajuein {u}, :

&= I W (i) pj 5 (4.1%) and(4.10, one has
Xie= T iy i) I W (i) py - (413)  [&.&]=p/W(md[I( 1), I IW (i) py = p] WM’ Wp,
Since the eigenvalues are distinct, all eigenvectors may be ob- _ T / _ N st T\ — S
tained this way. Let P WA Imin = MW T}y = 8" p; Wipy = 8" (i) Wic# 0.
(4.20)
ZL:[§11 e 1§2m+n]1 (4141) . ) A
_ Here 6'(uny) does not vanish becauge, is a simple root of
Z=[Z,,Z,]. (4.140) &w)=0, andW, has been defined as a nonvanishing diagonal

. . . ement ofW ().
The matrixZ contains the complete set of eigenvectors, ChOS&Equationd4.3), (4.14) and(4.18 imply that the binary product

according to Eq(4.13) and arranged in the order of the corre- o ) K : . )
spondingg, in {x}. Z is called thebase matrix The eigenvalues of Z, with itself is a diagonal matrix of the following form:

and the base matrix together determine the two-dimensional gen- ¢ =[z, Zu1=(8 ()W s -+ 18 (ot ) Wams n)-
eral solution of the material: (4.21)
x=Z((fa(x+ pay,ma), - Fomen(X+ pominYssomin) #)C Furthermore, the binary product @, with Z, yields the null

=R 2Z, (f1(X+ 1y, pa), - - .\ matrix in view of Eq.(4.5). Hence
f2m+n(x+M2m+nyu“2m+n)>cl]v (4.1Eﬁ) Q'E[[Z'Z]]:ZT”Z :<<§,(:U’1)le e 15,(ﬂ2m+n)W2m+n>v#>

c, =(Q #). (4.22)

c={—=1. (4.1%) . 2 S

CL Since Detll ])*=Det{l4m:2n]=1, the last equation implies that

Here c, is an arbitrary complex constant vector of dimension 2_ / 2
2m+n. For any matrixe, (o# denotes the block diagonal ma- (DefZ])*=1<=zmsnl &' (1) Wid*#0. (4.23)
trix composed of two complex conjugate diagonal bloekend Hence the base matriX is nonsingular. Its #+2n columns
o. The constant vectar in Eq. (4.15) is redundant since it can form a complete set dhdependenvectors in the complex vector
be absorbed into the arbitrary analytic functidps However, in  space of dimensionm+ 2n.
many important problems, the functioriig differ from one an-
other only by constant multiplicative factors. Then it is convenient
to use the same function form, and combine all multiplicativg . .
factors into an undeterminepd constant veator Intrinsic Tensors and Transformation Rules

It will be shown in the next section that the base ma#Hixs Equationg4.12 and(4.13p) yield the following symmetric ma-
nonsingular, i.e., the eigenvectors Znare linearly independent. trix with the real and imaginary parts, and G, :

Hence Eq(4.15 may be rewritten as ) 1T . )
{8 (Wit ™ &= I ) W (i) I i) 11 8" (i) =Fy+1 Gy,

x=Z|flz*b, (4.16) (5.1)
where From Egs.(4.3), (4.14 and(5.1) one obtains
IflI=ClTlL . #, (4.17) (FHIGIE=0 if k#]; (F+iGII&=&, (5.2)
IFll. =(FaxF ey, pa), - - Famen(XF tomeny s homsn)), so that F+iGy)Il is the projection operator into the one-
(4.1)  dimensional subspace of the eigenvedpr The complex conju-

andb=Zc is a real constant vector in view of Eqel.14) and gate of Eq.(5.1) implies that E,—iGy)l is the projection opera-
(4.1%). HenceZ||f||Z" ! is a real-valued function. tor into the one-dimensional subspace &f. This yields the

With the potentials of the general solution given by Eqgsdecomposition of the identity transformation into orthogonal pro-
(4.1%) and(4.1%), the physical variables of the general solutiofjections:
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, , L=2iBQ;'BT, (5.1%)
|4m+2n221sks2m+n (Fe+iGol +21<ks2m+n (Fe—=iGll. *

(5.3) H=—-2iAQ['AT, (5.1%)
Hence S=—i(2AQ BT l,min), (5.1%)
and Eq.(5.8) gives
2D 1=keomin F=11, (5.4) o
LA=(S +ilomen)B, (5.16)
and .
HB=—(S+ilomin)A. (5.160)
FEQEKKMM Gy. (5.5) In 2-D elasticity, wheren=n=1, L, H and S are 33 matrices
B called Barnett-Lothe tensors, although one of the tensors appeared
is a real symmetric matrix. Then earlier in Stroh’s wor2]. If I is found, then any one of the four
_ submatrices o determines the other three, and hence @lso
z hohz=1, (5.68) There are two ways to obtaili explicitly. One is using Egs.
= (5.1 and (5.9). This yieldsll +iI" as the spectral sum of the
Z(-iQ iQ HZT=T. (5.80)  contributions from all eigenmodes:

Furthermore, the following matrices are the projection operators ) .
into the multi-dimensional subspaces spanned, respectively, by the Il +il'= > 1ekeamen 23 W (i) I 718" (i)

eigenvectors irZ, andZ, : (5.17)

. ) The other way is using Ed5.6b) in terms of the base matrix
1200 +iD) = X 1 ckeomin (PG, (5.7)  and

Q' = (148 (Wi}, .., 148 (omen) Wamen})-
120 =i = X, 1 ckeomin (F—iGQII . (5.7) (5.18)

H has the followi lti d thei | .Equation(5.17) is an intrinsic expression independent of the arbi-
ence one has the following equalities and their complex ConJld’ary scalar multiplicative factors contained in the eigenvectors.

gates . Equations(5.6) and (5.18 are easier to use, and, althou@j1
2l +iDliz =z, , 1/2(1l+iD)liz  =0. andZ, both depend on the choice of eigenvectdigjoes not.
An analytical expression o ! is often needed in the exact
Clearly, expressions of Green’s functions and in the solutions of multi-
iz, =-iz,, FIIZ—L: iZ . (5.8) Material wedge problenj20]. With Q; ! given by Eq.(5.18, the

) ] ) ) ~~ following expressions are obtained from Eg5.6a), (5.6b) and
Hence the matriX'll has—i and +i as eigenvalues of multiplic- (5.9):

ity 2m-+n, and the corresponding eigenvectors are the column of . ) mnot 4 gt
Z, andZ, , respectively, i.e., 27 =(Q Q) Z N =(Q, -1 HZ'ITI. (5.19)

THZ =Z(=ilamsn.ilomen)s (5.9) Rotational Transformation. We define the matrices associ-

. . o ated with two-dimensional rotation
which also follows directly from Eq(5.6b). Postmultiplying Eq.

(5.9 by (@', —Q 1HZ", and using(5.6a) and (5.60), one ob- cosf  sind
— = . , = 5.20
tainsif M=z(-iQ; %, -iQ Hz"=—ill, ie., Q2= _ging cosp|r Qemian=(Qzamin  (5:20)
THTH =~ 1400 - (5.10) Under a coordinate transformatiofx*,y*}"=Q,{x,y}", the

. . _ . eigenvectors and the base matZixchange in the following man-
The real symmetric matrid” has special importance in crackpq,-

problems and in the fundamental solutiqi@een’s functionsof

various regions. II" and the base matrix are each separated into & =Qumsoné, (5.21)
four submatrices of dimension 2+ n) X (2m+n)
T Z* =Qum+2nZ. (5.21)
I‘:[ LS (5.11) The binary product is invariant under the rotation transformation,
S HJ) '
_ 1€ . &1=14 4l (5.22)
B

—, (5.11) and itfollows that®?, =[Z, , Z, ] is rotation invariant. Equations

A A (4.12 implies that
then L .and H are symmetric busS is generally not. Equation F§:Q4m+2anQIm+2na Gy :Q4m+2nGkQIm+2n-
(5.10 yields (5.23)
HL—SS=LH-S"S"=1,.,,,, (5.12) This tensorial transformation rule must also be satisfied'by
LS=—(LS)", SH=-—(SH)". (5.13) Affine Transformation. Consider a nonsingular linear trans-

formation, =: Z, —(Z,)*=Z, 7, in the (2n+n)-dimensional
space spanned by the column vectorsZof, and the conjugate
transformations: Z, —(Z,)*=2Z, 7. One hasZ*=Z{r,7 and

This implies thatLS and SH are skew-symmetric. Equations
(4.20 and(5.11b) give

Q, =ATB+B'A, (5.140) z* l=(71 71z 1 Equation(5.9 yields
ATB+BTA=0. (5.1%) r=z(-ilinz='n -
From Egs.(5.6a) and (5.6b) follow *=z*(—il,iz* N =zZ(m,n{(—il,il}{7 7 HZ U =T,
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i.e., the real symmetric tensdrt is invariant under an arbitrary multi-dimensional vectos may be kinetic(stress field in plane
affine transformation of the base vectors that preserves the cagtasticityy and may also be kinematicéé.g., curvatures in the
plex conjugate relation. This implies, in particular, tiatan be plate bending problem In the first case, discontinuities &)
determined from any set of independent eigenvectors, and they of — g correspond, respectively, to concentrated forces in
practice of normalizing eigenvectofsisually performed in the ey and'y-directions. In the second case, the discontinuities
Stroh formalism of anisotropic elasticjtys superfluous. correspond to dislocations in the inclinations of the deformed
plate surface. All such discontinuities, as well as the others asso-

6 Green's Function of an Infinite Domain ciated with the 2-S vectors, appear as the firsti2n elements of

(Fundamental Singularity Solution) Xo=$dx. For the 3-G vectorg(i)={uf,‘2 ’Vy()i/) 'Ufiy)+vfix)}T' dis-
Consider a solutiony of the infinite two-dimensional domain continuities inU® and V(") imply dislocations in the displace-
that satisfies the requirements: ments of plane elasticity, or in the moment potentials of the plate

(i) sandg vanish at infinity; bending problem, etc. For the 2-G vectol={W{) W)}T, a

_ (i) x has a constant discontinuigy across the negativeaxis, discontinuity inW( corresponds to a dislocation in the antiplane

L.e., in polar coordinates, displacement. All such discontinuities appear as the last-2
[x]=$dx=x(r,m)— x(r,— 7)= X0, (6.1) elements ofy,. The first 2n+n columns of Green's function

#lzw)‘le are the response functions of the infinite plane to the
irst group of elements ofy, i.e., discontinuities irF(), —F()
and ¢), whereas the lastr@+n columns of (2r) ~'G,, are the
x=(2m) 'G..xo. (6.2)  response functions to discontinuitiesid”, V@ andw.

Then the matrix function (2) G, of dimension (4n Since logz]=log[r]+log[cos¢+usin ], Eq. (6.4 may be re-

+2n)x(4m+2n) is called Green's function of the infinite do- Written by using(5.9):

main with a singularity at the origin, and the constant vegipis

where the integral is along a closed path encircling the origin
the counterclockwise sense. We let

called the strength of singularity. By setting G..=log[r]TIl +Tll||log[cosé+ w sind]|Zz"L.  (6.5)

Thus, in polar coordinatess., is separated into functions ofand
f(z) = (2m1) " log[ 2], 63 o P - 15 6P
Eq. (4.16 gives the functiony of Eq. (6.2). Hence Combining Egs(4.18 and (4.19, for the functiony of Egs.
) . (6.2) and(6.4), one has
G.=Z|—ilog[x+puy][Z™* (6.4) o i) ’ -

On the upper and lower sides of the negative real axis, the func® " X<~ (=1 (X+pay)s - oo, =X+ pomenY)) HZ™ X0

tion —ilog[z] has the values—i(log[r]+im) and —i(log[r] (6.62)

—im), respectively, since Ifp]>0. Consequently, both-i log[Z]

and its complex conjugate have the same constant jumacPoss 27Xy =Z((—ipmy [(X+p1y),s - ;= ipomen/ (X

the negative real axis. Hence Green’s functionr21G,. has a 4 w71 6.6

constant discontinuityt 4,42, across any branch cut emanating Ham+n¥)) #)Z " Xo- (6.6)

from the origin. On the positivex-axis, Eq.(6.6a) reduces to the following simple

The 3-S vectorss”)={F() ,FQ),—F()}T contained in the expression by virtue of E¢5.9):

Xox={FSy —Fl - PO =R U VR U VY W wET
=(2ar) "IN xo=(27r) 1l $dy. 6.7)

Thus, the intrinsic matriX™ has the physical significance as thedy the rotation transformation. However, other variables including
influence matrix relating the various types of discontinuities at ti¢, , M, M, g9, 2¢,, and the curvature components with the
singularity (concentrated forces, discontinuities of displacemes@indr-6 subscripts have much more complicated angular depen-

and inclination, eto'to the response a|0ng the positix{axis of dence inVO'Ving trigonometric functions with compIeX arguments.
the physical variables (), —FQ, @, UQ, V) and W)
(mlllegp“e(g %y qu)n} i ol . 7 Green’s Function of the Semi-Infinite Region With

g. (6.7) and the corresponding expressionxof are recas ; ; o
in polar coordinates, then the variables corresponding td@d). Interlor- or Edge Singularities ) ) )
in polar coordinates are the components of the vectorr2? Consider the problem of the half plage=0, with a singularity

% I'll yo, which is related to the right-hand side of E .of strength xy, at an interior point X,y)=(0,h), and with 2m
Qam--2nl'll xo, which 1 '9 ! 4 homogeneous boundary conditions y# 0:

(6.7) by a rotation transformation onlfsee Eq.(5.2) of [21] for

plane anisotropic elasticity and E5.16) of [16] for anisotropic Kx=0, (7.13)
plate theory. This shows that, for Green’s functions of the infinite B
domain in anisotropic elasticity and laminates, the membrane K=[Ky1,lom+n =Kyl (7.1)

forcesNy, N4, the circumferential bending momeMt,, and the whereK , is a diagonalmatrix of dimension n+n whose diag-
radial components of strain and curvatwgandw ,, all have the onal elements are either 0 or 1. ExampleKgffor various fixed,
simple cosd and sind dependence, and their values on any radidtee and mixed boundary conditions of anisotropic plates with
line are related to the corresponding values on the positiaeis bending-stretching coupling are shown[itv].
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By shifting the singularity from the origin to the p?int 0. 8 Particular Cases and Concluding Remarks
Green's function of the infinite domain becomesm)Z “Gop) , A unified formalism is developed for general types of coupled

where two-dimensional problems in linear theories of continua with a
Giom=Z{(— log[x+ w1y — psh], . .., =i l0g[ X+ pomsn(y positive-definite energy density function. The formalism encom-
passes anisotropic thin plate theory with arbitrary bending-

—h)),#z L. (7.2) stretching coupling, two-dimensional anisotropic elasticity and pi-

ezoelectricity, anisotropic piezoelectric plates, and other theories.
In these two-dimensional theories of continua, the physical vari-
ables appear in groups of 3-S vectors and 2-S vectors, and their
conjugate 3-G and 2-G vectors. By expressing the 3-G and 2-G
vectors as functions of the conjugate 3-S and 2-S vediars
ranged in the same ordehrough the constitutive matrp |, one
K(Gly-0)Z= —2 i log[x— ujh]KZ (A ,02m+n)x (2m+n)) obtains an eigenrelation of E¢R.19. This relation leads imme-
diately to Eq.(2.21), M (u) =0, and Eqs(3.2), (3.5 and(3.9) for
] _ the eigenvectors of the materials. If all material eigenvalues are
+E i log[x— uihTKZ (Ocom+ ) x(2m-+n) +Aj) = distinct, as is assumed in the present paper, then a complete set of
eigenvectors may be obtained in this simple manner, and as-
_z i log[X— h][KZ , A; .0, ] sembled as the column vectors of the base matriXhe general
i LB M EmEn) X (2m+n) solution of the theory is then given by E@.15 in terms of a set
of arbitrary analytic functions, each containing a distinct eigen-
; _ 7 A value uy . The physical variables of stress, strain, plate curvatures
+ 2 Hoghx— ][Oz yxcamen) K2 A7) and bending and twisting moments, electric field, electric dis-
(7.3) Placement, etc., are obtained from theandy-derivatives of the
general solutiony for the potentials. In principle, all solutions of

where the summations extend over l<2m-+n, andA; denotes 2.p boundary-value problems for any domain may be obtained by
the diagonal matrix of dimensiom2+ n with all elements vanish determining the appropriate set of analytic functiofig(x

Although Eq.(7.2) has the required singularity at 0, KG g,
does not vanish og=0. One must combiné7.2) with an appro-
priate nonsingular solution so that the combinati®nsatisfies
KG|,—o=0. Clearly,

except theth diagonal element 1. . . © + Y, m) Using various mathematical methods including power
Consider the following nonsingular matrix functiorS;(j  and Laurent series, analytic continuation, the mapping method in
=1,...,2n+n) and their boundary values: complex planes, boundary integral equations and boundary ele-

G, =2((—i log[x+ — @] i log[x+ ment methods, etc. A number of these powerful analytical tools
I 9 ’Ey Kt e GLXT Mom+nY have been meticulously developed in isotropic elasticity and sys-

— wh]), #)(C; ,.Ccylz 4, (7.4) tematically applied to a wide range of problems by Muskhelish-

o ivili and others[22]. They have been extended to anisotropic me-

K(G:|,_)Z=KZ{(—ilog[x— w:h]l #(C: ,C)HIl =i log[x dia with the use of multiple complex variables. The adoption of
(Gily-o) < % _M’ Jamen #)(Cy.Cy) _g[ such methods to the multi-variable coupled continua in the present

—wihl[KZ | C; .0 m+nyx(2m+m]—ilog[x—u;h]  formalism is straightforvv_ard, thoqgh the relat_ively Iafge _size of

the problem would certainly require all analytical derivations be

X[O0zmsnyx(2m+n) KZ L Cj], (7.5) performed by symbolic algebra.

whereC; (j=1,...,an+n) are constant matrices of dimension_When applied to the simple case of two-dimensional aniso-
(2m+n)X(2m+n) to be determined from the boundarytmp'c _elast|C|ty, the unified formalism redL_Jces'to Lekhnitskii's
condition formalism, not to the Eshelby-Stroh formalism in terms of the
stiffness constants. The constitutive mafiéx] reduces exactly to
the 5x5 anisotropic compliance matrixs;;] in the Lekhnitskii
K(G(O,h)+2 Gj) ly=0=0. (7.6)  theory. The in-plane stresses and the anti-plane shearing stresses
form 3-S and 2-S vectors, respectively, and their conjugate 3-G
Substituting Eqs(7.2) and(7.4) into the last equation, one obtainsand 2-G vectors aréu, vy ,u,y+v,X}T and{w, ,w,y}T. The el-

ements of the 2 eigenmatrixM (x) are the three well-known

Ci=T4; (j=1,...,2an+n), (7.7 polynomialsl 4(x), —Is(x) andl,(x). The complete derivation
_ 1T of the Eshelby-Stroh formalism may also be given based on the
T=(KZ,)""KZ,, (7.1) eigenrelation(2.19, as shown by Yin[5]. However, instead of

and Green's function for the half planey0 with a singularity at USiNg EG.(2.21 with a 2<2 matrixM(w), the Eshelby-Stroh for-

(0h) is given by(27) ~1G, where malism uses I_Ec(.2.20) ipvolvinTg Ehgftiﬁnes§ matrix. The dimen-
sion of the eigenmatrid®(u) '[®] "O(u) is 3X3 rather than
G=Z{{—ilog[ X+ w1y— 1], ... ,—ilogl X+ pomsn(y—h)1), 2X2. As a result, analytical expression of the eigenvectors be-

come too complicated to be given explicitly. The complexity of
the stiffness-based formulation relative to the compliance-based
formulation was pointed out by Str¢B]. Moreover, the analytical
) — — 1 difficulty of the Stroh formalism is drastically aggravated in the
—ilog[X+ pom+ny = mih]) #(TA;, TAHIZ = (7.8)  degenerate cases requiring the determination of higher-order
This solution is valid only for the nondegenerate case, includ"fdgenvectoriw]. . . . .
the case when all eigenvalues are distinct. Settirgd in Eq. _For the anisotropic plate theory with bendlng-exte?swn cou-
(7.8), one obtains Green’s function for the half plane subjected RN, one has two 3-S vectors{F ,,F ,,—F )" and
an edge singularity at the origin. {Wyy Wy, —Wy}', and the conjugate 3-G vectors,
We recall that the analytic functiorfg(X+ iy, my) in the gen- {Ux,vy Uy to T and {My, My, =2M, }T={¥, ¥, ¥,
eral solution of Eq(4.15 may depend om, implicitly through +‘P2,X}T, whereW,(x,y) and ¥,(x,y) are the moment poten-
the complex variablex+ uy and explicitly through the second tials. It is a mixed formulation, in contrast to the purely displace-
argument. An example of the general dependence is given by thent formulation of the conventional laminated plate theory in
first line of Eq.(7.9). terms of the three stiffness matricAs B and D. Notice that, in

#)Z 14+ 2 1 momen Z((—i loglx+ may—mihl, ...,
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the present formulation, the orders of the moment variables and ofin contrast to the relatively simple results of the present case
the curvature variables are different from those in the convewith all distinct eigenvalues, the various degenerate cases are ana-
tional laminated pate theory, an,, andw ,, have been replaced lytically more complicated. The main complication arises from
by —2M,, and —w ,,, respectively. The resulting eigenrelationintrinsic coupling of any high-order eigenmode with all lower-
also involves a X2 eigenmatrixM () but all its elements are order eigenmodes that share a common eigenvalue. The situation
quartic functions. The general solutionsaif types of nondegen- may be compared to the intrinsic coupling of the three fracture
erate and degeneranisotropic plates have been determined exmodes in interface fracture problems, which affects the solutions
plicitly [14,15, and so are Green'’s functions for the infinite plateand yields qualitatively different results from the uncoupled case.
a semi-infinite plate with various types of boundary conditiongotropic elastic materials gives one important example of the de-
including but not limited to fixed, free and simple supports, and ajenerate case. Their general solution and Green’s functions for the
infinite plate with an elliptical hole or inclusiofi4,16,14. These various domains cannot be obtained from the analytical solution
explicit results for the degenerate cases would be very difficult & the nondegenerate case by mere substitution of the isotropic
obtain, and could be obtained only in unduly cumbersome expregastic constants for the anisotropic ones. Complete analyses of
sions, if the conventional displacement formulation is used. ThRe various degenerate cases and the resulting general solution and
displacement formulation for unsymmetric laminat8-11] Green's function have been developed in recent papers for the
yields an eigenmatrix of dimension<3. separate subjects of plane elasticity, piezoelectricity and aniso-
In two-dimensional piezoelectricity, the electric displacemenfopic plates[4,5,7,8,16,17,1p The unified formalism of the
and the electric field are 2-S and 2-G vectors that participate in tb%sent Work may be extended to Various degenerate cases accord_

constitutive relation in addition to the stresses and strains. Thig, to the derivative rule, which has been established for the vari-
results in an eigenmatrid () with the dimension 33, contain- oys special theories if7,16,19.

ing elements that are polynomial functionsnof degrees vary-
ing from 2 to 4. There are 14 distinct types of nondegenerate and
degenerate piezoelectric materials, each with a different represen-
tation of the general solution. The results are given explicitly b&
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dynamical loads is important in many applications where no control can be exercised on
Vasundara V. Varadan the applied loads. The only recourse is to make the structure adaptive by the action of

smart actuators that can null or nearly null the resulting deformation. The class of
problems, to which shape control may be applied, is huge and in this paper a theoretical
approach is presented for a special subset of such problems, wherein, suitable actuation
can be applied in order to keep a subdomain of the structure in its nondeformed state
under the action of external dynamical loads. A suitable actuation to achieve this goal is
the complement of the self-stress. An appropriate distribution of the self-stress should
result in an elimination of the motion of the subdomain of the structure. Moreover, we seek
a solution of the problem, which only requires the application of the self-stress in the
subdomains or in a slightly larger domain. This is also a practical approach to such
problems where it would be prohibitively expensive to design and power actuators to
control the entire domain. We choose a linear, thin elastic plate to present the basics of
our methodology. The main part of the paper is devoted to the theoretical foundation of
the method; however, to show its validity, we also present exact results for the simple case
of a circular plate in axisymmetric bendingDOI: 10.1115/1.1839185
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1 Introduction stresses were given by Reissiiéf and Nemeny{5]. Presently,

Shape control of structures is concerned with methods that Wslﬁlf-stresses are discussed in connecpon with m_ncrom_echanlcs of
olids (Mura [6]) and, more recently, in connection with shape

r(_esult in a desired shape by gpplylng a suitable actuation. A d(Q:éo'ntrol and activénoise control of structure$Rao and Sundr7],
sired shape may be a prescribed new shape or may be the nan

deformed shape for a structure that is under the influence of opinathan et al8], Irschik [3). Hence, a unified approach can

ternal disturbances. No matter what the actual desired shape is,t ﬁursneeotlhfcc))é:" members of the general class of self-stress actua-

problem formulation will always result in the question: Given an In the present PafPart ) of this paper we present the theoret-

external disturbance, how does a suitable distribution of the 4&al basics of a new method to control the bending vibrations of a

tu?tlonf rezult in tth(le strl:c{Lur? asaurfrt]‘l(ng th;:;sllred shapet.h subdomain of a thin plate; suitably distributed sources of self-
n a fundamental contribution Haftka an elrfan were the stress are only applied in the subdomain itself. We calculate exact

first to introduce the notion of shape control into the journal IItéolutions in the framework of thin circular plates, which bend into

erature. They noted that disturbances that affect the shape of Hﬁeaxisymmetric surface, and we consider control of arbitrary

structure could be subdivided into two types; one type is transiegl,;,yomains; however, we do not pay any attention to the problem
whereas the other type is associated with fixed deformations @iy, to practically achieve the required distributed control. We
those that vary slowly in time. The f_|rst refers to dynamic sha ly assume the control agency to be any possible type of sources
control while the latter refers to static shape control. Haftka ang Seii-stress. In the forthcoming patPart I, Krommer and

Adelman addressed the problem of static shape control of a 'a'&‘?@radan[g]) of this paper we will especially focus on this latter
spacecraft structure by applying temperature as an actuatmcticm aspect of the problem.
mechanlsm. Irschik and Pllchléﬂ] reported on results. for dy- * we begin the first part of this paper by discussing a special
namic shape control of solids and structures by applied thermghplem of dynamic shape control. Our goal is to eliminate the
expansion strains. Irschild] gave a detailed discussion and reyqtion of a subdomain of a linear elastic plate by applying control
view of both static and dynamic shape control using piezoelectiiy means of self-stress actuation. We apply the actuation only in
eigenstrains as the actuation mechanism. In addition to thermg subdomain we want to control, or in a slightly larger domain.
expansion strains and piezoelectric strains, ot_her actuation me]ﬁ?/hamic shape control of plates has been studied intensively in
ods may be used. However, all of these actuation methods belqRg |iterature; however, elimination of the total motion of the plate
to the general class of what is usually referred to as eigenstrg{fis the desired goal. Nader et 0] and Irschik et al[11] pub-
actuation or self-stress actuation methods. Early reports on sglfhed results for circular plates and rectangular plates with ho-
- mogenous kinematic boundary conditions. In order to be appli-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  cgple to dynamic shape control of subdomains. we have to extend
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- o
CHANICS. Manuscript received by the Applied Mechanics Division, June 11, 2004¥,he method deveIOped by Nader_ et [dJO] and Irschik et a”_::!'l] .
final revision, July 16, 2004. Editor: R. M. McMeeking. Discussion on the papdO the case of nonhomogenous kinematic boundary conditions in a
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appliftst step. Our method for the dynamic shape control of the sub-
Mechanics, Department of Mechanical and Environmental Engineering, Universj im i _ f i ral
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepie m.am is based on t.he free bOdy dlagram of the SUb.domam‘ re
until four months after final publication in the paper itself in the ASMEDBNAL oF  1€8SING the Squoma'n from the rest of the plate requires that we
APPLIED MECHANICS. account for the influence of the rest of the plate by nonhomog-
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ing, p(® denotes linear inertiav, denotes the deflection of the
plate, andm andq stand for the prescribed moment and the pre-
scribed transverse force at the boundary. Details of the notation
used in Eq.(1) can be found in Krommelr14]. The constitutive
relation for the moment tensdd is

M=D:k—M*, @)

where k= —[VVwy+(VVw)T]/2 is the curvature tensor. The
second order self-stress ten$édi denotes a source of self-stress
acting in the elastic background plate. Sources of self-stresses
may be of different nature, like thermal stresses or piezoelectric
stresses; however, self-stresses are not restricted to these latter two
sources; see Mur6]. D is the fourth order bending stiffness
tensor. Equatioril) can be cast into a convolution integral

fﬁgwodA—f (Mdn-n)g?xdc+f [divM%n
A Cy Cw

Fig. 1 Geometry of the plate

+V(M9n-s)- s]wodC
enous boundary conditions. These have to be chosen such that a
solution for the statically admissible stress in the released subdo- _ | A nd YL _ 2 ond
main exists. Therefore, nonhomogenous kinematic boundary con- prZWOdAJr fAM A fc M(Viwo-mdC
ditions enter the formulation in this step. To eliminate the nonho-
mogenous kinematic boundary conditions, we introduce an
additive decomposition of the motion into two parts; one accounts
for the nonhomogenous kinematic boundary conditions, the other
for the external force loading. In order to eliminate both parts afee the Appendix for the derivation. Equati@ is formulated in
the bending motion in the subdomain, we have to releaseti® Laplace domain, characterized by a hat. The supersgript
slightly larger domain of the plate; then we are able to eliminai@enotes a state of the plate due to an arbitrary Ioa,dﬁ’@‘nd with

the influence of the nonhomogenous kinematic boundary conflomogenous initial and boundary conditions as well as with

tions within the additional, so-called transition domain, such th@f=d— . we refer to this problem as the “dummy problemj}
the” n;otlon W'Ith.'n ';]hedsupd(()jmam IS ?XI‘:Ctly E!jlmlnqted ﬁr ccf)n-: P+ p@(swy(t=0)+Wy(t=0)) accounts for nonhomogenous
trolled to result in the desired shape of the subdomain. Therefopgiia| conditions of the original problems is the Laplace vari-

our solution is optimal. Finally, we demonstrate the validity of they,o 'The |ast term represents the work done by the corner forces

mletho;j fOI’r:I_h?l aX|symmeb:r|c ben;jlnlg motion of alth_ln, C;fcv'%f the dummy problem with respect to the deflection of the origi-

P atﬁ' or whict wef are able to ca cul?te exr?ct anr;lytlc SO “t'c;]nﬁal problem in those corners, where the deflection is prescribed.
The motivation for starting to work on this problem was the,o pondary has been split into four parts corresponding to dif-

problem of controlling the shape of an antenna that is confor?ﬂent types of boundary conditionat, and @ are prescribed

to a deformable structure. For the performance of such antenn i for displ t and sl t the bound .
is important to keep the domain of a structure, where the ante pgetons for displacement and normal siope at theé boundary in

is situated, in its nondeformed state. Preliminary results for tﬁla.e o'rlglnal problem. Equatio(8) repr?sents an extensmq of the
antenna problem can be found in Krommer and Varadzi in principle of virtual forces and Maysel's formula to dynamic prob-

which we have not provided the theoretical foundation. Extend&gMS in\k/)olvirag nonhor(??genohj:s initi?l conditions ;;r)d ngonho(;nog-
results will be presented in the second part of this pdiieom- enous boundary conditions. For reference see Zigglgf an

mer and Varadam9]). Other applications belong to the field szlegler and Irsch|I{16]._ The problem with nonhomqgenous kine-
noise reduction in structures; see, for instance, Gopinathan et .t'c boundary Cof‘d'“ons. can be transfor_med into a p_roblem
[8]. In these applications it is often not necessary to control tj¢th homogenous kinematic boundary conditions by splitting the
whole structure, but a significant noise reduction can be achie (gal deflection into two part/o=Wo+Wo, Wherewlo. accounts

by focusing on critical parts of the structure. An example woul r the nonhomogenous kinematic boundary conditions by means
be the funnel of a magnetic resonance imad&|) unit, which

is responsible for the highly annoying noise experienced by pa-
tients (Nader et al[13]).

m

+ f GREAC+ > [Mn-sivo] Y, (3)
Ct1 i wi

Cy: Wo=wp, and C,: Vo n= . 4)

In additionw, has to be an admissible plate deflection. An integral

2 Mathematical Formulation representation for the bending motian is
The equations that govern the small bending motion of a thin
plate (or possibly only a subdomain of a thin pla@re J ﬁg@odA= J f)z\fvgdAwL f M*: idd A— f ’ﬁ\1(V\7vg- n)dc
A: diV(diVM)+pZ=p(0)W0, A A A C
C: [divM-n+V(Mn-s)-s—q]owo=0, (Mn-n—m)(Vswy-n) +j Siddc 5)
=0, 1) Cq
p- see the Appendix for the derivation. In E§) a transformed force
P: [(Mn-s)éwo]p+=0, P, a transformed momeimh, and a transformed transverse force

together with initial conditions fow, andw,. A is the area of the G have been introduced. Definitions are
plate, which is bounded by the cur¥& n ands are the unit

normal vector and the unit tangential vector @f and P is any A D=+ p' % (sWo(t=0) +Wo(t=0)) — p'®s’w,
point of C. Figure 1 shows the geometry of the plate. Further, s
is the second-order moment tengoy|s the transverse force load- +div(divM),

(6)
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ng, Fig. 3 Plate with subdomain to be controlled
Fig. 2 Plate with subdomain
P Wm0 )
Cy: Wo=Wq, C,: Vwgy-n=1y,
Cp: M=M—Mn-n, Cq: q=G4—divM-n—V(Mn-9)-s. Ceup: Wo=0 and VWg-Nng,=0.
ny deflection satisfying the relations of E¢l1) is a proper
Roice forwg, resulting inw=0 insideA,;; however, it has to
be an admissible plate deflection. The required distribution of the
. . 1 . - control by means of self-stress actuation then is obtained from Eg.
M=D:k, K=— E[VVWOJF(VVWo) 1. (7)  (10), where the transformed forge , the transformed momef,

_ _ _ o and the transformed transverse fotpare
Finally, we define the problem of a statically admissible moment ~ . ©) )
tensorMP as Asup: Pz= P+ p"(sWo(t=0)+W(t=0)),

A: div(divMP)+P,=0, A—Agp: Pr= P+ p(sWo(t=0)+Wo(t=0))— p(@s2W,
Cq: divMP-n+V(MPn-s)-s=q, Cp: MPn-n=m, (8)

M is a second-order moment tensor, which is calculated from t
deflectionw, as

+div(divM), (12)
_ o

- Ph.gl = = . 2 & s . c <
Pi: [MPn S]Pr 0 Cn: m=m—Mn-n, Cy: g=q—divM-n—V(Mn-s)-s.
The last term has to be satisfied for all corner poRytswhere the 1hen, the bending motion of the controlled platevig. If the
deflection is not prescribed. The integral representation of&q. Kinematic boundary conditions are homogenous, the problem sim-
can be reformulated by taking care of H8). The relations for Plifies dramatically; Nader et a]10] and Irschik et al[11] pub-
P,, @, andm, as stated in Eq8), are inserted into Eq5) and the iShed results for circular plates and rectangular plates with ho-
Gauss theorem is applied twice. The result is mogenous kinematic boundary conditions.

f pivdA= f [MP+M*]: &4 A, (9) 3 Subdomain Control
A A We study a plate within the domaif,, and with a boundary
Due to the arbitrariness cpfz’ the deflectionvy=wy— W, vanishes defined byC,yy; the kinematic boundary conditions are homog-

identically, if MP+M* =0 is satisfied. Therefore, applying control€N0US. Our scope is to control the bending motion within a
by means of self-stress actuation can be used to eliminate fydomainA of A ; moreover, we apply control only in the
bending motionw, of the plate that is induced by transverséY domairA. We release the subdomain from the rest of the pIa@e
forces. The motionv,, which we like to account to the non-and we account for the effect of the rest of the plate, that is
homogenous kinematic boundary conditions, is not eliminatefiota—A: by @pplying, yet unknown, boundary conditions at the
The required distribution of the self-stress actuation is calculatdgjerfacing curveC. Then we apply the method we have just de-
from Eq. (8). This is a simple task, because without any loss ¢f€/0P€d in the preceding section. But, the boundary conditions
generality the tensoMP can be taken as sphericall®=mP!. ave to ensure a solution of E¢LO). Three possible types of

Hence,MPn-s=mPIn-s=0 and Eq.(8) changes to boundary conditions that are proper are
A AmP+p,=
m P 0, 3 (10)
qu VmP.n=q, C,: mP=m. Controffed domain

Depending on the boundary conditions, the solution to(EQ). is
either unique, not unique, or it does not exist. The nonuniquenes
is not a problem, but the nonexistence is.

A crucial point for realizing control of a subdomain of the plate
is the choice ofw,, which, besides being an admissible plate
deflection, only has to satisfy the nonhomogenous kinematic
boundary conditions. The deflection of the controlled plate will
exactly coincide with this latter deflectiom,. We therefore con-
sider the following procedure. We chose a subdordgjp, of the
plate, bounded b¥,,; see Fig. 2. WithinA,, we take the de-
flectionw, to be zerow, at least has to satisfy Fig. 4 Clamped circular plate
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Fig. 5 Deflection of the clamped plate; w=2#100 s™*

WO:W01 Mn-n=m - A: Amp+f)z=0
C: { divM-n+V(Mn-s)-s=q, Ywy-n=y (13)
Wo=Wg, VWy-N=4 mP=m

As one can see, each of the three types of boundary conditions has C: | Vm®-n=q . .

at least one nonhomogenous kinematic boundary condition that no boundary conditions to be satisfied,

has to be satisfied. Therefore, we have to apply the methodology

that we have developed in the preceding section. We introduce thieerep, andm, q have already been defined in E(@) If MP
additive separation of the deflectiov,=Wy+W, within A. Then +M* =0 is satisfied withinA, the deflectlorw0 Wo— W, van-
the statically admissible moment tenddP=mP| has to satisfy ishes. Again the crucial point is the choicevaf. For that sake we

' (14)

}—e— Controlled —8— Controlled; tailored deflection —A— Controlled; tailored self - moment ‘
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Fig. 6 Self-moment of the clamped plate; @=27100 s™*
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Fig. 7 (a) Deflection and (b) self-moment of the clamped plate; ~w=2#500 s™*

use a subdomailg,, of the subdomairA; within Ag,, we con- for the influence of the remaininguncontrolled portion of the

siderw,=0. Figure 3 shows a sketch of the plate. Thereforg, plate. To calculate these latter unknowns, the whole dynamic
has to satisfy problem has to be solved. In the next section we present solutions
for the case of axisymmetric bending of clamped circular plates; a

Asup: Wo=0, case for which we are able to calculate exact analytical solutions.
Wo=Wq o

C: { VWo-n=y¢ N (15) _
Wo=Wg, Vo N=¢ 4 |llustrative Example

Ceun: Wo=0, VWo- Ng=0. 4.1 Clamped Circular Plate in Axisymmetric Bending.

o - We study a clamped circular plate with radii,;; the initial
However, note thatv,, , m, andqg are not known, but account conditions are homogenous and the material parameters are iso-
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Fig. 8 (a) Deflection and (b) self-moment of the clamped plate; w=271000 s~*

tropic. A space-wise constant forgg(r,¢,t)=pg(t) is applied. r<Rgp: Wo=0,

Indeed, this is not the general case; we should apply a single ring . ) 4 5 8 10

load at an arbitrary location, for instancp,(r,e,t)=38(r RsusSIT<R: Wo=C;+Cporo+Car™+Cyr°+Cor®+Cer ™, (16)
—&)po(t), and calculate the Green’s function. However, in this MW oWy —

paper we are interested in presenting a theoretical foundation of r=Rg,,: Wy=0, — =0, r=R: Wy=W,, —— =

the method, and to show the validity in a simple example prob- or or

lem. The domain to be controlled has radRg,. We apply con-  After adjusting the series of E16) to the boundary conditions,

trol only within r<R, with Ry;<~R<Ry. Figure 4 shows the two unknowns remain to be calculated. We shall use these to
circular plate. Atr =R we considemw,=w, anddw,/Jdr =. W, ensure the deflection be admissible. The next step is to calculate
is calculated from the statically admissible moment tensor fe£R from Eq. (14).
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Fig. 9 Alternative domains to be controlled;
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(a) RsRsub

7

No boundary condition has to be satisfied by the solution of Eq.
(17); therefore, the solution is not unique. One constant shall re-

main in the solution foomP. The transformed force loading is
obtained from the definitions of E@12).

rSRSUb: ’50: Po (18)

Raus<r<R: Po=po—p PWo—DAAW,.

The solution to Eq(17) can be calculated in the two domains
separately; the continuity of the solution and its directional deriva-

0=r=Ry:

Iwo(r,t) 2 BPwy(r,t) 1 Pwy(r,t) 1 aw(r,t
b ol )+_ ol )+_ ol )+_ o(r,t)

art r ord r2  or? ré or
+p g (1, 1)
b 1 gm*(r,t) 9°m*(r,t)
=Po() =+ ——; P
(20)
W
r=R[m: WOZO, W:O

The time variation of the force loadingy(t) may be considered
general. However, by considering the force loading is harmonic,
we may find the solution for an arbitrary time variation by means
of the Fourier integral; this argumentation is taken from Graff
[17]. Therefore, we proceed with studying harmonic loading
Po(t) =Poe'®!; w is the driving frequency. The response may be
written asw(r,t)=W(r)e'“t andwq(r,t)=W(r)e'“!. Inserting

Eqg. (17) into Eqg. (20) results in the following boundary value
problem in the frequency range.

FW(r) 2 °W(r) 1 °W(r) 1 dW(r)
+ = +— +—
art ars 2 o2 s or

r r

—pOPw?W(r)0<r<Rgy, =0,

. FPWo(r) 2 BWo(r)
<r<R: =-pOPw?W,+ -
Ryssr=R pV'Pw Wy+D pr R
1 32Wo(r) L1 a\ivo(r)}
2 2 3 ar !
r ar r (21)
R<r<Ry: =Py,
W
r=Ry: W=0, 7:0

Thereby, we have taken care of E¢$8) and (19). Solving Eq.

(21) separately in the three domains adds ten additional un-
knowns. These can be eliminated by adjusting the solution to the
eight continuity conditions and to the two boundary conditions.

Three unknowns still have to be calculated. The solution of Eq.
(21), when evaluated at=R, is exactly the unknown deflection

at this location. Also, the directional derivative of the solution at

r=R is the unknown slope. Hence,

W(r

R)eiwt:W:V_v eiwt iN(r:R)eiwt:_:q_,eiwt
0=Woe™, —- ¥ :

(22)

tive are required to be satisfied. If the self-stress moment tensor

M* is taken as

M* = —MP=—mPI, (19)

then the motion for <R, vanishesw,=0; for Ry ,<r<R the
motion iswy, as it has been specified in the series of Bd).
However, the solution fom* = —mP contains five unknownsy,
and ¢, two constants from the power series of Ef6), and one
constant, because the solution of ELj) is not unique. We elimi-
nate the two constants in the power series by ensuring that

The remaining unknown reflects the non-uniqueness of the stati-
cally admissible moment. We use this latter unknown to tailor the
deflection of the controlled plate in a desired manner.

4.2 Numerical Results. For a numerical simulation we con-
sider a typical plate, with the following stiffness parameters, iner-
tia parameter, geometry, and loading:

D=162.45 Nm, p'©=8.1 kgnr?, Py=100 Nni?, 23)
Ro=0.2 m, R=0.04 m, Ry,;,=0.03 m.

The first three natural frequencies of this plate fre 182.0 Hz,
he-708.7 Hz, andf,=1588Hz. We consider different driving

deflection we want the controlled plate to perform is an admissibieequenciesw =27 = 27(100,500,1000) 8!. The deflection of

plate deflection. To calculater, and ¢ we solve the dynamic

the platewW(r) for 27100 s ! is presented in Fig. 5. The uncon-

problem for the whole plate. The remaining constant we keep asralled deflection is presented together with three types of con-
parameter to tailor the deflection of the controlled plate. The dyrolled deflection. In the first casgControlled”) the remaining

namic problem to be solved is
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Fig. 10 (a) Deflection and (b) self-moment of the clamped plate; ~w=27100 s~*

used the constant to make the deflectiorr &R zero and for Whether this is also true for different driving frequencies remains
“Controlled; tailored self-moment” we made the self-moment tdo be studied. For that reason we consider driving frequencies
have a horizontal tangent et R. Figure 6 shows the distribution w=27500 s ! andw=271000 $ ! next. Figures 7 and 8 show the

of the self-moment that has to be applied to obtain the deflectiomsults. With respect to the deflection the three methods are more
of Fig. 5. It is obvious that the self-moment for “Controlled;or less identical. However, if we take a look at both the deflection
tailored self-moment” requires the least effort to achieve the dend the self-moment distribution, we may conclude that the
sired goal of eliminating the deflection in the domaisRy,,. method of the tailored self-moment is the most suitable one; the
The idea of enforcing the deflection e+ R to be zero does not deflection is nearly identical for the three methods and the re-
seem to be such a good idea and taking the remaining constangtired control effort is least for the method of the tailored self-
be zero is not preferable to the case of the tailored self-momemtoment. Our solution is exact; therefore, our solution is optimal
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Fig. 11 (a) Deflection and (b) self-moment of the clamped plate; ~w=27500 s™*

with respect to the proposed goal of eliminating the deflection gither within Rg,;=<r <Ry or Ry y,i=r<Rgy,»; see Fig. 9. The
the subdomain. However, the deflection of the uncontrolled ddemains where we apply control aRe<Rg,;;<R;; OFr Ri<Rg1
main is significantly different to the deflection in the case of n&Rg ,<R,. The dimensions of the plate are

control applied. Ideas to overcome this possibly undesirable be-

havior have been developed in Krommer and Varaddtj and Ro=0.2 m, R=0.16 m, Ry,=0.17 m,

will also be discussed in Part Il of this pap@rommer and (24)

Varadan[9]). Ry =0.075 m, Ryyp;=0.085 m, Ryp=0.115 m,
4.2.1 Control of Alternative SubdomainsFinally, our inter-

est is to control different domains of the circular plate. Those are R,=0.125 m.
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Fig. 12 (a) Deflection and (b) self-moment of the clamped plate;  «=2#1000 s~*

Without going into detail, we would like to mention that theResults for the three different domains we are controlling are
method we used in the first example is applied in a straightfashown. “Domain 1” refers to the previous example, “Domain 2”
ward manner. For the domain we want to control, wevggt 0, is the domain next to the clamped boundary of the plate, and
and for the transition domain, where we apply control, but whictDomain 3” is the interior domain. Figure 1@) shows the de-
we do not control, we assumg, in the form of a series similar to flection and the Fig. 1®) shows the self-moment that has to be
the one of Eq(16). Furthermore, we shall only use that methodapplied to achieve the corresponding deflection. Again, our
for which the self-moment has a horizontal tangent at those loaaethod results in an exact elimination of the deflection; the solu-
tions, where we release the part we apply control to from the ra&in is optimal. Finally, Figs. 11 and 12 show the results for
of the plate. In Fig. 10 the results far=27100 s * are presented. w=27500 s * and w=271000 s*.
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5 Conclusions

In the present paper we have presented a solution for the dy-
namic shape control of subdomains of linear elastic plates by ap-
plying self-stresses, which act in the linear elastic background
plate. The solution is exact; hence, it represents an optimal solu-
tion to the following problem: How do we distribute a source of
self-stress in the subdomain in order to eliminate the motion of the
subdomain? It was our intention to present the theoretical founda-
tion of the method in the present paper. For that reason we
avoided a longer discussion of its possible practical applicationshe last term accounts for all poink of C that are located at a
however, there is a number of applications we have in mind. Werner. We use the partial differential equation, which governs the

have mentioned a few in the introduction section and we Wiﬂending motion, to reformulate the term [ [div(divM)Wd
discuss them in more detail in the second part of the paper. div(dide)W ],dA For the two loading Acases we r;)ave
_ v oJdA. A

div(div M) + p,= p@(s?2Wy—swy(0) —Wy(0)) and div(divMY)
Acknowledgment +pd=p@s2Wg, because the initial conditions in the dummy case
Support for M. Krommer from the MAX-KADE Foundation € homogenous. The result is
and the Austrian Academy of Sciences is gratefully acknowl-

edged. Support for V. V. Varadan from the National Science Foun-
dation is gratefully acknowledged.

fJ [Mn- (VWS- 5)s— M- (V- 5)s]dC
C
:f [V(Mn-s)- Skd— V(M9n-s) - sivo]dC
C

— > [Mn-sivd—MCn-sivg] ™. (AS)
I i

- f [div(div M)wg — div(div M?)%o]dA
A

= L[(ﬁ:+p<°>(sw°(0)+wo<0)))v%8—ﬁ;’wo]dA

Appendix
The constitutive relationgin the Laplace domajnfor the two
loading casesoriginal and dummyare _ f p s wd— pOsivdivg |dA. (46)
M=D:k—M*, MI=D:i&. (A1) 4 ~

We contract the first relation with the curvature tensor of t ; ;

; ; . e insert Eqs(A3), (Ad), (A5), and(A6) into Eq. (A2).

dummy loading case and we contract the second relation with the ! As(A3), (A4), (AS) (A8) i a.(A2)

curvature tensor of the original loading case. The results are sulp o ) i ade .

tracted and integrated with respect to the plate area. [(P,+p P (sWp(0) +Wq(0)))Wo— pzwo]dA+f [(divM:n
A c

fA[M:k"—Md:k]dA: - fAM*:i«ddA (A2) +V(Mn-s)- Wi (div M%n+ V(M%) - )\W,]dC
The moment tensor is symmetric and the curvature tensor repre- :f [I\A/In~(V\7vd‘ n)n—Mdn- (VWe- n)n]dC+E [Mn.s;‘vd
sents the symmetric part of the non-symmetric tensdtVwy. c 0 i 0
Hence, we have
~ ~ P ~oa
Sy S, N —M%n-siy, ';jlvl*:xddA A7
J[M:Kd—Md:K]dA=—f[M:VVWS—Md:VVWO]dA. oe: ™ |, (47
A A

(A3) Next, we introduce the transformed transverse fopge=p,
+pO(swy(t=0)+Wy(t=0)), which has already been intro-
duced in the main part of the paper. Furthermore, by taking into
account the boundary conditions in the original problem and that
the boundary conditions in the dummy loading case are homog-
enous, we can reformulate the boundary integrals in(Ed). as

We reformulate Eq(A3) by using the Gauss theorem twice.

- J [M:VVWI—M%:VVio]dA
A

= ivM - VW= div M9 V- TdA R R R R
L[d'v Vo= divM™-Vwo]d J'[(divM~n+V(Mn~s)-s)wg—(divMd-n
C

fJC[MnV\?vg*Mdn'VVAVo]dC V(NI 9] dC

=—f [div(div M)W2— div(div M%) ig]dA =f éWSdC—f (divM%n+V(Mn-s)- 9w,dC,
A c Cu

q

+f[div|\7|-m7vg—div|\7|d-n\7v0]dc f[Mn.(vwg.n)n—l\?ldn.(v\ivo.n)n]dc
C C

—f [Mn- (V&g nn—M9- (V- n)n]dC =f rﬁ(VWg-n)dC—f (M%n-nydcC,

c Cm c,

—L[Mn.(vwg-s)s—n\hdw(v\ivo-s)s]dc (A%) x> [Mn.s;\,g_,\hdn.s;vo]zi
I i

Note the decomposition of the displacement gradient into the nor-

mal and tangential direction. This step has been performed in
order to proceed with
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The last term takes into account that, if the deflection at a corner - . ~ g2 e
_ _ ~ P S pZWOdA= powodA+ | p@s?2WiwodA+ | MY kdAz
is not prescribed, then the corner for(tM;n-s]W and[M n-s]P_+ A A A
have to vanish. If the deflection is prescribed at the corner, then A e b

=0, butw, may be nontrivial; such points are denotedPys. + E [M%-sw,] ot
We insert the relations of EqA8) into Eg. (A7), such that we ! wi
finally end up with the integral representation that has been stated A R
in Eq. (3). —j (divM%n+V(Mn-s)-5)wodC

CW

2~ad_ ada 2nd ~ 2
fA[pzWo*pzWo]dA+f qwodC +J (M%-n)gdC. (A12)
C

Cq

e ~ - RQue to symmetry, the relatiof,M®: kdA= [ \M:&?dA, in which
R (divM®n+V(M%n-s)- swod C M=D:x has been introduced, holds. It remains to reformulate the
term fAI\7I:i<ddA. For that sake we insert the definition of the
dummy curvature tensor, apply the Gauss theorem twice, and keep
:f rﬁ(V\ivg-n)dC—f I\?Idn-nz?xdc in mind that kinematic boundary conditions in the dummy loading
c c case are homogenous

m v

. .. . J'|\°/|:i<ddA:—J M: EVV\ivdHVVvAvd)T}dA
—fM*:,}ddAl/}J;dc—fM*:icddA A a 127770 0
A

A
- f M:VVRddA
~ P A
=2 [Mn-sio] (A9)
i wi N o ~
—J div(divM)wgdA—f Mn-n(VW3-nydC
A C

m

In order the derive the integral representation of @&g.we utilize

the decomposition of the transverse displacemept: Wy+ Wy,

as well as the governing partial differential equation for the mo-
tion in the dummy loading case, div(dW®)+ pS=p@s2Wg. We
find

+ f (divM-n+V(Mn-s) - 9WdC
C,

-3 (M9l (AL3)

f pIWd A= f piw,dA+ f piw,dA To obtain the integral representation of E6) and the definitions
A A A of Eg. (6) we insert Eq.(A13) into Eq. (A12) and we insert the
result into Eq.(A9).
:f ﬁgWOdA+fp<o)sz\;\\/gW0dA R
A A f 5= pOs?Wo+div(div M) widA
A

z

- f div(div M%) WodA. (A10) 3
A
m—Mnn (VWwg-m)dC

If we apply the Gauss theorem twice to the last term on the righ B Lm —_—
hand side of Eq(A10), then we end up with 2

m

_f diV(diVl\,}ld)\’\I}VOdA=f Md:"’l;dA_f (divl\?ld'n +fc (;\—diVM'n'FV(Mn-s).S v?/gdc
A A C q

q4

+V(M%-s) - s)Wod C+ J (M9n-n)

c ; f NI*: A = f peodasS | (ns) (So-v0)|
A A i ——
< ~ < - 0 +
X(VWo-n)dC+ >, [Mn-sivg]",. Pui
i i
(A11) —E [(Mn-s)#¢]. Pt (AL4)

Note that we considered the definition of the curvature tensor and
that we decomposed the gradient of the transverse displace

into its normal and tangential direction. The last term in @d.1) he last but one term vanishes, because in every corner where the

P deflection is prescribed the I’ela'[I(Wb Wo=W, must be satis-
becomess[M*n-sivg] Pt (see the argumentation abowend the  fieq. The last term vanishes, W, is an admissible plate deflec-

boundary |ntegra|s S|mp||fy if we account for the boundary Corﬂon By admissible we mean that we are able to find an associated
ditions. In the dummy loading case the dynamic ones are homdignding  problem for the plate, which satisfies the
enous_ and in the original loading case we hayg: Wo Wy and Non- homogenous kinematical boundary conditions of the orlglnal

Cy: Vwo n= l,/f Hence, problem and for WhIChNO is a solution. If so, Mn S) i)\No]P+
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Analysis of Doubly Clamped
Nanotube Devices in the Finite
n.rugne’ | Deformation Regime

C. H. Ke In this paper, a nonlinear theory applicable to the design of nanotube based devices is
H.D. Espinosaz presented. Th_e role of finite kinematics f_or a doubly clamped nar_10tube_ _device i_s investi-
gated. In particular, we analyze the continuous deformation and instability (pull in) of a
clamped-clamped nanotube suspended over an electrode from which a potential differ-
Department of Mechanical Engineering, ential i_s imposed. The transformation of an applied volta_ge into_a nano_mechanical _de-
Northwestern University, fqrmaglon indeed represents a key step toward the de.5|gr.1 of innovative nanodevices.
Evanston, 1L 60208-3111 Likewise, accurate prediction of pull-in/pull-out voltages is highly needed. We show that
an energy-based method can be conveniently used to predict the structural behavior and
instability corresponding to the ON/OFF states of the device at the so-called pull-in
voltage. The analysis reveals that finite kinematics effects can result in a significant
increase of the pull-in voltage. This increase results from a ropelike behavior of the
nanotube as a consequence of the stretching imposed by the actuation.
[DOI: 10.1115/1.1875452
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1 Introduction of several nanotubes—and nanowires—having differenltly shaped
cross sections possess an extremely high stiffne§g¥oung’s

. i e . X ; modulus of the order of 1 TPE7,8]) and flexibility (strain at
interest in the scientific community, since the discovery of nano=sile failure of the order of 3098]). As a consequence of this

tgbes[l]. '_I'he f'rSt. really true _carbon-nanotube-bas_ed NEMS d?érge flexibility, the effect of the large displacements, usually ne-
vice, fully integrating electronic control and mechanical respons

Sl’ected in analytical calculations, has to be considered in the
was developed only some months d@d. The authors reported analysis of NEMS.

the construction and successful operation of a fully synthetic spite of the described fast acceleration in developing NEMS
narlolsczill(;:‘ elefﬁromecnan'cﬁ“ dactustor |ncotrpt())rat|ng_ a rm?@k?uctures, key formulas needed in their design are still absent in
metal piate, with a mufti-walled carbon nanotube serving as rfl‘?e literature. The first extensive investigation of the behavior of
key motion-enabling element. Rueckes et (8] investigated @ nq1he-based devices has been recently reppt@d In that

carbon nanotube-based nonvolatile random access memory by flese, “1he differential equation of the elastic line of a nanotube

Nanoelectromechanical systenldEMS) are attracting much

high integration level of the nanoswitches, approachinf 8- tin,ym mechanics, assuming small displacements. The corre-

ments per square centimeter, and an element operation frequeg}ggnding pull-in voltages, at the structural instability, were

in excess of 100 GHz. The viability of the concept was demoRsajyated for different case studies. In addition, the first attempt to
strated by the experimental realization of a reversible bista

) tain an analytical formula for the pull-in voltage of the nano-
nanotube-based bit. If4] the development of nanotweezers wag pe was also proposed, assuming for the nanotuptatlike

reported. The mechanical capabilities of the nanotweezers wegejoformed shape, connected via a lamped stiffness to the ground
demonstrated by grapping and manipulating submicron clustgfigctrode. As emphasized by the same authors, the proposed for-

and nanowires. o _ mula was not able to reproduce accuratetly all their numerical
In this context, the characterization of mechanical and elegsg s

tronic properties of nanotubes has been the subject of intense rey, this paper we present a nonlinear energy-based theory for the
search. Their small size, low density, high stiffness, flexibility, angrediction of the pull-in voltage of doubly clamped nanotubes
strength, as well as excellent electronic properties, suggest {jgher stretching. The equilibrium condition as well as the insta-
nanotubes and nanowires are the most promising nanoscopic gffiry of the nanotube is obtained, respectively, by setting to zero
ments in the implementation of NEMS. For a recent review on thge first and the second derivatives of the free energy of the sys-
mechanics of carbon nanotubes the reader should refer to the a; A comparison between analytically predicted pull-in voltages

per by Qian et al[5], and references therein. The strength ofnq those obtained by numericaliy solving the corresponding gov-
carbon nanotubef6], was found to be of the order of 10-100gning equations is also provided.

GPa. Furthermore, nanotubéss well as nanoropes—composed

- 2 Elastic Line Equation of the Nanotube Under Finite
0on leave from the Department of Structural Engineering, Politecnico di To”“fli(inematics

Torino, Italy.
2To whom correspondence should be addressed. In this section we derive, in the finite deformation regime, the

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY g|gstic lin ion for a nan We f h ntion on
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August 23, 2004; final revision, September 23, 2004. Editor: K. R. M. MeMeekingancer =H from which a differencé/ in the electrostatic potential
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ud cant only for very small gaps, i.e., few nanometeta the dy-
namic regime, the damping and inertia forces must be also added
TFH (e.g., to consider variable applied voltages, thermal vibrations,

free vibrations, and so ¢nAccording to these considerations, the
complete expression of the elastic line equation for a nanotube

l r=H device is
I: ] PW Pw
v — —

L 2
Nanotweezer OPEN E|i oz - E_A (ﬁ_w> dz oz
Nanoswitch OFF Fra (aw)z w2 20 ), \oz (aw)z 82
1+ — 1+ —
Jz Jz
Manotweezer CLOSE _ - ( B (9_W ~ &2_W) s <(9_W)2 1/2 @
OQuvaw T Ap+ | Qelec™ ¥ ot M ot 97 )
whereu andy represent the mass and the damping per unit length
_\-/’_. of the nanotube antis the time. The Pauli force per unit length
Naroewitzh OGN gp is obtained from the repulsive part of the Lennard-Jones poten-
) ) tial [10]. From theQ-factor of the nanotubé¢between 170-500
Fig. 1 Schematics of doubly clamped nanotube based [11)), y=pwo/ Q, Wherewy is its fundamental rotating frequency.

nanoswitches and nanotweezers The term[1+(ow/9z)2]%2 represents the correction for the curva-

ture, that must be considered under large displacements. The term
_ _ _ cos9=(1+(ow/d2)2~Y2 has to be introduced to consider the
The electrostatic and van der Waals energies per unit length Gaanging in the positions of the loads that remain pependicular to

be evaluated by the following relationshif0]: the nanotube axis, as a consequence of the large displacements,
dEqpec meQV2 involving not necessarily small rotations of the cross-section by
= , an angled. For a clamped-clamped nanotube the axial force is
cosh‘l<1 n L) equal toN(w)=EA/ 2L [§(ow/ 52)?dz
R Some interesting results were obtaif&@] by solving numeri-

Roq FingHNg-1)d cally Eq. (3). The more general Ed4) was also solved numeri-
dE,qw T mCen?d?R(r + R)[3R?+ 2(r + R)?] cally [12,13. On the other hand, here we prefer obtaining an
?:g r; 2[(r +R2-Re]? ' analytical solution under simplified hypotheses for the pull-in

"~ it ~lint

voltage, corresponding to the quasistatic collapse of the nanotube,
(1) i.e., assumingy=u=0. Instead of solving Eq4) in an approxi-
mate way, we will obtain the equilibrium and the instability of the

wherezs the axial coordinate of the cantilever nanotug, and Qanosystem by minimizing the free energy and its first derivative.

R=R,, are the inner and outer radius of a multiwalled nanotub
Ng is the number of layers in the substrgtgapheng d is the )
interlayer distance(for graphite d=0.335 nm. In addition,r 3 Small Deformation

=rin is the gap between the nanotutexternal wall and the v consider a clamped-clamped nanotube of letgtfor the
surface layer of the substrat«i wheres tge zitsomlc denS|_ty, that small deflection case of a clamped-clamped nanotube loaded by a
for graphite is equal ton=1.14x10°m™=, and £,=8.85 cgnstant force per unit length, we assume a functitz) satisfy-

X 10712 C?N™tm2 is the vacuum permittivity. ; ” _ (e _
ng the boundary conditions(z=0,L)= =0,L)=0, namely,
The corresponding forces per unit lengfh.. andg,qw can be "9 ) y ltions( )=w'(@ ) 4

H 2 3 4
evaluated, according to E¢L) as WD) ~ 16[<E> _ 2(5) . <E> ]c, )
__ d(dEgedd2) __ d(dE,qw/d2) L L L
Oelec™ —dr v Ovaw =~ -~ dr ’ wherew(z=L/2)=c is here an unknown constant that represents

. . e e displacement of the central point.
Based on continuum mechanics, the quasistatic structural B@ ) . .
havior of the nanotube, can be obtained solving the elastic IineAS a consequence, the elastic energy, assuming small displace-

) ments, as well as the electrostatic and van der Waals energies
equation, namely, stored in the nanotube can be obtained by integration as

d*w W(Rgxl_ Rﬁn) t
El— = Quaw+ | = —=¢ 3 El d?w)\?
dZ4 Qvaw * Qeleo 4 ( ) Eelas(c)zgj (E) dZ, (6&)
wherew(z)=H-r(2) is the nanotube deflectiofi is the nominal 0
gap between nanotube and electrode, Ensl the Young's modu- Ly
lus of the nanotube, with moment of inertia EgiedC) = f Ee'ec’VdeF{r[W(z)]}dz, (6b)
It is important to underline that E¢3) assumes small displace- 0 dz

ments. On the other hand, due to the large flexibility of the nano-
tube, the role of the finite kinemati¢karge displacemenkzould
become relevant. According to these considerations, we hav

We investigate the validity of the form of E¢G) by evaluating
othe associated fundamental frequency and by comparing it with

consider the complete expression for the elastic curvature. In QE@ well-known value for a clamped-clamped nanotube. Equating
dition, it is important to note that large deformations could imply"€ maximum values of the flaSt'C s;raln energy of ©q) and of

for doubly clamped nanotubes, also the stretching of the elemelfi@ kinetic energy(t)=1/2/q(dw/dt) udz, with « mass per unit
Finally, under large deformations, the electrostatic forces, dength of the nanotube, during its free-vibration wit(z,t)
thogonal to the surface of the nanotube, have to be consideretV(z)sinwot, one finds the estimation of the fundamental fre-
with respect to the deformed configuratibme neglect the effect quencywg of the nanotube. The ratio between the estimated fun-
of the finite kinematics on the Lennard-Jones forces per umiamental frequency and the real one is found to be close to 1. We
length, i.e., van der Waals and Pauli forces, which become signifenclude that the form of Ed5) is good for our scope.

446 | Vol. 72, MAY 2005 Transactions of the ASME



The free-energyor total potential energyof the system can be only due to bending but also due to stretching. This represents the

written as predominant effect of the finite kinematics for the doubly clamped
_ nanotube.
W(C) - Eelas{c) - Eele(,(c) - EvdW(C) - EP(C)- (73) The strain due to bending is
Equilibrium and stability are obtained from
dW(c) dw
= =-y—, 14
c -0 (7b) =Y 2 (14
d®W(c) wherey has the origin in the centroid of the cross section, and is
dc? =u. (70) parallel to the direction of the loads. In addition, the mean value

o o of stretching due to the displacemewt noting that &?=dz?
The equilibrium condition is reached when the free-energygy2, is[14]

reaches a minimum valu&g. (7b)). On the other hand, the struc-

tural instability occurs at the so-called pull-in voltage, when the L
second order of the free-energy becomes zEm (7¢)). Accord- _Os-dz 1 dw Zd
ing to [10], the effects of the van der Walls and Pauli forces for 8~ 74 2L dz z.
these boundary conditions is negligible, even for small gaps; 0

hence, we tak‘EVd.W’P%O' . . As a consequence, the elastic energy stored in the nanotube, is
The electrostatic energy per unit length can be approximated as

(15

dEelec meQV? 3 meQV? E L
dz 2R+H-w)\  [2H+R) Eglast= —f f (8¢ + &p)2dAdz, (16)
nl——— | In|l———— 2), )0
R R
* 1 1( W )j : where A=7(R2,—RZ2,) is the cross-section area of the nanotube.
X[ 1+ = . (8 ideri i
E |n<2(H " R))% \H+R (8)  Considering Eq(5), the result is
R 512El 128 ¢?
Employing Eq. (6b), the total electrostatic energy can be ex- Betas= — 73C°\ 1+t 523 ) 17
5L 3003p
pressed as
megVAL where the radius of inertia is defined ad =Ap?. The first term
Eeled) = W corresponds to the bending, whereas the second nonlinear term
| (—) represents the elastic strain energy stored in the beam due to the
R stretching of the nanotube. Note that the fofderivative of the
% 1 % c i energy due to bending is linear, while the one due to stretching is
x| 1+ Ea”<_) ] cubic. _ _
=1 | 2H+R)) |' i H+R Considering the energy as the fundamental quantity to derive a
n R nonlinear correction for the stretching, we have to consider the
© increase in beam stiffness as
where{a;} are constants. Le3(c)=372, WEE%(@)J . 128 2
2R El— {1+ JE (18)
From Egs.(5) and (6a), the total elastic energy of the nanotube P
can be obtained as Therefore, the equilibrium condition gives
512El ,
Eelast= ?FC . (10)
From Eqgs.(7a) and(7b), the equilibrium condition provides g pE— T o
inumaricaly
H+R (2(H+R 1024| c — — gmal
V(e) = —— In< ( ))\/ : ( ) 1) 00 e
L R 5mepS () \H+R ——Firile kinemalics
numranical
The central displacement of the nanotube at puléip can be B0 s _imm;,,“
obtained from N {anahiical
H g
dv(c = &0
J =0, (12) g
dc 20 |
which means the pull-in corresponds to a maximunVirHence, 5
the pull-in voltage can be written as 20 § -
-
_(H+R (2(H+R)) JEI [ F— o N— - -
Ve =k L2 ln( R ) 8_0' 13 o B 10 18 20 25 a0 a8
Vaoltage (valt)

_ 1024 (_Cp_
wherek= 35w5f(cp.)(H+R . . . . o
\ Fig. 2 Comparison between analytical predictions and nu-
4 Finite Kinematics merical results_. Plot of'a_pplit_ed voIt_age versus gap for both
. . o . small deformation and finite kinematics. The gap is measured
To take into account the nonlinear effect arising from finit@etween the axis of the nanotube and the electrode in the

kinematics, we have to evaluate the energy stored in the beam matdle of the span.

Journal of Applied Mechanics MAY 2005, Vol. 72 | 447



Table 1 Comparison between pull-in voltages evaluated numerically and analytically by Egs. (13) and (20) for doubly clamped
nanotube devices, respectively. E=1.0 TPa, R;,;=0. SD refers to small deformation, FK refers to finite kinematics.

Case H[nm] L[nm] R=Rg,{nm] Vp[V] (theo-SD Vp V] (num-SD Vp[V] (theo-FK) Vp[V] (num-FK)
1 100 4000 10 3.20 3.18 9.06 9.54
2 100 3000 10 5.69 5.66 16.14 16.95
3 100 2000 10 12.81 12.73 36.31 38.14
4 150 3000 10 9.45 9.43 38.93 40.92
5 200 3000 10 13.53 13.52 73.50 77.09
6 100 3000 20 19.21 18.74 3157 32.16
7 100 3000 30 38.57 37.72 51.96 50.63
128(c\?\ H+R [2(H+R) sumption of small deformations. Columns seven and eight in
V(e =V(e)/( 1 *30030) /T 2™ TR Table 1 compare analytical and numerical pull-in voltage predic-
p tions under the assumption of finite kinematics. The agreement
128/ ¢c\? c between the analytical predictions and numerical results is satis-
10241 1+ 3003\ 5 H+R factory (with a maximum discrepancy of 5% . .
p ) (19) Note that an oversimplified model, e.g., assuming a capacitance
5meeS (c) of two parallel plates and a concentrated stiffnig€s, can result

in significant errors in the evaluation of the pull-in voltage. The
importance of a more accurate model, that is the aim of this paper,
has been recently emphasized4n where, by assuming a parallel
plate capacitance, a pull-in voltage of 9.4 V was predicted in

Stationary condition, Eq(12), applied toV7X (FK refers to finite
kinematicg, provides the value af at pull in. The pull-in voltage
can then be expressed as

v kH+HR (2(H+R) El contrast to the experimental measurement of 8.5 V.
Vp, =K ?In A (20
: 0 6 Closure
Cy [of
wherek ™= f%(ﬁ)[l+%é f) ] We have presented a theory to analyze nanotube structures,
\ which is particularly suited to the design of NEMS and nanosen-

5 Comparison Between Analytical Prediction and Nu- sors. Comparison with numerical results shows good agreement.
merical Simulations The formulas here reported could represent a considerable step

forward in the understanding and development of nanosensors and
An assessment of the derived analytical formulas is perform®&EMS. Note that the analysis is also applicable to microelectro-

by comparing the results obtained solving numerically the correrechanical systemMEMS).

sponding elastic line equations, for both small deformatmmly With improvements in nanomanipulation and manufacturing of

bending and finite kinematic{bending+stretching The nano- nanodevices we hope experimental measurements will become

tube properties and dimensions used here are Young's modudysilable, which will confirm or identify limitations of the theo-

E=1.0 TPa,Rex=20 Nm,R;=0 nm, andL=3000 nm. The ini- retical predictions here reported.

tial gapH=100 nm is also employed. Note that the theory does

not involve a best fit parameter. The detailed comparison is rACknowledgments
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Formulation

Consider a rigid flat punch, indenting an elastic half-plane as
shown in Fig. 1. From the classical equations of plane-strain elas-
ticity (see, e.g., Barbdr], p. 159 the displacements,v on the
surface of the half-plane are given by

j_E(ZO):_l—yJE(_g)d_g_l—zpr’ @
X T s X-¢ 2u
Bro=it [ RO% L2y g
dx ™ )s X-¢ 2u

wherep,q are the pressure and shear, respectively, transmitted at
the interface(p is positive in compression v is the Poisson’s
ratio, andu is the shear modulus.

We initially consider a frictionless pundlg=0) that is moving
with a velocityUg which is much less than any of the wave speeds
of the elastic body. Hence inertia effects can be neglected and the
steady solution is given in terms of a moving coordinate system

o o . . (x,y) where
Division of Engineering and Applied Sciences, _ _ N
Harvard University, x=x=Uet, y=y, uxy)=ulxyb), vxy) =v(xy,t)
Cambridge, MA 02138 ()
Fellow ASME The velocity of particles in the elastic material is denotedlyy
where
_du_du dx _du
In problems involving the relative sliding to two bodies, the fric- = at T A dt Uu=- Uo&(X.O) (4)

tional force is taken to oppose the direction of the local relative o o N ]
slip velocity. For a rigid flat punch sliding over a half-plane atUnder frictionless sliding conditions, Eq&l) and(4) yield

any speed, it is shown that the velocities of the half-plane particles U=0|x>a,

near the edges of the punch seem to grow without limit in the

same direction as the punch motion. Thus the local relative slip 1-2

velocity changes sign. This phenomenon leads to a paradox in =Up 2 p(x) — + x| —a (5)

friction, in the sense that the assumed direction of sliding used for
Coulomb friction is opposite that of the resulting slip velocity iwherea is the half-width of the indenter.
the region sufficiently close to each of the edges of the punch. ThiFhus the effect of elastic deformation is to produce a velocity
paradox is not restricted to the case of a rigid punch, as it is duender the punch which is a function of positie@nd is in average
to the deformations in the half-plane over which the pressure \&ry small if the mean pressure is, as we generally expect, much
moving. It would therefore occur for any punch shape and elastiess than the elastic modulus. However, as the pressure becomes
constants (including an elastic wedge) for which the applied presingular at the edgeghe speed U near the corners becomes
sure, moving along the free surface of the half-plane, is singulgjreater than |y and, therefore, the local relative slip velocity is in
The paradox is resolved by using a finite strain analysis of thie opposite direction to that of the punch motietence material
kinematics for the rigid punch problem and it is expected thaoints on the half-plane which enter under the leading edge of the
finite strain theory would resolve the paradox for a more generglunch are forced to move forward of the punch. Similarly material
points near the trailing edge have a velocity greater than that of
_— ) o the punch and so, it would seem, never leave from under the
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY punch.
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF AP-

PLIED MECHANICS. Manuscript received by the ASME Applied Mechanics Divi- T_his be_haVior itself _iS_ par_adoxical, bUt_ is of particular concern
sion, September 9, 2002 final revision, October 3, 2003. Editor: R. M. McMeekin@s it persists when sliding is accompanied by Coulomb friction.
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state to the length in the reference staié a material filament
(dX,0) can be given as

dx \? dy)2
SN w2
_ We observe thak > 0.
X Consider the flat rigid indenter as maintained on the phkane
- =Yy (<0) moving at speedly in the +X direction. The material to
be indented and also any apparatus which supports it along some
plane Y=y; (>Yyg) is to be considered translationally invariant

relative to theX coordinate. Then, if a steady state solution exists
to the problem, the displacememtmust have the form

u=u(X-Uqgd,Y) (13

and hence the velocity in thextdirection of material points on
the surface of the body is

Sy "
dt ~ Pdx  O\dx
One of the fundamental laws of friction is that the friction forchhen there is contact with the flat face of the indeniory

opposes the relative slip velocity. Normally, this direction is inz .,ngiand; thereforedy/dX=0. Hence, the stretch ratio defined
ferred a priori, so that if Coulomb’s friction law is assumed tcby (12) redhces to '

hold, we anticipate

Fig. 1 Aflat rigid punch indenting an elastic half-plane

dx
a(x) = fp(x), (6) A= (15
wheref is the coefficient of friction and Eq¢l) and(2) reduce to ) ) ) .
A and thus the velocity of material points along the contact with the
d 1-y)f d 1-2 indentor is
_U(X,O) — ( V) j p(f) f _ ( V) p(X), (7)
dx o ), X=§ 2u du
i Uo(A - 1) (16)
a
3—1:((x, 0= - V)J p)i-f_)d; - (12_ 2V)fp(x)_ (8 This in turn gives the slip velocitg as
- H _ du
Since the punch is flat, we have s=Up= ;7Mo>0 (17
dv _ and a negative value farcan never occur since the stretch ratio
dx(x,O)—O, xe(-aa) © cannot be negative. The paradox happens in regions where the
and hence infinitesimal strain solution predicts compressive strains so large
that \ is predictedimpossibly to be negative. Had we evaluated
a . .
p(OdE  (1-2v)7 it, we would have done so by using
f X-f  2-») fp(x), xe(-aa). (10 du
a Exx = ax =a-1 (18
Using this result to eliminate the integral (#), we obtain
d 1—20)(1 + 12 along the contact zone under the indentor. That means that the
—u(x,O) = _Mp(x), X e (-a,a) (11) strain ey can be no more negative than {dince\ has to be
dx 2u positive), whereas we fail this test when we approach the singu-

The contact pressurp(x) must be positive and'<0.5, so we l&rity at the corner of the indenter.

conclude thatdu/dx is always negative under the pun@xcept
for an incompressible material, in which case it vani$hgiving ] )
a positive value of the particle velocity in Eq. (4) which be- Discussion

comes unbounded in a region near the punch corriéras U This paradox would occur also in elastodynamics. In fact below
>Ug) and hence where the Iopal relative sliding motion is opg,e Rayleigh wave speddg) the solution to any contact problem
posed to that of the punch motion . is the same as the corresponding quasi-static problem with a re-
The paradox would continue to occur in the case of two elasterced modulugwhich goes to zero at), [4]. The elastodynamic
mqtcelrlals, for th?:se c?]mﬁlnr?tlons of punpk& We((jjge af.‘g'mrjd MBlution for a normal point force moving at constant speed over
terial constants for which the pressure induced is sing( the surface of an half-plane becomes resonant at the Rayleigh
durs and Lee[2]; Gdoutos and Theoca_lr|$3]). Note that the wave speedcg) and above that speed a downward force produces
elastic dlsplace_ment_ln an elastic punc_h is constant in the frameg% upward displacemeﬁtHence for elastodynamic problems in-
;zrgtri(\elgcsli(;?r?g\;llcglovg:t; It, and accordingly would not affect thvoIving, for example,.a rigid punch sliding over an eIastogjynamic
’ half-plane, the solution behaves as the static indentation of an
elastic half-plane of reduced modulashich approaches zero at
Finite Strain Kinematics Analysis the Rayleigh wave spegdHowever, it is still true that a compres-
Consider nowX,Y as material coordinates in the referenc&!Ve Strain of magnitude greater than unity is needed to produce
state, andx,y the spatial coordinates of the same points in thi® Paradoxalthough the required normal pressure is reduced
deformed state. A deformation state can be represented-as
(X'Y't)’ whereas dlsplacements can be writteruax-X andv This phenomenon leads to a paradoxical behavior of its own, i.e., the Craggs—
=y-Y. Hence, thestretch ratio\ (ratio of length in the deformed Roberts paradof5,6].
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Therefore, the paradox considered in this paper is even magaore the effect of the velocity reversal, as we did for the moving
likely to occur, as strains can be arbitrarily large with any pregunch without the incoming wave, or to include its effect as we
sure, provided we are close enoughcto suggest when the punch is perfectly stationary.
The finite strain kinematics analysis shows that the paradox
disappears when the_correct k_|nemat|cs is use_d. In thl_s case it iBéknowledgments
reasonable engineering solution to use the infinitesimal theory .
with the assumption that slip is always in the original direction of M-C. is pleased to acknowledge the support from CNR-
sliding, because the paradox occurs only in very small regions §Pnsiglio Nazionale delle Ricerctishort term fellowship in July
which the infinitesimal theory is unrealistic. 2000, for his visit to Harvard University, permitting also the
There is, however, a class of problems where we see soffmpletion of the present work.
doubt as to the proper formulation using infinitesimal theory. For
the _movm% punch, weh prorl)ose tol_use tlhe_dlrf_sctlon of_ the puEp&ferenceS
motlo_n to determine the re atlv.e SIIp \{e ocity, 1.e., we ignore t e[l] Barber, J. R., 199Z lasticity, Kluwer Academic Publishers, Boston.
velocity reversal due to the singularity. Now suppose that theys) pundurs, J., and Lee, M.-S., 1972, “Stress Concentrations at a Sharp Edge in
punch is stationary and is subjected to an incoming wave. The = Contact Problems,” J. Elast2, pp. 109-112.
direction of the partide motion beneath the punch governs the S||ﬂ3] Gdoutos, E. E., and Thgocaris, P. S, 1975, “Stress (Eoncentrations at the Apex
direction and the singularity does not produce a slip reversal, due ‘gza;)'agggf‘é‘;gemc““g on an Elastic Half Plane,” ASME J. Appl. Mech.,
to (4), becausé)y=0. However, the imposed motion itself may be (4] cole, 3. D., and Huth, J. H., 1958, “Stresses Produced in a Half-Plane by
sufficient to give slip reversal in some regions. Now consider the = Moving Loads,” ASME J. Appl. Mech. 25, pp. 433-436.
case in which the punch is given a small velocity. Accordin¢tjo ~ [5] Craggs, J. W., and Roberts, A. M., 1967, “On the Motion of a Heavy Cylinder
any finite (no matter how smallvelocity will produce slip, near Sa’f_r;gg Surface of an Elastic Half-Space,” ASME J. Appl. Mec, pp.
the moving singularities, in the opposite direction as that due t06] Georgiadis, H. G., and Barber, J. R., 1993, “On the Super-Rayleigh/
the punch motion alone. In this case it is unclear as to whether to  Subseismic Elastodynamic Indentation Problem,” J. El&gt, ,pp. 141-161.
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Discussion: “Axial Loading of Bonded ZSinha_Zcosr[z(h_z)}
Rubber Blocks” (Horton, J. M., A E— ,
Tupholme, G. E., and Gover, M. J. C., acosh™>

20021 ASME ‘J Appl MeCh" 691 where a=4\e’§/b andF, E, A, b, h are constants with units of

pp. 836_843) force, stress, area, length, length, respectively. On the basis of the
stress equation of equilibrium associated with xtairection, and
in conjunction with the stress-strain-displacement relations re-

T. J. Pence viewed above, they also obtaiiq. (17)]

Department of Mechanical Engineering, Michigan State _E| dw 1(b? \d*w| F

University, East Lansing, MI, 48824-1226 Tez™ 5[45 - E(Z X )d_f} A

e-mail: pence@egr.msu.edu These fields are central to the ensuing development, in particular

The paper by Horton, Tupholme, and Govai analyzes the to the calculation of percentage errors associated with previous

deformation behavior of rubber using the isotropic, inﬁniteSimé[el?tir:?r?ése(gdgihzactjzlaielthat the above fields follow from a devel-
strain theory of elasticty for an incompressible material. Accord-

ingly, the Poisson’s ratioo=1/2 and Yung’s modulus is three opm_t_ant_ based upou:u(x,z), U:Q' w=w(2), and_the selecteq
. B . . equilibrium equation. The above fields now permit the determina-
times the shear modulu&=3). In this setting, the stresses;

) o g . tion of all the components of stre¢see, e.g.(15)). On this basis
de_termlne theinfinitesima) stralnSeij,_but the strains only deter- one verifies that the stress equations of equilibrium are satisfied
mine the stresses up to a hydrostatic pressure. Hence, the straipg respect to thex andy directions. However, with respect to
determine the shear stresses and also determine the normal s '

_ _ : _ H&S3 direction, one obtains that
differences. The strains follow from the displacementsn the
usual fashione;=(u; j+u;;)/2. In their analysis of a rectangular 90 90y 002

block with Cartesian coordinatég,y,z) and associated displace- ox gy oz
ment componentsu,v,w) the authors in their analytic develop- 3\5,: 2\;§h 2\;§(h_ 22)
ment arrive at a displacement figlEgs. (14), (12), (24)) =- A_b3(b2 - 8x2)secr( ) i h(T)

In view of the fact that the full set of equilibrium equations are not
satisfied, there would seem to be grounds for concern regarding

dw the validity of the improved expressions put forward in this paper.
u=-x dz’ Similar concerns would naturally arise with respect to other treat-
ments that use a similar methodology.
References
[1] Horton, J. M., Tupholme, G. E., and Gover, M. J. C., 2002, “Axial Loading of
v=0, Bonded Rubber Blocks,” ASME J. Appl. Mech&9, pp. 836—843.
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However, it is a natural consequence of this simplifying as-
sumption(i) that, for an incompressible material, it becomes un-
realistic to satisfy exactly the equilibrium equation in thdirec-
tion (except on the central plang=h/2) on an infinitesimal
volume. Further, this same assumption leads to the prediction of
the existence of a shear stress on the unloaded boundary which, as
observed in the paper, cannot actually physically exist.

If Pence were to refer to the already cited references of Gent
and Lindley[1] and Gen{ 2], he would deduce that the theories
therein lead to solutions for the stress components that also do not
satisfy the equilibrium equation in the direction of loading, nor do
the expressions derived in the later considerations of, for example,
Constantinuo, Kartoum, and Kelly], Chalhoub and Kell\f4],
and Tsai and Le€5].

Additionally, it should perhaps be pointed out that all the above
papers, and others, have assumed the rubber block to have a small
thickness and have either predicted or assumed parabolic de-
formed profiles. In contrast, our analysis applies to a block of any

Our immediate reaction to the comments of Pence was onegfckness, and predicts that, especially for blocks of small shape
amazement that such a supposedly prestigious journal would C@fktor, the profile is noticeably not parabolic. This is reassuringly

sider it appropriate to devote valuable space to what, we fegl, 3greement with the experimental findings of Mott and Roland
should be obvious to a reasonably well-informed reader who hgg and others.

delved into the related literature.

In conclusion, we would suggest that, contrary to Pence’s con-

In his first paragraph, Pence appears to review a few rand@ms in his final sentence, methodologies similar to that adopted
elements of the very WeII-kno.W.n basics of classical elasticity oyr paper have proved invaluable and extremely useful in re-
theory (even to the extent of giving the absolutely fundamentghieq analyses. Particularly worthy of note are the expressions that
relationships between t'he dlsple_lc_ement and strain comp(?qen%rton, Gover, and Tupholm@,8] presented for the radial stiff-
Several of these were, in fact, willingly deleted from our originahess and tilting stiffness of a rubber bush mounting of finite
manuscript, upon receiving the observation of a reviewer that, ‘ingth. Not only were there no useful estimates available previ-
is not necessary to remind readerslotimal of Applied Mechan- qysly, but moreover they yield numerical values that agree well

ics ... for a linear elastic model.”

with the available experimental data.

He then, seemingly unnecessarily, simply reproduces a few ofyye are grateful to the Editor of thiournal of Applied Mechan-
our expressions, before making the observation that the equilips for giving us this opportunity to respond. We hope that our

rium equation in thez direction is not satisfied. Actually this comments will enhance the appreciation of the potential impor-
would clearly not be expected with the basic objectives and agnce and value of our results, for those readers who have not

sumptions of the analyses presented. However, he naively app&ggsked directly in this area of rubber technology and are therefore
to regard this as a hugely serious flaw that casts doubt on @85 familiar with the relevant literature.

worth of the realistic approximate expressions derived for the ap-

parent Young's modulus, offering improvements on those prevf-i?eferences

ously available.

The approximations developed by Gent and Lind[&y and

[1] Gent, A. N., and Lindley, P. B., 1959, “The Compression of Bonded Rubber
Blocks,” Proc. Inst. Mech. Eng.173 pp. 111-122.

Gent[2] have been widely quoted and used in the engineeringy) gent, A. N., 1994, “Compression of Rubber Blocks,” Rubber Chem. Technol.,
industry for assessing axial stiffness. As we hoped was clearly 67, pp. 549-558.

exp|ained in our introduction in Sec. 1, they were derived on thel3] Constantinuo, M. C., Kartoum, A., and Kelly, J. M., 1992, “Analysis of Com-

basis of two fundamental assumptiofi$:that planes initially nor-
mal to the direction of loading remain normal after loading, and

pression of Hollow Elastomeric Bearing,” Eng. Struct4, pp. 103-111.
[4] Chalhoub, M. S., and Kelly, J. M., 1990, “Effect of Bulk Compressibility on
the Stiffness of Cylindrical Base Isolation Bearings,” Int. J. Solids Str28,,

(i) that the deformed shapes of the free lateral surfaces are para- pp. 743-760.
bolic. Subsequently, as we pointed out in Secs. 1 and 5.2, th&] Tsai, H-C., and Lee, C-C., 1998, “Compressive Stiffness of Elastic Layers

validity of the assumptior(ii) has been questioned by several

Bonded between Rigid Plates,” Int. J. Solids Stru@5, pp. 3053-3069.
[6] Mott, P. H., and Roland, C. M., 1995, “Uniaxial Deformation of Rubber Cyl-

authors in interpreting their experimental results—with comments ™ jygers " Rubber Chem. Technol&8, pp. 739-745.
including “the assumption of a parabolic profile is erroneous” and[7] Horton, J. M., Gover, M. J. C., and Tupholme, G. E., 2000, “Stiffness of
that the next step “would be an improved method of estimating Rubber Bush Mountings Subjected to Radial Loading,” Rubber Chem. Tech-

the ‘bulgeability.’ ” It was our aim therefore to provide such esti-

nol., 73, pp. 253-264.
[8] Horton, J. M., Gover, M. J. C., and Tupholme, G. E., 2000, “Stiffness of

mates with this assumption of parabolic profiles removed, while” " rypber Bush Mountings Subjected to Tilting Deflection,” Rubber Chem. Tech-

maintaining the more reasonable first assumption.
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