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Ultimate Response of Composite
Cylinders Under Flexural Load
Composite cylinders are generally used as primary load carrying structures. Thei
stitutive behavior up to failure is crucial for a critical design. This paper focuses o
ultimate flexural strength of a polymer based composite cylinder subjected to bend
such a case, the outmost filament of the cylinder subjected to the maximum bendin
fails the first. The complexity, however, lies in the fact that the failure of this ou
filament generally does not correspond to the ultimate failure. Additional loads ca
be applied to the cylinder and a progressive failure process will result. To deal with
a problem in this paper, the cylinder is discretized into a number of lamina layers
different widths. The bridging micromechanics model [Huang, Z. M., Composites P
2001] combined with the classical lamination theory has been applied to understa
progressive failure process generated in the cylinder. Only its constituent fiber and
properties under bending are necessary for this understanding and reasonably
accuracy has been achieved. However, the ultimate failure of the cylinder can
figured out only based on a stress failure criterion, as one cannot know a priori whi
failure corresponds to the ultimate failure. An additional critical deflection (curva
condition must be employed also. By using both the stress and the deflection con
the estimated ultimate strength of the cylinder agreed well with an experim
measurement.fDOI: 10.1115/1.1867990g
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1 Introduction
The use of composite cylinders as primary-load carrying s

tures has been tremendous in many engineering fields su
aerospace, automobile, chemical and energy, civil and infras
ture, sports and recreation, and even biomedical engineerin
biomedical applications, for example, composite cylinders
been proposed for spine rods, dental posts, total hip replace
stems, etcf1g. An orthodontic archwire can be best develo
using a continuous fiber reinforced polymer matrix composite
f2–4g. This is because the polymer matrix material, which is a
able from numerous candidates, can offer the aesthetic feat
the archwire comparable to the patient’s teeth, whereas its va
mechanical properties at different using stages can be achiev
choosing suitable fiber material, fiber content, and fiber arra
ment pattern. The composite archwire is generally prod
through pultrusion of a resin-impregnated fiber yarn bundle in
curing die f2–4g. An optimal design for the composite archw
will depend on a complete understanding for its structure-pro
relationship. As the composite archwires, and further most
composite cylinders, are mainly subjected to flexural loads,
bending behavior especially their ultimate bending load-carr
ability must be well understood.

Several attempts have been made to obtain the effective
erties of composite cylinders. Bhattacharyya and Appiah co
ered a singlessofterd fiber cylinder embedded in an annular ma
cylinder subjected to lateral load and obtained its exact elasto
tic response solutionf5g. Their results, however, are not direc
applicable to the present case. The reason is that in a real
cation many fiber filaments are gathered together and the f
of the outmost filament subjected to the maximum bending s
does not mean the ultimate failure of the composite cylinder.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIE
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF A
PLIED MECHANICS. Manuscript received by the Applied Mechanics Divis
April 21, 2002; final revision, October 28, 2003. Associate Editor: B. M. Mo
Discussion on the paper should be addressed to the Editor, Prof. Robert M. Mc
ing, Journal of Applied Mechanics, Department of Mechanical and Environm
Engineering, University of California, Santa Barbara, Santa Barbara, CA 9
5070, and will be accepted until four months after final publication in the paper

in the ASME JOURNAL OF APPLIED MECHANICS.
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buck performed a stress analysis for laminated composite
ders under nonaxisymmetric loading and derived a closed
solution for the cylinder responses up to the first-ply failuref6g.
However, limited work on the simulation of the ultimate flexu
failure of composite cylinders could be found in the literat
Other relevant references have been on the flexural analy
laminated composites, but were mainly focused on the dev
ment of linear and geometrically nonlinearslarge deflectiond theo-
ries f7–12g, also applicable before the laminate first-ply fail
f13g. While favorable comparison in stiffnessselastic bendin
modulusd with experimental data with those theories was repo
less agreement in ultimate bending strength has been fou
generalf7,10–13g. A main reason is that the material nonlinea
has not been taken into account or has not been well addr
Most studies used the elastic moduli of the laminae to defin
laminated beam stiffness up to failure. The failure status
lamina in the laminate was detected in terms of a phenomen
cal stress failure criterion such as the maximum stress–stra
the Tsai–Wu criterion based on the critical strength param
measured from an individual lamina. It is known that the sin
layer lamina during measurement of the strength paramet
generally statically determinate. However, the lamina beco
statically indeterminate in the laminate. As most composites
undergo nonlinear deformation before failure especially w
subjected to bending, the use of the constant-stiffness eleme
to failure would cause errors in the determination of the stre
shared by each lamina involved. Additional complexity lies in
fact that the failure of the outmost layer subjected initially to
maximum bending stress does not imply the ultimate failure o
whole laminate, nor the central ply failure implies such ultim
failure. Indeed, a laminated beam generally attains its ulti
bending strength at the failure of an intermediate plyf14g. After
this intermediate ply failure, which is defined as the ultimate
ure, the bending load sustained by the laminate lowers down
bending stress of the laminate corresponding to the last-ply
ure, if any, is lower than the ultimate bending strength. Howe
the stress failure criterion can only detect an individual ply fail
By incorporating the stress failure criterion with an increme
solution strategy, the predicted strength of a latter ply failu

.
ek-
al
6-
lf

always greater than or equal to the predicted strength of an earlier
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‘ply failure. This means that the predicted progressive fa
strengths after the ultimate failure cannot be correct if on
stress failure criterion is used. As one does not know a p
which intermediate ply failure corresponds to the ultimate fail
an additional controlling parameter, which should be a defle
related quantity, must be employed to characterize the ulti
failure. This is different from an in-plane load situation where
ultimate failure of the laminate generally occurs at its last
failure, thereby the ultimate failure positionsi.e., the last plyd has
already been characterized no matter how much load will b
plied, and hence only a stress failure criterion is sufficient.
also suggests that the determination of the ultimate ben
strength of the beam depends on an accurate calculation
deflection.

In the present paper, the composite cylinder is discretized i
number of parallel laminae along its axis direction with differ
widths. In this way, the analysis of the cylinder is converte
that of a laminated composite beam. The classical lamin
theory is applied to determine the stresses shared by each l
in the laminate, whereas the lamina local analysis is performe
using the bridging modelf15g. This is because the bridging mod
can provide the lamina instantaneous stiffness matrix up to fa
and can explicitly give the internal stresses in the constituent
and matrix materials of the lamina at every load level. Thu
stress failure criterion applied to the constituent rather than t
composite level will suffice: The lamina is considered to fail o
a constituent has failed. This is important for applications, as
constituent properties are required, which are easily obtai
seither taken from a material data source such as for fiber ma
or measured from monolithic material specimens such as fo
trix materiald.

As aforementioned, the laminate subjected to bending gen
attains its ultimate strength after the first-ply and before the
ply failures. This is also true for a composite cylinder. The lo
deflection curve is downward after the ultimate failure. In orde
figure out which discretized ply failure corresponds to the ultim
failure, we must provide an additional controlling parameter,
the critical deflection or curvature condition. The critical defl
tion or curvature is that at which the ultimate bending loa
measured.

2 Global Analysis

2.1 Discretization.For a specific purpose, the composite c
inder under consideration is circular, consisting of continuou
bers arranged in the same direction and the surrounding po
matrix. However, the analysis procedure thus developed ca
equally well applicable to other cross-sectional shapes. Whe
cylinder is subjected to an axial load, it can be regarded
unidirectional composite the analysis of which is relatively e
f15,16g. However, when the cylinder is subjected to a lat
sbendingd load, the problem becomes much more complicate
such a case, the stress distribution on the cylinder cross sec
not uniform. The outmost filament subjected to the maxim
bending stress fails the first. The complexity is due to the fact
the failure of this outmost filament generally does not corres
to the ultimate failure. Additional higher load can still be appl
Thus, a progressive failure process, somewhat similar to tha
erated in a laminate, will result. This has to be understood b
the ultimate bending strength of the composite cylinder ca
obtained.

In order to track the progressive failure process in the unid
tional composite cylinder, let us imaginatively separate it in
number of lamina layers along the axial direction. A cro
sectional discretization is shown in Fig. 1. Take a global coo
nate system,sX,Y,Zd, whereX is along the cylinder axis andX,Z
is the plane on which the bending load is applied. Suppose th
cross section of the circular cylinder is discretized intoN=2n

layers of an equal thickness,t, given byssee Fig. 1d
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t = d/N = d/s2nd s1d

whered is the cylinder diameter. Referring to Fig. 1, the width
the ith layer,bi, is determined from

bi = Îd2 − 4ai
2 = Îd2 − 4fsn − idt + 0.5tg2, i = 1, . . . ,n s2d

Now, the composite cylinder can be regarded as a laminated
posite subjected to an externalsin-plane or out of planed load.
Note that in the present case, the longitudinal directions of a
laminae coincide with the globalX direction, whereas the oth
two transverse directions of the laminas can be chosen alongY
andZ directions, respectively. Thus, the global coordinate sy
is coincident with the local systems of all the laminas.

2.2 Classical Lamination Theory. After the discretization
the classical lamination theory is applicable to the overall an
sis. Corresponding to the present load condition, only the in-p
stress and strain increments,hdsj=hdsXX,dsYY,dsXYjT and hd«j
=hd«XX,d«YY,2d«XYjT, are retainedsrefer to Fig. 2d. The average
stress increments on thekth lamina can be determined fromf15g

hdsjk = fsCijdkghd«jk s3d
where

fsCijdkg = sfSgkd−1 s4.1d

and

hd«jk = Hd«XX
0 +

Zk + Zk−1

2
dkXX

0 ,d«YY
0 +

Zk + Zk−1

2
dkYY

0 ,2d«XY
0

+ sZk + Zk−1ddkXY
0 JT

s4.2d

d«XX
0 , d«YY

0 , andd«XY
0 anddkXX

0 , dkYY
0 , anddkXY

0 are the laminat
in-plane strain and curvature increments.Zk and Zk−1 are theZ
coordinates of the top and the bottom surfaces of thekth lamina
fSgk is the lamina instantaneous compliance matrix in its l
system as given subsequently. From the condition that the r
ants of the internal stresses given by Eq.s3d should be balance
with the overall applied loads on the cylinder, we obtain the
lowing equationf15g

Fig. 1 A composite cylinder consisting of multilayers of
laminas
Fig. 2 Analysis of a lamina layer taken from the cylinder
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dNXX

dNYY

dNXY

dMXX

dMYY

dMXY

6 = 3
Q11

I Q12
I Q13

I Q11
II Q12

II Q13
II

Q12
I Q22

I Q23
I Q12

II Q22
II Q23

II

Q13
I Q23

I Q33
I Q13

II Q23
II Q33

II

Q11
II Q12

II Q13
II Q11

III Q12
III Q13

III

Q12
II Q22

II Q23
II Q12

III Q22
III Q23

III

Q13
II Q23

II Q33
II Q13

III Q23
III Q33

III

45
d«XX

0

d«YY
0

2d«XY
0

dkXX
0

dkYY
0

2dkXY
0

6
s5d

Qij
I = o

k=1

N

bksCijdksZk − Zk−1d,

Qij
II =

1

2o
k=1

N

bksCijdksZk
2 − Zk−1

2 d,

Qij
III =

1

3o
k=1

N

bksCijdksZk
3 − Zk−1

3 d s6d

In Eq. s5d, dNXX, dNYY, and dNXY and dMXX, dMYY, and dMXY
are, respectively, the applied total in-plane force and momen
crements on the laminate cross section.

Under a simple bending condition, the only nonzero quanti
the bending moment incrementdMXX. The middle plane defle
tion increment,dw0, can be integrated from the equation

]2sdw0d
]X2 = − dkXX

0 , s7d

together with proper boundary conditions. The total deflectio
updated fromw0=w0+dw0.

2.3 Post-Failure Analysis.Apparently, different layers in th
laminate carry different load shares. With the increase of the
ternal load, some layers fail first before the others. Once s
k0th lamina layer fails, it can hardly sustain any additional load
general. The additional external load must be shared by th
maining un-failed laminae. For example, we will have

dMXX =E
−d/2

d/2

bdsXXZdZ= o
k=1

kÞk0

N

bkE
Zk−1

Zk

sdsXXdkZdZ s8d

Thus, the post-failure analysis is still based on Eq.s5d, but with
reduced overall stiffness elements given by

Qij
I = o

k=1

k¹hk0j

N

bksCij
GdksZk − Zk−1d,

Qij
II =

1

2 o
k=1

k¹hk0j

N

bksCij
GdksZk

2 − Zk−1
2 d,

Qij
III =

1

3 o
k=1

k¹hk0j

N

bksCij
GdksZk

3 − Zk−1
3 d s9d

In the above,hk0j represents all those laminae which have alre
failed. Continued in this way, the ultimate failure strength of
laminate can be determined incrementally. The ultimate te
strength would correspond to the load level at which all of
layers fail.

It must be realized that the above stiffness reduction proces
in other words, the incremental solution steps, should be sto

in general before reaching the last ply failure when the laminate

Journal of Applied Mechanics
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only subjected to a bending load. This is because the ulti
bending strength is attained generally before the last-ply fa
f14g. After the ultimate bending load, which occurs at an inter
diate ply failure, the predicted load-deflection using the ab
procedure is incorrect. In fact, under only the bending condi
the middle plane strain increments,d«XX

0 etc., are negligibly sma
The remaining bending curvature will have very small, if a
stress contribution to the last ply failure, according to Eqs.s3d and
s4d. For instance, if the laminate consists of odd-numberse.g., 5
7, 9…d of plies each of which has the same global property
the same thickness, the central ply will not carry any load
matter how much a pure bending is applied to the laminate. T
the last ply will not fail at all, but the deflectionscurvatured can be
increased unlimitedly as with the increase of the bending mom
The predicted deflection is, of course, not correct.

3 Local Analysis
The local analysis deals with an individual UDsunidirectionald

lamina, with three purposes. First, we need to provide the la
instantaneous compliance matrix as required in Eq.s4.1d. Second
the internal stresses in the constituent fiber, and third, in the
trix materials of the lamina must be identified, because wit
the knowledge of those stresses the lamina instantaneous c
ance matrix cannot be defined. Furthermore, having known
internal stresses, the lamina ultimate load carrying abilitysfailure
statusd can be assessed by checking the ultimate strengths
constituent materials. Thus, a pre-fabrication design ca
achieved for the composite only based on the information o
constituent properties. All three purposes can be achieved b
ing the Bridging micromechanics Model, which is briefly sum
rized belowssee Fig. 3d. For more details refer to, e.g., Ref.f15g.

3.1 Lamina Compliance Matrix. Using the constituent com
pliance matrices and volume fractions, the instantaneous co
ance of the UD lamina in its local coordinate system is give
f15g

fSgsLd = sVffSfg + VmfSmgfAgdfBg s10d

where the superscriptL stands for the local system andVf andVm
are the volume fractions of the fiber and matrix materials in
composite, respectively.fSfg andfSmg are, respectively, the insta
taneous compliances of the fiber and matrix materials, w
components are given subsequently.fAg is a bridging matrix an
fBg=sVffIg+VmfAgd−1, whose elements are expressed asf15g

fAg = 3a11 a12 a13

0 a22 a23

0 0 a33
4 andfBg = 3b11 b12 b13

0 b22 b23

0 0 b33
4 s11d

where

a11 = Em/E11
f

a22 = 0.5s1 + Em/Ef d

Fig. 3 Schematic of the bridging model for a UD lamina
is 22
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a33 = 0.5s1 + Gm/G12
f d

Em = HEm, whense
m ø sY

m

ET
m, whense

m . sY
mJ

Gm = H0.5Em/s1 + nmd, whense
m ø sY

m

ET
m/3, whense

m . sY
m J

se
m = Îss11

m d2 + ss22
m d2 − ss11

m dss22
m d + 3ss12

m d2

a12 = sS12
f − S12

m dsa11 − a22d/sS11
f − S11

m d

a13 =
d2b11 − d1b21

b11b22 − b12b21

a23 =
d1b22 − d2b12

b11b22 − b12b21

b11 = sVf + Vma22dsVf + Vma33d/c, b12 = − sVma12dsVf + Vma33d/c

b13 = fsVma12dsVma23d − sVf + Vma22dsVma13dg/c,

b22 = sVf + Vma11dsVf + Vma33d/c

b23 = − sVma23dsVf + Vma11d/c, b33 = sVf + Vma22dsVf + Vma11d/c

c = sVf + Vma11dsVf + Vma22dsVf + Vma33d

d1 = S13
m sa11 − a33d

d2 = S23
m sVf + Vma11dsa22 − a33d + S13

m sVf + Vma33da12

b11 = S12
m − S12

f , b12 = S11
m − S11

f , b22 = sVf + Vma22dsS12
m − S12

f d

b21 = VmsS12
f − S12

m da12 − sVf + Vma11dsS22
f − S22

m d

Here E11
f , E22

f , and G12
f are the longitudinal, transverse, and

plane shear moduli of the fiber;Em, Gm, and nm are Young’s
modulus, shear modulus, the Poisson’s ratio of the matrix;sY

m and
ET

m are the matrix’s yield strength and hardening modulusstangen
to its stress–strain curve at the plastic region, see Fig. 4d. Sij

f and
Sij

m are the instantaneous compliance matrix elements of the
and matrix materials, respectively.

3.2 Constituent Internal Stresses.Suppose that arbitrary e
ternal stress increments,hdsj=hds11,ds22,ds12jT, are applied to
the UD laminasFig. 2d. The internal stress increments genera
in the fiber and matrix materials are calculated fromf15g

5ds11
f

ds22
f

ds f 6 = fBg5ds11

ds22

ds12
6 s12.1d

Fig. 4 An elastic–plastic stress–strain curve together with
definition of material parameters
12
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er

d

5ds11
m

ds22
m

ds12
m 6 = fAgfBg5ds11

ds22

ds12
6 s12.2d

wherefAg and fBg are given by Eqs.s11d. It is noted that in th
present case, the local and the global coordinate systems co
i.e., “1” = “ X” and “2” = “ Y”. The stress increments calcula
from Eq.s3d can be directly substituted into the right hand side
Eqs.s12.1d and s12.2d.

The total stresses in the fiber and matrix are updated thro

hs fj = hs fj + hds fj and hsmj = hsmj + hdsmj s13d

When the composite is fabricated at or near to room temper
the thermal residual stresses can be neglected. Both of the
internal stresses in the fiber and the matrix,hs fj andhsmj, are se
zero. If high thermal residual stresses are involved, the me
provided in Ref.f17g can be used to calculate the initialhs fj and
hsmj.

3.3 Constituent Compliance Matrices.The fiber instanta
neous compliance matrix can be defined using Hooke’s
whereas that of the matrix is specified using Prandtl–Reuss th
Thus, the constituent instantaneous compliance matrices are
as f15g

fSij
f g = 3S11

f S12
f S13

f

S22
f S23

f

symmetric S33
f 4 = 3 1/E11

f − v12
f /E11

f 0

1/E22
f 0

symmetric 1/G12
f 4

fSij
mg = 3S11

m S12
m S13

m

S22
m S23

m

symmetric S33
m 4 = HfSmge, whense

m ø sY
m

fSmge + fSmgp, whense
m . sY

mJ

fSmge = 3
1

Em −
vm

Em 0

1

Em 0

symmetric
1

Gm

4
fSmgp =

9

4MT
msse

md23 s118 s118 s228 s118 2s128 s118

s228 s228 2s128 s228

symmetry 4s128 s128
4

si j=si j
m

MT
m =

EmET
m

Em − ET
m

si j8 = si j −
1

3
skkdi j , i, j ,k = 1,2.

3.4 Failure Criterion. As the composite consists of only tw
constituent materials, i.e., the fiber and the matrixsFig. 3d, its
failure can be considered to occur as long as any of the con
ents fails.

To detect the constituent failure, one of the most successfu
simplest criteria is the maximum normal stress criterion of ho
geneous materials. According to this criterion, the fiber or
matrix failure is attained if either of the following conditions,

s11
f + s22

f

2
+

1

2
Îss11

f − s22
f d2 + 4ss12

f d2 ù su
f , s14.1d

s11
f + s22

f

−
1Îss11

f − s22
f d2 + 4ss12

f d2 ø − su,c
f , s14.2d
2 2
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s11
m + s22

m

2
+

1

2
Îss11

m − s22
m d2 + 4ss12

m d2 ù su
m, s14.3d

s11
m + s22

m

2
−

1

2
Îss11

m − s22
m d2 + 4ss12

m d2 ø − su,c
m , s14.4d

is satisfied, wheresu
f , su,c

f andsu
m, su,c

m are the ultimate tensile an
compressive strengths of the fiber and the matrix materials
spectively, which can be obtained, e.g., through uniaxial ten
and compression tests. It is noted thatsu

f andsu,c
f are the quant

ties along the fiber axis direction.

4 Simulation Example

4.1 Experimental work. Experiments have been made
fabricate a UD composite cylinder. The reinforcement wa
bundle of five E-glass fiber yarns, each containing 200 fiber
mentssthe filament diameter=9mm, Unitica Glass Fiber, Japand.
A mixture consisting of 68 wt % of an epoxy resin, R50,
32 wt % of a hardener, H64, provided by Chemicrete Enter
Pte, LtdsSingapored was used as the matrix material in the pre
study. A tube-shrinkage method was applied. Namely, the r
impregnated fiber bundle was introduced into a polyolefin
which has an inner diameter larger than that of the fiber bu
Once heated with an electronic soldering iron, the tube shran
pushed the extra resin out of the tube ends. The tube was th
into an oven of 100°C for complete curing. After removing
tube carefully, the composite cylinder resulted, with a diamet
about 0.5 mm. The fiber volume content of the cylinder was m
sured through a combustion method and an averaged val
45% was obtained.

Three-point bending test was performed for the fabricated
inder, with a span size of 14 mm following the load condition
an archwiref3g. A total number of seven specimens were tes
Typical load-middle span deflection is plotted in Fig. 5, whe

Table 1 Measured properties of compos

Materials
Diameter,
d smmd

Fiber volu
fraction,

GF/epoxy 0.5 0.45

s.d* =standard deviation

Table 2 Mechanical propert

E11
f sGPad n12

f E22
f sGPad G12

f

74 0.2 74

Fig. 5 Measured and predicted load-deflections of a compos-
ite cylinder „d =0.5 mm and Vf =0.45…
Journal of Applied Mechanics
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averaged measured mechanical parameters are summari
Table 1. Standard deviations are also shown in the table. T
results can be used as the benchmark to check the correctn
the developed theory.

4.2 Constituent Properties.In order to apply the theory sum
marized in the previous sections to simulate the 3-point ben
response of the composite cylinder, its constituent fiber and m
properties must be specified. Both the E-glass fiber and the e
matrix used in the present example can be considered as iso
materials. Further, the fiber is taken as linearly elastic
rupture.

In general, it is difficult to measure directly the mechan
properties of the fiber material. From the material data shee
vided by the supplier, the fiber used has some comparable
chanical parameters to those of the Silenka E-glass 1200tex
in Ref. f18g. Thus, the elastic properties of the fiber were ta
from Ref. f18g and are listed in Table 2. These parameters
considered to be the same until rupture at both tension and
pression. The fiber tensile and compressive strengths, how
were retrieved from the uniaxial tensile and compressive stre
of a UD composite provided in Ref.f18g. The retrievals have be
done in Ref.f19g, and are given in Table 2.

In contrast to the fiber properties, the monolithic matrix p
erties are easily measurable. Pure matrix panels of 6 mmsnomi-
nald thickness were made through resin-casting method and
cured at the 100°C oven as in curing the composite cylinder
panels were then cut to required specimens according to th
evant ASTM standards using a water-cooled diamond saw.
the present case the composite cylinder is subjected to a fle
load, the bending behavior of the pure matrix must be unders
Four-point bending tests were carried out, and a typical l
deflection curve of one loading point is plotted in Fig. 6. In o
to differentiate the mechanical properties of the pure matr
tension from those at compression, strain gauges have also
used and the stress–strain data from their measuremen
shown in Fig. 7. Unfortunately, the bending strains of the m
specimen during the test exceeded the measurable range lim
of the strain gauges used and the data shown in Fig. 7 ar
complete.

Four linear segments were used to approximate the stress–
sor load-deflectiond responses of the matrix materialsFig. 6 as
well as Fig. 7d. Based on these representations, the matrix h
ening modulus at any load level was found to be

Em = sET
mdi, whenssY

mdi−1 ø se
m ø ssY

mdi, with ssY
md0 = 0

Em ; sET
md4, whense

m ù ssY
md4

where the tangential moduli and the critical stresses correspo
to tension and compression are summarized in Table 3. Th
maining question is how to define the matrix tensile and com
sive strengths under bending. The bending test only determ
one of these two strengths. To resolve the problem, uniaxia
sile and compressive tests have also been performed for th

cylinder under 3-point bending test

Bending modulus
EbsGPad

Maximum
loadsNd

31.78s2.1d 3.03 s0.25d*

of E-glass fibers †18,19‡

Pad n23
f su

f sMPad su,c
f sMPad

8 0.2 2093 1312
ite

me
Vf
ies

sG

30.
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matrix specimens and typical testing curves are shown in Fig
was found that the matrix has a uniaxial tensile strengt
42.6 MPa and a uniaxial compressive strength of 63 MPa
other words, the uniaxial compressive strength of the matrix
terial is about 20 MPa higher than its uniaxial tensile counter
Thus, the bending strength of the matrix, 67.8 MPa, meas
from the 4-point bending test must be the matrix tensile stre
under bending. The matrix compressive strength under be
was simply set to: 67.8+20=87.8 MPa, as indicated in Tab
The Poisson’s ratio of the matrix, 0.414, was obtained from m
sured longitudinal and transverse strains under the uniaxia
sion.

4.3 Number of Layers in Discretization.A suitable numbe
of lamina layers should be chosen to discretize the cross sect
the composite cylinder. This can be done through compariso
the discretization dependent predictions. The predicted

Table 3 Mechanical properties of R50 e

i

Tensile properties
sstrength=67.8 MPad

1 2 3

ssY
mdi

sMPad
28.8 48.9 63.4

sET
mdi

sGPad
2.98 2.48 1.45

m m m m m

Fig. 6 Load-deflection of R50/H64 pure matrix material under
4-point bending

Fig. 7 Stress–strain data of R50/H64 pure matrix under 4-point
bending „not complete due to limitation in the strain gauge
measurement range …
Note: Em=sETdi, whenssYdi−1øse ø ssYdi, with ssYd0=0, Em;
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smaximum momentd—deflection curves by using different nu
bers of discretized layers are plotted in Fig. 9. In the predict
the cylinder diameter was assumed to be 0.5 mm and a 45%
volume fraction was used. From this figure, it is seen tha
predictions for the initial parts of the load-deflection curves
differently discretized layers were essentially the same. Dis
ancies among them existed only for the later parts of the curv
seems that the prediction with 16-layersfN=16 in Eq. s1dg of
discretization was close to those with even more layers of dis
zations. Thus, the following results are all based on the 16-l
discretization for the cylinder cross sections.

Some additional words deserve mentioning regarding the
dicted load-deflection curves shown in Fig. 9. As mentioned
viously, the deflection will be increased unlimitedly before
last-ply failure if Eq. s4.2d is used to calculate the strain inc
ments of each lamina. In order to resolve this problem, the s
increments were calculated in the present paper not neces
using Eq.s4.2d, but according to the following rule.

Let hd«jk
s0d = Hd«XX

0 +
Zk + Zk−1

2
dkXX

0 ,d«YY
0 +

Zk + Zk−1

2
dkYY

0 ,2d«XY
0

+ sZk + Zk−1ddkXY
0 JT

s15.1d

hd«jk
s1d = hd«XX

0 + Zk−1dkXX
0 ,d«YY

0 + Zk−1dkYY
0 ,2d«XY

0

+ 0.5Zk−1dkXY
0 jT s15.2d

andhd«jk
s2d = hd«XX

0 + ZkdkXX
0 ,d«YY

0 + ZkdkYY
0 ,2d«XY

0 + 0.5ZkdkXY
0 jT

s15.3d
The absolute values of the sums of the first two linear strai
crements from Eqs.s15.1d–s15.3d were calculated. Suppose t
amongst the largest absolute value corresponds toi swhich is ei-
ther 0, or 1, or 2d. Then, the strainhd«jk

sid was set tohd«jk and use

y matrix under bending „nm =0.414…

Compressive properties
sstrength=87.8 MPad

1 2 3 4

.8 35.8 52.9 68.4 87.8

56 3.31 2.73 1.72 0.66

m m m

Fig. 8 Stress–strain responses of R50/H64 under uniaxial
loads
pox

4

67

0.
sETd4, whense ù ssYd4
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in Eq. s3d. For instance, if ud«XX
0 +0.5sZk+Zk−1dsdkXX

0 +dkYY
0 d

+d«YY
0 u is greater than bothud«XX

0 +Zk−1sdkXX
0 +dkYY

0 d+d«YY
0 u and

ud«XX
0 +ZksdkXX

0 +dkYY
0 d+d«YY

0 u, then hd«jk=hd«jk
s0d. The load-

deflection curves thus obtained were slightly different from th
throughout using Eq.s4.2d only before the last few plies faile
However, the predicted deflection in such way was finite eve
the last-ply failure.

4.4 Simulation Results.Using the material parameters giv
in Tables 2 and 3 as input data, the load-deflection curve o
composite cylinder, with a diameter of 0.5 mm and a 45%
volume fraction, was estimated up to the sixth-ply failure, an
graphed in Fig. 5 for comparison. It is noted that the cylinder
been descritized into 16 lamina layers of equal thickness. F
the figure, we can clearly see that the failure load correspond
the fifth-ply failure should be regarded as the maximum load
tainable by the composite cylinder under consideration. Th
because the predicted deflection at the fifth-ply failure is in
nearest close to but greater than the critical deflection, whic
curred when the cylinder was three-point bending loaded to
maximum, on the measured curve. As mentioned previously
predicted even larger deflection after the fifth-ply failure would
incorrect, and is in fact not necessary as we are only interes

Fig. 9 Comparison between the predicted results of different lami
posite cylinder „d =0.5 mm & Vf =0.45…
Fig. 10 Bending modulus of GF/R50 composite
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the cylinder structure-property behavior until its ultimate fail
After the ultimate failure, the load-carrying ability of the cylind
lowers down quickly as shown in Fig. 5 by the measured c
although the cylinder may have not completely fracturedsbeen
broken into segmentsd. The figure also shows that the theoret
modeling by using independent constituent mechanical prop
is reasonably accurate. Some discrepancy between the pre
and the measured load-deflection curves may be attributed
use of inaccurate fiber modulus. It is seen that the predicted
was slightly stiffer than the measured one. In the present p
the glass fiber modulus was directly taken from Ref.f18g, which
may be somewhat different from that of the fibers used in
Another source of the error may come from the neglection o
thermal residual stresses involved. The present composite
fabricated at an elevated temperatures100°Cd, whereas the me
surement was performed at room temperatures25°Cd, although
the moderate temperature variation from the fabrication to
room temperatures does not bring significant influence on the
dicted resultsf20g, and indeed has not.

Further study was carried out with respect to some diffe
geometric parameters. As the same constituent materials a
same number of discretization layers are used, it is reasona
assume that the ultimate bending failure of a UD composite

layers used in discretizing the cross-section of the com-
na
cylinder versus fiber volume fraction
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ve
inder occurs at its fifth-ply failure even if a different fiber volu
fraction is assumed. The predicted bending moduli and the
mate bending strengths of circular composite cylinders mad
GF/R50 material system varied with fiber volume fractions
plotted in Figs. 10 and 11, respectively. The first-ply fail
strengths of the cylinders are also shown in Fig.s11d. From these
figures, it is seen that the bending stiffness and strength are e
tially linearly dependent on the fiber volume fraction of the
inder.

4.5 Addition Remark. In comparison with an in-plane loa
situation where a stress failure criterion is generally sufficient
ultimate bending failure analysis of a composite requires not
the stress failure criterion but also an extra controlling param
i.e., a critical deflection related condition. This extra condi
must be obtained based on a bending measurement. The defl
corresponding to which the maximum bending load occurs o
measured load-deflection curve is defined as the critical de
tion. Then, the critical failed layer codeswhich was the fifth failed
ply in the present paperd or the critical curvaturesnot dealt with in
the present paperd can be retrieved using the analyzing sche
si.e., the bridging model combined with the classical lamina
theoryd provided in the paper. Thus, the critical failed layer c
or the critical curvature condition can be used for design purp
It should be noted that compared with the tested sample the
posite to be designed should have the same constituent mat
the same fiber arrangement patternse.g., uniaxial arrangement
the present cased, and a similar structurese.g., a circular cros
section in the present cased, but different fiber content as well
some different dimensionse.g., different cylinder diameterd. With
these conditions, the new compositescylinderd will most probably
have the same critical failed layer code or the same critical
vature.

5 Conclusion
Theoretical modeling for the flexural response of compo

cylinders up to their ultimate failure has been described in
present paper. By discretizing the cylinder into a number of
allel laminae, the analysis of the cylinder is transformed into
of a laminated beam. The bridging model combined with the
sical lamination theory is then used to estimate the flexural
gressive failure process of the laminated beam. However, th
termination of the ultimate bending strength of the cylin
requires an addition critical deflectionscurvatured condition. By
using both the stress failure and the critical deflection condi
and by using independent fiber and matrix properties, the

Fig. 11 Strength of GF/R50 composite cylinder
dicted ultimate bending strength of a cylinder agreed well with th
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measurement. It has been found that the bending stiffness a
ultimate bending strength of the composite cylinder is essen
proportional to its fiber volume fraction.
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Normality Structures With
Homogeneous Kinetic Rate Laws
In this paper, a homogeneous type of kinetic rate laws of local internal variables a
corresponding macroscopic behaviors, are explored within the framework of “norm
structures” by Rice. Rice’s kinetic rate laws of local internal variables, with each
being stress dependent only via its conjugate thermodynamic force, are corner st
the normality structure. It is revealed in this paper that nonlinear phenomenolo
equations and Onsager reciprocal relations emerge naturally if each rate is a ho
neous function of degree q in its conjugate force. Furthermore, the nonlinear ph
enological coefficient matrix is identical to the Hessian matrix of the flow pote
function in conjugate forces only scaled by q. It is further shown that the refined v
of Griffith criterion proposed by Rice,sG22gdȧù0, can be derived from the normal
structure with the homogeneous rate laws. Finally, some issues related to dama
lution laws have been discussed based on the remarkable properties.
fDOI: 10.1115/1.1867991g
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1 Introduction
As an internal variable approach, the normality structure

posed by Ricef1,2g has been an appealing constitutive framew
for solids undergoing irreversible thermodynamic proces
Rice’s kinetic rate laws of local internal variables, with each
being stress dependent only via its conjugate thermodyn
force, are corner stones of the normality structure and repres
wide class of inelastic behaviors.

In this paper, we are interested in a special class of R
kinetic rate laws and its remarkable properties. It is reveale
Sec. 3 that nonlinear phenomenological equations and On
reciprocal relations emerge naturally from the normality struc
if each rate is a homogeneous function of degreeq in its conjugate
force. Furthermore, the phenomenological coefficient matr
identical to the Hessian matrix of the flow potential function
conjugate forces only scaled byq, and the homogeneous prope
transfers exactly from local internal variables to global ave
internal variables.

Rather than the more usually cited condition thatG=2g for the
onset of crack extension, Ricef4g proposed the restriction o
quasi-static extension or healing of Griffith cracks,sG−2gdȧù0,
at any local crack front, whereG is the Irwin energy release ra
andg is the surface free energy. Although inspired by the req
ment of the second law of thermodynamics, the restriction is
an essential thermodynamic requirement. It is shown in Sec.
the restriction becomes essential within the normality struc
with the homogeneous kinetic rate laws. Furthermore, it is
cated that the widely used power laws for cracking are jus
simplest forms of homogeneous kinetic rate laws.

Linear irreversible thermodynamics or phenomenological e
tions along with Onsagerf3g reciprocal relations where thermod
namic fluxes and forces are assumed to be linear depende
related by a symmetric phenomenological coefficient matrix,
provided access to both the understanding and the analysi
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wide range of physical phenomena see, e.g., De Groot and M
f5g. The linear theory is restricted to linear thermodynamic
cesses or else the derivation from equilibrium have to be suffi
small that a linear approximation is valid, and can not be ap
to phenomena which represent large nonlinear deviation
equilibrium states. The nonlinear generalization of the li
theory includes the normality structure of Ricef1,2g briefed in
Sec. 2, the maximum dissipation rate of Zieglerf6g and the On
sager fluxes of Edelenf7,8g briefed in Sec. 6. These generali
tions all lead to certain normality structures. Especially, signifi
progress has to be achieved following the line of Zieglerf6g; see
e.g., Ziegler and Wehrlif9g, Rajagopal and Srinivasaf10–12g,
Puzrin and Houlsbyf13g.

In Sec. 6, it is revealed that the homogenous property of R
kinetic rate laws is consistent with the principle of maximum
sipation rate of Zieglerf6g, and the kinetic rate laws of Ricef1,2g
is just certain specific Onsager fluxes of Edelenf7,8g.

In continuum damage mechanics, damage evolution laws
been the most elusive parts owing to their complex tensoria
high-degree nonlinear properties see, e.g., Krajcinovicf14g and
Lemaitre et al.f15g. In fact, it is the main drive force behind th
research. In Sec. 7, the revealed remarkable properties h
gain a deep insight into the structures of anisotropic damage
lution laws.

2 Normality Structure
Consider a material sample of sizeV. Introduce the specific fre

energyf and its Legendre transformc with respect to strain

f = fs«,q,Hd, c = css,q,Hd = «:
]f

]«
− f s1d

whereq denotes temperature;« denotes any strain tensor, obj
tive and symmetric, that measures deformation from an arb
reference state;s denotes the symmetric conjugate stress
that s :d« is the work per unit volume of the adopted refere
state in any virtual deformation d«; H denotes symbolically th
current pattern of microstructural rearrangement of constitue
ements of the materials. At fixedH, variations ofs andq neces
sarily induce a purely elastic response. Then the first law of
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modynamics leads to the stress–strain relations,
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s =
]fs«,q,Hd

]«
, « =

]css,q,Hd
]s

. s2d

Consider two neighboring patterns of microstructural rearra
ment denoted byH, H+dH. It is assumed that a set of incremen
scalar internal variables dj1,dj2. . . ,djn characterize the speci
local rearrangements, which are represented collectively by dH, at
sites throughout the material sample. The dj’s and dH are related
by

1

V
fa dja = − dpf = dpc s3d

where1

dpf = fs«,q,H + dHd − fs«,q,Hd

dpc = css,q,H + dHd − css,q,Hd s4d

Equation s3d also defines the scalar thermodynamic fo
f1, f2, . . . ,fn scollectively fd conjugate to the variables,

f = fss,q,Hd or f = fs«,q,Hd s5d

The corresponding set of total internal variables,

j = hj1,j2, . . . ,jnj s6d

generally are not state variables in the sense that thermody
state functions are not direct functions ofj, but instead depend o
the path history ofj. Only if the j is one set of explicit sta
variables, the conjugate forces can be determined as

fa = V
]c

]ja

= − V
]f

]ja

, f = fs«,q,jd, c = css,q,jd s7d

Following the second law of thermodynamics, the entropy
duction rate should be always non-negative,

s =
1

qV
faj̇a ù 0 s8d

In the normality structure, a key assumption is that the kinetic
laws of the internal variables take the form

j̇a = j̇asfa,q,Hd, sa = 1,2, . . . ,nd s9d

Therefore, the kinetic rate laws can be related to a flow pote
Q and be recast as

j̇a = V
]Q

]fa

, Q = Qsf,q,Hd =
1

VE0

f

j̇asfa,q,Hddfa s10d

where the integration is carried out at fixedq andH, and define
a direct functionQ of f since each term in the integrand is a to
differential. The inelastic part of a strain increment is, due to
s2d–s4d,

dp« = «ss,q,H + dHd − «ss,q,Hd =
]sdpcd

]s
=

1

V

]fa

]s
dja

s11d

Therefore, the following normality structure holds, notingf
= fss ,q ,Hd,

dp«

dt
=

]Q

]s
, Q = Qss,q,Hd = Qsf,q,Hd s12d

wheret denotes time, since, due to Eq.s10d

]Q

]s
=

1

V

]fa

]s
j̇a. s13d

1In this paper, Einstein’s summation convention is adopted for repeated in
However, if an index range is listed likea in Eq. s9d, the index is considered as a fr

index without the summation convention.

Journal of Applied Mechanics
e-
l

s

ic

-

te

al

l
s.

2.1 Introduction of Averaging Internal Variables z. The se
j generally contains numerous elements. One set of much re
internal variablesz can be introduced as the average meas
ments ofj

z = hz1,z2, . . . ,zmj, zm = zmsj1,j2, . . . ,jn;Vd sm = 1,2, . . . ,m! nd
s14d

whereV indicates averaging over the volume. The thermodyn
forces acting on the averaging variablesz areg1,g2, . . . ,gm scol-
lectively gd. Only if the z is one set of explicit state variables,
conjugate forces can be determined as

gm =
]c

]zm

= −
]f

]zm

, f = fs«,q,zd, c = css,q,zd. s15d

The equivalence that the averaging variablesz can describe th
thermodynamic system characterized byj, is achieved by requi
ing the equality for alldj

gmdzm =
1

V
fadja, s16d

which just the requirement of equal entropy production ra
micro- and macro-levels. Due to Eq.s14d, one obtains

dzm =
]zm

]ja

dja, zm = zmsj,Vd. s17d

Substituting Eq.s17d into Eq. s16d leads to

fa = Vgm

]zmsj,Vd
]ja

= fasg,q,Hd ⇒
]zmsj,Vd

]ja

=
1

V

]fasg,q,Hd
]gm

s18d

Therefore,

żm =
]zm

]ja

j̇a =
1

V
j̇a

]fasg,q,Hd
]gm

=
]Qsg,q,Hd

]gm

s19d

where

Qsg,q,Hd =
1

VE0

fsg,q,Hd

j̇asfa,q,Hddfa = Qsf,q,Hd s20d

2.2 Incremental Dependence ofz on j. Direct relations d
not always exist betweenz andj like in Eq. s14d. However, sinc
the set of incremental internal variables dj determines fully th
internal rearrangement dH, a proper set of incremental averag
internal variables dz can also describe dH with sufficient accu
racy. Thus, it is reasonable to assume such a linear depen
between dz and dj,

dz = R · dj or dzm = Rmadja s21d

which implies that the setz depends not only on the setj but also
its path history. Here it is only assumed that theR exists uniquel
for a given internal rearrangementH. Evidently, the direct rela
tions Eq.s14d can also be written as Eq.s21d with

Rma =
]zm

]ja

s22d

No matter what the relation betweenz andj are, the dissipatio
relation Eq. s16d should always hold. Therefore, the followi
relations are obtained, similar to Eq.s18d

fa = VgmRma ⇒ Rma =
1

V

]fa

]gm

s23d

Therefore, with the potential functionQsg,q ,Hd defined in Eq
es.
s20d, the normality condition similar to Eq.s19d still holds,

MAY 2005, Vol. 72 / 323
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żm = Rmaj̇a =
1

V
j̇a

]fasg,Hd
]gm

=
]Qsg,q,Hd

]gm

s24d

In the following discussion, the incremental relations like Eq.s21d
are generally assumed betweenz and j, and the direct relation
like Eq. s14d are just considered as a special case of the incre
tal relations with Eq.s22d.

3 Normality Structures With Homogeneous Kinetic
Rate Laws

Let us define the dissipation functions at both the microsc
and macroscopic levels,

Fsf,q,Hd =
1

V
faj̇a, Fsg,q,Hd = gmżm s25d

In fact, F /q is just the entropy production rate. The introduct
of the Rice f1,2g kinetic rate laws implies that the dissipat
functionFsf ,q ,Hd is well-defined. On the other hand, Eq.s16d is
just the requirement that the microscopic dissipation func
should be equal to the macroscopic one, i.e.,

Fsf,q,Hd = Fsg,q,Hd s26d
Due to Eqs.s10d ands19d, the dissipation and flow potential fun
tions are related by

Fsf,q,Hd = fa

]Qsf,q,Hd
]fa

, Fsg,q,Hd = gm

]Qsg,q,Hd
]gm

s27d
In view of Eqs. s3d, s11d, and s13d, we have the following
relations,

F = −
dpf

dt
=

dpc

dt
s28d

The Ricef1,2g kinetic rate laws of the internal variables, Eq.s9d,
with each rate being stress dependent only via its conjugate
modynamic force, are corner stones of the normality struc
However, they should be thought of only as an approximation
not as a physical law, as remarked by Ricef2g. In this paper, w
are interested in a special type of kinetic rate laws that each

j̇a is a homogeneous function of degreeq in its conjugate forc
fa,

]j̇asfa,q,Hd
]fa

fa = qj̇asfa,q,Hd sa = 1,2, . . . ,nd s29d

where Euler’s Theorem on homogeneous functions is adopte
definition. It is emphasized that all kinetic rate laws posses
same homogeneous degreeq. With the homogeneous property E
s29d and integration by parts, the flow potentialQ defined in Eq
s10d can be recast as

Qsf,q,Hd =
1

VE0

f

j̇a dfa =
1

V
j̇afa −

1

VE0

f

qj̇a dfa

= Fsf,q,Hd − qQsf,q,Hd s30d
which leads to

Fsf,q,Hd = sq + 1dQsf,q,Hd ⇒ Fsg,q,Hd = sq + 1dQsg,q,Hd,

s31d
due to Eqs.s20d and s26d. This equation along with Eq.s27d
indicate that both Fsf ,q ,Hd, Qsf ,q ,Hd and Fsg,q ,Hd,
Qsg,q ,Hd are homogeneous functions of degreeq+1 in f andg,
respectively,

]F

]fa

fa =
]F

]gm

gm = sq + 1dF,
]Q

]fa

fa =
]Q

]gm

gm = sq + 1dQ.
s32d
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3.1 Nonlinear Phenomenological Equations.Differentiating
Eq. s27d by gm, it follows that

]Fsg,q,Hd
]gm

=
]Qsg,q,Hd

]gm

+ gk

]2Qsg,q,Hd
]gk]gm

s33d

with the summation convention fork sk=1,2, . . . ,md. Using Eqs
s19d and s31d, one obtains

żm = Jmkgk, Jmk =
1

q

]2Qsg,q,Hd
]gm]gk

= Jkm s34d

which are exactly the phenomenological equations and On
reciprocal relations. The phenomenological equations can be
ten in matrix form

ż = Jg, ż = hż1,ż2, . . . ,żmjT, g = hg1,g2, . . . ,gmjT s35d

where the nonlinear phenomenological coefficient matrixJ is a
m3m square matrix, and its element atmth row andkth column
is Jmk. Note that the Hessian matrix of the flow potentialQ in g is
denoted byHsQ,gd and defined as

HsQ,gd = 3
]2Q

]g1
2

]2Q

]g1]g2
¯

]2Q

]g1]gm

]2Q

]g2]g1

]2Q

]g2
2 ¯

]2Q

]g2]gm

] ] � ]

]2Q

]gm]g1

]2Q

]gm]g2
¯

]2Q

]gm
2

4 . s36d

Evidently, the matrixJ is identical to the Hessian matrix scaled
1/q, i.e.,

J =
1

q
HsQ,gd or J =

1

qsq + 1d
HsF,gd s37d

due to Eq.s31d. Since Hessian matrices are always symmetric
Onsager reciprocal relations are incorporated implicitly.

Similarly, Eq.s29d directly leads to the phenomenological eq
tions at the microscopic level,

j̇a = Jafa, Ja =
1

q

]j̇a

]fa

=
1

q

]2Q

]fa
2 , sa = 1,2, . . . ,nd s38d

or in matrix form

j̇ = J̃f, ż = hj̇1,j̇2, . . . ,j̇njT, f = hf1, f2, . . . ,fnjT s39d

where the nonlinear phenomenological coefficient matrixJ̃ is a
n3n square matrix and associated with the Hessian matrixQ
or F by

J̃ =
1

q
HsQ, fd =

1

qsq + 1d
HsF, fd s40d

Note that all the three square matrices are diagonal matrices
the off-diagonal elements ofHsQ, fd are

]2

]fa]fb

=
]j̇b

]fa

= 0, sa Þ bd. s41d

Obviously, theath diagonal element ofJ̃ is just Ja.

3.2 Convexity Of Dissipation.Let us discuss the restricti
of the entropy production inequality on the nonlinear phenom
logical coefficient matrices, see Eq.s8d. In view of Eqs.s35d and
s39d, it is required

F = gTJg= fTJ̃f ù 0 s42d

for any g or f. Thus,J and J̃ should be positive semidefinite, a

thenHsQ, fd, HsQ,gd, HsF , fd, andHsF ,gd should be also posi-
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tive semidefinite. Obviously, If any one of the six matrices
positive semidefinite, the other ones are all positive semidefi
Note that, if the Hessian matrix of a scalar function, sayQsfd, is
positive semidefinite, the function is convex see, e.g., Ma
f16g. Therefore, the convexity of the flow potentialQ or dissipa
tion functionF is required by the entropy production inequa

Note thatJ̃ is a diagonal matrix, and it is positive semidefinite

Ja =
1

q

]2Q

]fa
2 =

1

q

]j̇a

]fa

ù 0, sa = 1,2, . . . ,nd s43d

which require thatj̇a is a monotonic increasing function of t
conjugate forcefa. The requirement can be recast, due to Eq.s29d,

Ja =
1

q

]j̇a

]fa

=
j̇a

fa

ù 0, sa = 1,2, . . . ,nd s44d

which is equivalent to, in the sense of non-negativeness,

faj̇a ù 0, sa = 1,2, . . . ,nd s45d

As compared with Eq.s8d, it is evident that the homogeneo
conditions Eq.s29d require that the intrinsic dissipation inequa
hold for each internal variable orlocally.

Due to Eqs.s25d and s31d, one obtains,

gmżm = Fsg,q,Hd = sq + 1dQsg,q,Hd s46d

Differentiating Eq.s46d by gk and using Eq.s19d, the global ho
mogeneous conditions emerges,

]ża

]gk

ga = qżk or
]ż

]g
·g = qż s47d

which shows that the homogeneous property transfers ex
from local internal variablesj to global internal variablesz, as
compared with Eq.s47d and Eq.s29d. It should be emphasized th
all deduction in this section is fully independent of the spe
relation betweenz and j, so all results hold for both direct a
incremental relations between them.

4 Some Discussions
As mentioned before, with the homogeneous kinetic rate l

the convexity ofQ or F with respect to the conjugate forces
required by the entropy production inequality. Here the conve
of Q or F with respect to stresss is discussed.

Unlike conventional plasticity theory, the endochronic theor
plasticity proposed by Valanisf17,18g is directly based on irre
versible thermodynamics. Here it is shown that the endoch
theory is closely related to the normality structures with hom
neous kinetic rate laws.

4.1 Convexity With Respect To Stress.In general, the con
vexity of Q or F with respect tof or g cannot be converted to th
with respect tos. Although the following parallel normality stru
tures hold,

j̇a =
]Q

]fa

, żm =
]Q

]gm

,
dp«

dt
=

]Q

]s
, s48d

it does not imply thats: dp« is the dissipated energy increm
unlike s1/Vdfadja or gmdzm. Here, we consider a special case
F is a homogeneous function of degreep in s, i.e.,

]F

]s
:s = pF. s49d

In this case,s1/pds can be understood as the thermodyna
p
force conjugate tod «. Differentiating Eq.s49d by s leads to
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]2F

]s2:s +
]F

]s
= p

]F

]s
⇒

]2F

]s2:s = sp − 1d
]F

]s
. s50d

Therefore,

s:
]2F

]s2:s = sp − 1ds:
]F

]s
= sp − 1dpF ù 0 for p ù 1. s51d

Due to the arbitrariness ofs, the fourth-order tensor]2F /]s2

must be positive semidefinite, soF is convex with respect tos.
Thus,Q is also convex with respect tos due toF=sq+1dQ.

4.2 Endochronic Constitutive Framework. In the formula
tion by use of Helmholtz free energyf=fs« ,q ,qd, a set of phe
nomenological internal variablesq are used to specify the curre
state of material internal structure see, e.g., Valanisf18g. The in-
ternal variable set containsm second-order tensors,

q = hq1,q2, . . . ,qmj, qb = qij
b, sp = 1,2, . . . ,md s52d

The evolution equations for the internal variables are

]f

]qb

+ Bb:
dqb

dz
= 0, sb = 1,2, . . . ,md s53d

whereBb is the fourth-order dissipation tensor for thebth interna
variable. The evolution of the variables is with respect to a t
like parameterz which is often refereed to as the intrinsic time
the endochronic time. The intrinsic time is monotonically incr
ing and is defined in terms of the plastic strain. The evolu
equations can be recast as

q̇b = Bb
−1:fb, sb = 1,2, . . . ,md s54d

where q̇b=dqb /dz is the rate of the internal variableqb with
respect to the intrinsic time;fb=−]f /]qb is the thermodynam
generalized force conjugate toqb. In the endochronic theory, t
entropy production inequality is enforced for each internal v
able, i.e.,

fb:q̇b ù 0 sb = 1,2, . . . ,md s55d
It is easy to show that the endochronic framework is exactly
sistent with the normality structure with homogeneous kinetic
laws from the following two viewpoints:

• Taking q at j level. It is shown in Eq.s54d that q̇b is linear
with fb, or each rate of the internal variable is the homo
neous function of degree one in its conjugate force. Eq.s55d
is exactly consistent with Eq.s45d.

• Taking q at z level. Let’s dividej into m groups, and th
bth group of local internal variables are represented on
one averaging variable,qb. Therefore,qb is fully indepen
dent of other elements ofq, which leads to Eq.s55d. Fur-
thermore, Eq.s54d is just the direct result of Eq.s47d if each

rate j̇a is a homogeneous function of degree one in its
jugate forcefa.

Therefore, it is concluded that the endochronic constitu
framework is just a special case of the normality struct
with homogeneous kinetic rate laws.

5 Application to Microcracked Solids
The essential properties of the normality structures with ho

geneous kinetic rate laws have been revealed in the prec
sections. In this section, some further discussions are made
different viewpoints. One of the interesting results is that the
fined normality structure directly leads to the restriction on qu
static extension or healing of Griffith cracks by Ricef4g. Based on
the discussions, it may be concluded that the homogeneous k
rate laws can really be considered as an intrinsic property o

tain materials, especially for microcracked solids.

MAY 2005, Vol. 72 / 325
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Rice f2g has applied the normality structure to a mate
sample containing some distribution of Griffith cracks. Let
locus of all crack fronts be denoted byL and let da be a function
of position alongL describing the amount of local advance of
cracks, and hence constituting the structural rearrangements
assumed that the surfaces of cracking have continuously tu
tangent planes, without abrupt forking or branching. There
Eq. s3d becomes

dpc = − dpf =
1

V
fa dja → 1

VE
L

fF dagdL s56d

where F denotes the thermodynamic crack extension force
unit length alongL. Here the discrete expression of Eq.s3d is
replaced by the continuous expression. Similarly, the flow po
tial defined in Eq.s10d is rewritten as

Q =
1

VE
L
E

0

F

ȧ dF dL s57d

The requirement by the entropy production inequality is, in v
of Eq. s8d,

1

VE
L

fF dagdL ù 0. s58d

As pointed by Ricef2g, at any local crack front,

F = G − 2g s59d

whereG is the Irwin energy release rate andg is the surface fre
energy. Rather than the more usually cited condition thatG=2g
for the onset of crack extension, Ricef4g proposed the restrictio
on quasi-static extension or healing of Griffith cracks,

sG − 2gdȧ ù 0 s60d

at any local crack front. Evidently, the inequalitys60d is only a
sufficient condition for the requirement of the entropy produc
inequality, Eq.s58d, but not a necessary condition for the requ
ment. In other words, the Ricef4g restriction is not a thermod
namic requirement which can only take the form, Eq.s58d. How-
ever, this inequality can be considered as the result of
homogeneous kinetic rate laws. The homogeneous crack k
rate laws in the sense of Eq.s29d can be written as

]ȧ

]F
F = qȧ or ȧ =

F

q

]ȧ

]F
s61d

at each local crack front. The homogeneous kinetic rate laws
to the local intrinsic dissipation inequalitys45d which, in this case
can be rewritten as, at any local crack front,

Fȧ ù 0 or sG − 2gdȧ ù 0 s62d

which is just the Ricef4g restriction on quasi-static growth
Griffith cracks.

It should be noted that the homogeneous condition Eq.s61d
generally holds for cracking due to the widely used power la
The subcritical crack growthDa at a local crack front can often
covered by the following power-law,

ȧ ~ Kn s63d

whereK is the stress intensity factor at the crack front. For
ample,n=13 for the nickel-based superalloy Nimonic 80A a
temperature of 650°Cf19g. The fatigue crack growth can also
described by similar power laws if taking cycle numberN as the
generalized time, e.g., the simple Paris equationda/dN~ sDKdn

where the exponentn can take values as high as 15 to 50
ceramicsf20g. For time-independent cracking, such a power-
can be understood asR-curve. Due toG~K2, the power law ca

be written as
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ȧ = Gq, or ȧ = hGq s64d

where h and qs=n/2d are material parameters. Except for
“ideal” brittle cracking, the surface free energyg is generally
much smaller than the required energy release rateG, i.e., g
!G⇒G<F. Thus, the following crack kinetic rate law posses
a solid physical basis,

ȧ = hFq s65d

which is consistent with the homogeneous conditions61d. Insert-
ing Eq. s65d into Eq. s57d, then yields

Q =
h

sq + 1dVE
L

Fq+1 dL s66d

The time-independent stable crack growth can be describe
R-curve. The stable crack growth conditions are

]G

]a
,

]R

]a
, G = R. s67d

The R-curve, i.e.,R=RsDad, can also be covered by the pow
law

Da = a − a0 ~ Rq. s68d

Broek f21g shows thatq=3.4–5.9 for an Al–Zn–Mg alloy of dif
ferent sheet thicknesses. The power-law can be recast as,
Eq. s67d,

a − a0 = hRq = hGq ⇒ ȧ = hqGq−1Ġ s69d

where h is a scaling constant. WithG<F, such rate laws a
obtained

Da = hFq ⇒ ȧ = hqFq−1Ḟ or
da

dF
= hqFq−1 s70d

which can be considered as the homogeneous rate laws for
independent process, as compared with Eq.s65d. Incidently, the
reasoning chain of this section has also been briefed by Yang
f22,23g.

6 Maximum Dissipation Rate and Onsager Fluxes
In this section, it will be revealed that the homogeneous kin

rate laws can be considered as the requirement by the princi
the maximum dissipation rate of Zieglerf6g. Actually, the intro
duction of the homogeneous kinetic rate laws is inspired by
comparison between the normality structures and the Zieglef6g
orthogonality condition which can be deduced from the princ
of the maximum dissipation rate.

Based on the kinetic rate laws defined in Eq.s9d, the tota
dissipation function can be decomposed as

F = o
a=1

n

Fsad, Fsad =
1

V
faj̇a, sa = 1,2, . . . ,nd. s71d

Ziegler f6g refers to thermodynamic systems or processes in
ing only one coherent rate aselementary, and refers to thermod
namic systems or processes involving more than one coh
rates ascomplex. A complex system or process is referred tocom-
pound if it can be uncoupled into elementary subsystems
well-defined dissipation functions like Eq.s71d. Thus, the intro
duction of the Ricef1,2g kinetic rate laws in reality is to define t
concerned system as a compound system. It is a very s
assumption.

For each elementary subsystem, the orthogonality cond

should hold,
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j̇a = Vlsad]Fsad

]fa

, sa = 1,2, . . . ,nd s72d

where lsad is a Lagrangian multiplier, which is required by t
principle of maximum dissipation rate, see Zieglerf6g. In general
the orthogonality condition is not consistent with the norma
structure with respect to a flow potentialQ, Eq. s10d. In other
words, the Ricef1,2g normality structures generally do not sati
the principle of maximum dissipation rate.

Let us examine the consistency conditions between the
normality relations. Differentiating Eq.s71d by fa, it follows that

V
]Fsad

]fa

= j̇a + fa

]j̇a

]fa

, sa = 1,2, . . . ,nd. s73d

Substituting Eq.s72d into Eq. s73d, the consistency condition
obtained,

fa

]j̇a

]fa

= S 1

lsad − 1Dj̇a, sa = 1,2, . . . ,nd s74d

which implies thatj̇a should be a homogeneous function infa. As
pointed out by Zieglerf6g, even if the local orthogonality cond
tion Eq. s72d holds for each elementary subsystem, it does
imply that the orthogonality condition also holds for the total s
tem, i.e.,

j̇a = Vl
]F

]fa

. s75d

Evidently, the total orthogonality condition can be achieved

requiring that allj̇a are of the same homogeneous degreeq, i.e.,

]j̇asfa,q,Hd
]fa

fa = qj̇asfa,q,Hd sa = 1,2, . . . ,nd, s76d

which require thatlsad be a constant, due to Eq.s74d,

lsad =
1

q + 1
= l sa = 1,2, . . . ,nd, s77d

so the total normality condition holds due to Eqs.s71d ands72d. In
view of Eqs. s10d, s19d, and s31d, the following relations ar
evident,

j̇a = l
]Fsf,q,Hd

]fa

, żm = l
]Fsg,q,Hd

]gm

s78d

which are just Ziegler’s orthogonality conditionsf6g and can als
be considered as the requirement of the principle of maxim
dissipation rate. Therefore, it is concluded that the homogen
condition on the kinetic rate law, Eq.s76d or Eq. s29d, is equiva-
lent to the requirement of the principle of maximum dissipa
rate.

It should be pointed out that the structural rearrangements
level considered by Ricef1,2g are constrained only by the seco
law of thermodynamics. The constraint by the principle of m
mum dissipation rate is not essential at this level and cann
taken as a general thermodynamic principle. It is instead no
more than reasonable classification of behavior for ce
materials.

Rice’s kinetic rate laws of local internal variables, with e
rate being stress dependent only via its conjugate thermodyn
force, are corner stones of the normality structure. If the kin
rate laws are violated, the development of the flow potential a
with the normality structures are invalid. However, even in
case such normality structures can be obtained based on t
sumption of maximum rate of dissipation. The reason for the
consistency is obvious. As pointed by Zieglerf6g, the principle o

maximum dissipation rate is much more general than the orthog
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nality condition. Indeed, Zieglerf6g even suggests that the sec
law of thermodynamics can be covered by the principle of m
mum rate of dissipation.

In general, the kinetic rate laws of local internal variables
the form,

j̇a = j̇asf,q,Hd, s79d
and Rice’s kinetic rate laws defined by Eq.s9d is just a specia

case of Eq.s79d. For linear dependence ofj̇ on f, the phenomeno
logical equations and Onsager reciprocal relations read,

j̇a = Labfb, Lab = Lba s80d

wherea, b=1,2, . . . ,n. For general nonlinear dependence ofj̇ on
f given by Eq.s79d, the nonlinear Onsager reciprocal relation
Edelenf7g read,

]j̇a

]fb

=
]j̇b

]fa

s81d

wherea, b=1,2, . . . ,n. Evidently, if inserting the linear relatio
Eq. s80d into Eq. s81d, the Onsager reciprocal relations Eq.s80d
emerge. The thermodynamic fluxesj̇a satisfying Eq. s81d is
termedOnsager fluxesby f8g. The nonlinear Onsager relatio
Eq. s81d, have been shown byf7,8g to result from the requireme
that the entropy production rates defined by Eq.s8d be a nonne
gative, convex function off with a minimum at the equilibrium
point. Evidently, Rice’s kinetic rate laws defined by Eq.s9d satisfy
the nonlinear Onsager reciprocal relationss81d automatically. In
other words, Rice’s restriction on the kinetic rate laws is in re
the requirement of the nonlinear Onsager reciprocal relation

With the general kinetic rate lawss79d, the nonlinear Onsag
reciprocal relations, Eq.s81d, are just the necessary and suffic

condition that the differentialj̇adfa is an exact differential, i.e

dQ=s1/Vdj̇adfa, so that

j̇a = V
]Q

]fa

, Q = Qsf,q,Hd =
1

VE0

f

j̇asf,q,Hddfa, s82d

which is exactly the same as Eq.s10d but the kinetic rate laws tak
the form of Eq.s79d. Evidently, the normality structure given
Eq. s12d still holds based on Eq.s82d.

7 Damage Evolution Laws
It is usually assumed that there exists a scalar damage di

tion potentialQ in phenomenological damage models, and
the damage evolution laws are derived from it by norm
condition,

V̇ =
]Q

]Y
s83d

where V denotes a damage variable and is considered
second-order tensor here without a loss of generality, andY is the
generalized thermodynamic force conjugate toV. If further as-
suming thatQ is a quadratic function in the conjugate forceY,
e.g.,Q= 1

2Y :J :Y, the phenomenological equation or linear irrev
ible thermodynamics appears from Eq.s83d,

V̇ = J:Y s84d

whereJ is termed damage characteristic tensor of rank four. C
and Lu f24g have shown that many classical damage evolu
laws can be covered by Eq.s84d. The latest damage model of S
et al. f25g also follows this line.

In phenomenological damage models, it is usually assume
the current microstructure of the material sample is uniquely
acterized by the current damage variableV. In this sense, th

o-damage variableV is equivalent toH, the parameter denoting the
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current pattern of microstructural rearrangement of constitue
ements of the materials. Therefore, the conjugate forceY is de-
termined by

Y =
]c

]V
= −

]f

]V
, f = fs«,q,Vd, c = css,q,Vd. s85d

Evidently, the homogeneous local rate laws, Eq.s29d, lead to the
following properties, in view of Eqs.s34d, s47d, ands32d,

V̇ =
]Q

]Y
= J:Y, J =

1

q

]2Q

]Y2,
]Q

]Y
:Y = sq + 1dQ. s86d

It should be emphasized that these properties are irrelevant
specific physical meanings and tonsorial characters of the da
tensor, and the quadratic assumption,Q= 1

2Y :J :Y, is unnecessary
Swoboda and Yangf26g and Yang et al.f27g try hard to solve

the crux under what conditions the phenomenological equ
s84d holds, but their answers are plausible and only confine
second-order fabric tensors. Evidently, the essential conditi
that the local rate laws are homogeneous function, as sho
Eq. s29d. Thus, this crux is concluded in this paper.

7.1 Damage Characteristic Tensor of Microcracked Solids
In this part, microcracks and and their propagation are consi
as the dominant microdefects and energy dissipation mech
in a solid. Indeed, microcracks attracted, and still attract,
interest due to its relevance to the structural reliability and fai
as remarked by Krajcinovicf14g. With the microcracks describe
in Sec. 5, the damage tensor and microcracks are related by
lar to Eq.s21d,

dV =E
L

R da dL s87d

whereR denotes the contribution to the damage tensor due
unit local crack advance per unit length alongL at a certain loca
crack front. Obviously,V andR possess the same tensorial ch
acters. The specific form ofR depends on the specific definition
V. Here it is only assumed that there exists a definite distribu
of R along crack fronts for a given microstructure or rearran
ment, i.e.,R=RsVd. Then Eq.s16d can be recast as, due to E
s56d

Y:dV =
1

VE
L

fFdagdL s88d

which along with Eq.s87d leads to

F = VR:Y . s89d

The damage characteristic tensorJ is then obtained by Eq.s86d
along with Eqs.s66d and s89d

J =
1

q

]2Q

]Y2 = hVqE
L

sR:Ydq−1RR dL s90d

It is easy to verify

Q =
1

q + 1
Y:J:Y s91d

To pursue analytic damage characteristic tensors has been t

Table 1 Damage evolution laws for time

Time-Depend

Local kinetics ȧ=h
Flow potentials Q= h/ sq+1d
Damage evolution laws V̇=J
object of Swoboda and Yangf26g and Yang et al.f27g. Evidently,
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their deduced results are just some special cases of Eq.s90d.

7.2 Time-Independent Damaging Processes.For time-
independent damaging processes, the local kinetics or rate
can be described by Eq.s70d. In this part, let us confine the fo
mulation only to the fully loading processes in which all cr
fronts are propagating. In this case, a quasi flow potential ca
be calculated by Eq.s57d along with the rate laws Eq.s70d,

Q =
1

VE
L
E

0

F

ȧ dF dL =
h

VE
L

FqḞ dL s92d

In view of Eq. s89d,

F = VR:Y ⇒ Ḟ = VR:Ẏ s93d
Then the damage evolution law is obtained by the normality
dition along with Eqs.s92d and s93d

V̇ =
]Q

]Y
= qhVqSE

L

sR:Ydq−1RR dLD:Ẏ s94d

or

V̇ = qJ:Ẏ, J = hVqE
L

sR:Ydq−1RR dL s95d

where theJ is the same as the one defined in Eq.s90d. Evidently,
the damage evolution laws for time-independent processes
the similar structures of the ones for time-dependent process
listed in Table 1. It should be noted that the formulation in
part is only valid for fully loading processes.

8 Conclusion
Rice’s kinetic rate laws of local internal variables, with e

rate being stress dependent only via its conjugate thermody
force, are corner stones of the normality structures and ce
specific Onsager fluxes of Edelenf7,8g. It is revealed in this pap
that nonlinear phenomenological equations and Onsager re
cal relations emerge naturally from the normality structure
each rate is a homogeneous function of degreeq in its conjugate
force. Furthermore, the nonlinear phenomenological coeffi
matrix is identical to the Hessian matrix of the flow poten
function in conjugate forces only scaled byq, and the homoge
neous property transfers exactly from local internal variable
global average internal variables.

Within the framework of the normality structures with the
mogeneous rate laws, the second law of thermodynamics re
the convexity of the flow potentials and dissipation functions,
the second law also lead to the refined version of Griffith crite
proposed by Ricef4g, sG−2gdȧù0, for microcracked solids. Fu
thermore, the revealed remarkable properties help us gain a
insight into the structures of anisotropic damage evolution l
The unsolved crux on the conditions of the widely used phen
enological equations in continuum damage mechanics, rais
Swoboda and Yangf26g and Yang et al.f27g, is also easily con
cluded in this framework.

Thermodynamic systems formulated within the framewor
normality structures by Ricef1,2g are certain compound syste
of Ziegler f6g. The homogeneous property of the rate law

endent and independent processes

t processes Time-independent processes

Da=hFq

LFq+1dL Q= h/VeLFqḞdL

V̇=qJ : Ẏ
dep

en

Fq

Ve

:Y
equivalent to the constraint by the principle of maximum dissipa-
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tion rate f6g. Such a property or constraint is not essentia
compared with the second law of thermodynamics, but it re
represents a broad class of inelastic behaviors, suc
microcracking-dominated damaging.
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An Efficient and Accurate
Numerical Method of Stress
Intensity Factors Calculation of a
Branched Crack
Based on the analytical solution of Crouch to the problem of a constant discontinuity in
displacement over a finite line segment in an infinite elastic solid, in the present paper, the
crack-tip displacement discontinuity elements, which can be classified as the left and the
right crack-tip elements, are presented to model the singularity of stress near a crack tip.
Furthermore, the crack-tip elements together with the constant displacement discontinuity
elements presented by Crouch and Starfied are used to develop a numerical approach for
calculating the stress intensity factors (SIFs) of general plane cracks. In the boundary
element implementation, the left or the right crack-tip element is placed locally at the
corresponding left or right crack tip on top of the constant displacement discontinuity
elements that cover the entire crack surface and the other boundaries. The method is
called the hybrid displacement discontinuity method (HDDM). Numerical examples are
given and compared with the available solutions. It can be found that the numerical
approach is simple, yet very accurate for calculating the SIFs of branched cracks. As a
new example, cracks emanating from a rhombus hole in an infinite plate under biaxial
loads are taken into consideration. The numerical results indicate the efficiency of the
present numerical approach and can reveal the effect of the biaxial load on the SIFs. In
addition, the hybrid displacement discontinuity method together with the maximum cir-
cumferential stress criterion (Erdogan and Sih) becomes a very effective numerical ap-
proach for simulating the fatigue crack propagation process in plane elastic bodies under
mixed-mode conditions. In the numerical simulation, for each increment of crack exten-
sion, remeshing of existing boundaries is not required because of an intrinsic feature of
the HDDM. Crack propagation is simulated by adding new boundary elements on the
incremental crack extension to the previous crack boundaries. At the same time, the
element characters of some related elements are adjusted according to the manner in
which the boundary element method is implemented.@DOI: 10.1115/1.1796449#
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1 Introduction

Among the different configurations of branched cracks, the
gly branched crack, as shown in Fig. 1, has received the m
attention in the literature. There have been many attempts@1–12#
to solve this problem for arbitrarily values ofa/b, the ratio of the
half-crack lengtha of the main crack to the branch crack lengthb.
Of particular physical interest is the limiting case asa/b→`,
where the solution@3,4# has been used to predict the initial ang
of the branching of a crack in brittle solids under mixed-mo
loading.

The majority of the analyses on branched cracks were base
the Muskhelishvili potential formulation and conformal mappi
of the branched crack geometry. With the development of num
cal computational techniques, numerical methods, in particu
finite element methods and boundary element methods are
extensively in solving the crack problems. It is well known th
how to model the crack is the key issue in the analyses. Am
several elastic two-dimensional crack modeling strategies by
boundary element methods, there exist the multidomain form
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septe
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the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Enginee
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and
be accepted until four months after final publication of the paper itself in the AS
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tion @13#, the stress formulation with regularization@14#, and the
dual boundary element method@15,16#. For each formulation, in
order to model the singularity of stress near a crack tip, options
are available such as building in the crack-tip stress singularity
@17#, using the quarter-point boundary element@13#, and strategi-
cally refining the near-crack-tip nonsingular element. Further de-
tails on elastic crack analysis by the boundary element method ar
given in Refs.@18#, @19#.

Even though much achievement has been made in crack
modeling techniques, both simple and very accurate crack
modeling techniques still need to be developed, in particular for
branched crack problems and crack propagation problems. Th
displacement discontinuity boundary element method@20,21# is
very well suited for analyzing plane crack problems because
physically, one can imagine a displacement discontinuity as a line
crack whose opposing surfaces are displaced relative to one a
other. Based on the analytical solution@21# to the problem of a
constant discontinuity in displacement over a finite line segmen
in an infinite elastic solid, in the present paper, the crack-tip dis-
placement discontinuity elements, which can be classified as th
left and the right crack-tip displacement discontinuity elements,
are presented to model the singularity of stress near a crack tip
Furthermore, the crack-tip elements together with the constan
displacement discontinuity elements presented by Crouch an
Starfied are used to develop a numerical approach for calculatin
the stress intensity factors~SIFs! of general plane cracks. In the
boundary element implementation, the left or the right crack-tip
element is placed locally at the corresponding left or right crack
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tip on top of constant displacement discontinuity elements t
cover the entire crack surface and the other boundaries.
method is called the hybrid displacement discontinuity meth
~HDDM!. Numerical examples are given and compared with
available solutions. It can be seen that the numerical approac
simple, yet very accurate for calculating the SIFs of branch
cracks. As a new example, cracks emanating from a rhombus
in an infinite plate under biaxial loads are taken into account. T
numerical results indicate the efficiency of the present numer
approach and can reveal the effect of the biaxial load on the S

On the application of boundary element methods to cra
propagation analysis, the first attempt to automatically mo
crack propagation under mixed-mode conditions was given
Ingraffea, Blandford, and Liggett@22# for two-dimensional prob-
lems. They used the multiregion method@13# together with the
maximum circumferential stress criterion to calculate the direct
of crack propagation. Aliabadi@23# pointed out that the difficulty
with the multiregion method is that the introduction of artifici
boundaries to divide the regions is not unique, and that thus
not easy to implement it in an automatic procedure. In an inc
mental crack extension analysis, these artificial boundaries m
be repeatedly introduced for each increment of crack extension
this paper, the hybrid displacement discontinuity method toge
with the maximum circumferential stress criterion@24# becomes a
very effective numerical approach for simulating the fatigue cra
propagation process in plane elastic bodies under mixed-m
conditions. In the numerical simulation, for each increment
crack extension, remeshing of existing boundaries is not requ
because of an intrinsic feature of the HDDM. Crack propagat
is simulated by adding new boundary elements on the increme
crack extension to the previous crack boundaries. At the sa
time, the element characters of some related elements are adj
according to the manner in which the boundary element metho
implemented. As an example, the fatigue propagation proces
cracks emanating from a circular hole in a plane elastic plat
simulated using the numerical simulation approach.

By the way, it is pointed out here that finite element simulatio
@25,26# when used to analyze crack problems have to face la
computational problems connected with the discretization of
continuum into finite elements, particularly when some crac
propagate, thus changing the interior boundaries of the solids

2 The Hybrid Displacement Discontinuity Method
The numerical approach presented in this paper for calcula

the SIFs of branched cracks consists of the constant displace

Fig. 1 A singly branched crack
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discontinuity elements presented by Crouch and Starfield@20# and
the crack-tip displacement discontinuity elements propos
herein.

2.1 Theoretical Foundation of the Constant Displacement
Discontinuity Element. The problem of a constant displace-
ment discontinuity over a finite line segment in the~x, y! plane of
an infinite elastic solid is specified by the condition that the di
placements be continuous everywhere except over the line s
ment in question. The line segment may be chosen to occup
certain portion of thex axis, say the portionuxu,a, y50. If we
consider this segment to be a line crack, we can distinguish its t
surfaces by saying that one surface is on thepositiveside of y
50, denotedy501 , and the other is on thenegativeside, de-
notedy502 . In crossing from one side of the line segment to th
other, the displacements undergo aconstantspecified change in
valueDi5(Dx ,Dy).

The displacement discontinuitiesDi are defined as the differ-
ence in displacement between the two sides of the segment:

Dx5ux~x,02!2ux~x,01!,
(1)

Dy5uy~x,02!2uy~x,01!.

Becauseux anduy are positive in the positivex andy coordinate
directions, it follows thatDx andDy are positive as illustrated in
Fig. 2. The solution to the subject problem is given by Crouc
@21#. The displacements and stresses can be written as

ux5Dx@2~12n!F3~x,y,a!2yF5~x,y,a!#

1Dy@2~122n!F2~x,y,a!2yF4~x,y,a!#,
(2)

uy5Dx@~122n!F2~x,y,a!2yF4~x,y,a!#

1Dy@2~12n!F3~x,y,a!2yF5~x,y,a!#,

and

sxx52GDx@2F4~x,y,a!1yF6~x,y,a!#

12GDy@2F5~x,y,a!1yF7~x,y,a!#,

syy52GDx@2yF6~x,y,a!#

12GDy@2F5~x,y,a!2yF7~x,y,a!#, (3)

sxy52GDx@2F5~x,y,a!

1yF7~x,y,a!#12GDy@2yF6~x,y,a!#.

FunctionsF2 throughF7 in these equations are

Fig. 2 Schematic of constant displacement discontinuity com-
ponents Dx and Dy
MAY 2005, Vol. 72 Õ 331



F2~x,y,a!5 f ,x5
1

4p~12n!

3@ lnA~x2a!21y22 lnA~x1a!21y2#,

F3~x,y,a!5 f ,y52
1

4p~12n! Farctan
y

x2a
2arctan

y

x1aG ,
F4~x,y,a!5 f ,xy5

1

4p~12n! F y

~x2a!21y22
y

~x1a!21y2G ,
(4)

F5~x,y,a!5 f ,xx52 f ,yy

5
1

4p~12n! F x2a

~x2a!21y22
x1a

~x1a!21y2G ,
F6~x,y,a!5 f ,xyy52 f ,xxx

5
1

4p~12n! F ~x2a!22y2

$~x2a!21y2%22
~x1a!22y2

$~x1a!21y2%2G ,
F7~x,y,a!5 f ,yyy52 f ,xxy

5
2y

4p~12n! F x2a

$~x2a!21y2%22
x1a

$~x1a!21y2%2G ,
where

f ~x,y!5
21

4p~12n! FyS arctan
y

x2a
2arctan

y

x1aD
2~x2a!lnA~x2a!21y21x1a ln A~x1a!21y2G .

(5)

G and n in these equations are shear modulus and the Poisso
ratio, respectively. Equations~2! and ~3! are used by Crouch and
Starfield @20# to set up a constant displacement discontinui
boundary element method.

2.2 Basic Formulas Required to Set Up a Higher Displace-
ment Discontinuity Element. Now, consider arbitrary displace-
ment discontinuity distributions along element length 2a, as
shown in Fig. 3:

Di5Di~j! ~ i 51,2! (6a)

or

Dx5Dx~j!, Dy5Dy~j!. (6b)

Based on the solution of the constant discontinuity in displac
ment given by Crouch@21#, the displacements and stresses at

Fig. 3 Schematic of an arbitrary displacement discontinuity
function and its differential element
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point ~x, y! due to adifferential elementwith its length 2dj and its
centerj ~see Fig. 3! can be obtained from a differential viewpoint:

dux5Dx~j!@2~12n!T3~x,y,j,dj!2yT5~x,y,j,dj!#

1Dy~j!@2~122n!T2~x,y,j,dj!2yT4~x,y,j,dj!#,
(7)

duy5Dx~j!@~122n!T2~x,y,j,dj!2yT4~x,y,j,dj!#

1Dy~j!@2~12n!T3~x,y,j,dj!2yT5~x,y,j,dj!#,

and

dsxx52GDx~j!@2T4~x,y,j,dj!1yT6~x,y,j,dj!#

12GDy~j!@2T5~x,y,j,dj!1yT7~x,y,j,dj!#,

dsyy52GDx~j!@2yT6~x,y,j,dj!#

12GDy~j!@2T5~x,y,j,dj!2yT7~x,y,j,dj!#, (8)

dsxy52GDx~j!@2T5~x,y,j,dj!

1yT7~x,y,j,dj!#12GDy~j!@2yT6~x,y,j,dj!#.

FunctionsT2 andT7 in these equations are given by

T2~x,y,j,dj!/dj5V2~x,y,j!52
1

4p~12n!

x2j

~x2j!21y2 ,

T3~x,y,j,dj!/dj5V3~x,y,j!52
1

4p~12n!

y

~x2j!21y2 ,

T4~x,y,j,dj!/dj5V4~x,y,j!5
2y

4p~12n!

x2j

$~x2j!21y2%2 ,
(9)

T5~x,y,j,dj!/dj5V5~x,y,j!5
1

4p~12n!

~x2j!22y2

$~x2j!21y2%2 ,

T6~x,y,j,dj!/dj5V6~x,y,j!

5
2

4p~12n! H ~x2j!3

@~x2j!21y2#3

2
3~x2j!y2

@~x2j!21y2#3J ,

T7~x,y,j,dj!/dj5V7~x,y,j!

5
2y

4p~12n! H 3~x2j!2

@~x2j!21y2#3

2
y2

@~x2j!21y2#3J .

Obviously, if the following integrals are obtained,

Ui j ~x,y,a!5E
2a

a

D j~j!Vi~x,y,j!dj ~ i 52,3, . . . ,7; j 51,2!

(10)

the displacements and stresses at a point~x, y! due to the whole
element can be written as

ux5@2~12n!U3x~x,y,a!2yU5x~x,y,a!#

1@2~122n!U2y~x,y,a!2yU4y~x,y,a!#,
(11)

uy5@~122n!U2x~x,y,a!2yU4x~x,y,a!#

1@2~12n!U3y~x,y,a!2yU5y~x,y,a!#,

and

sxx52G@2U4x~x,y,a!1yU6x~x,y,a!#

12G@2U5y~x,y,a!1yU7y~x,y,a!#,
Transactions of the ASME



syy52G@2yU6x~x,y,a!#

12G@2U5y~x,y,a!2yU7y~x,y,a!#,
(12)

sxy52G@2U5x~x,y,a!

1yU7x~x,y,a!#12G@2yU6y~x,y,a!#.

The formulas~9!–~12! are the basic formulas required to set up
higher displacement discontinuity element.

2.3 Crack-Tip Displacement Discontinuity Elements.
Here, the basic formulas~9!–~12! are used to set up the crack-t
displacement discontinuity elements, which can be classifie
the left and the right crack-tip displacement discontinuity e
ments, to deal with general plane crack problems. The schem
of the left crack-tip displacement discontinuity element is sho
in Fig. 4. Its displacement discontinuity functions are chosen

Dx5HsS a1j

a D 1/2

, Dy5HnS a1j

a D 1/2

, (13)

whereHs andHn are the tangential and normal displacement d
continuity quantities at the center of the element, respectiv
Here, it is noted that the element has the same unknowns a
two-dimensional constant displacement discontinuity element.
it can be seen that the displacement discontinuity functions
fined in Eqs.~13! can model the displacement field around t
crack tip. The stress field determined by the displacement dis
tinuity functions~13! possessesr 21/2 singularity around the crack
tip.

After substituting Eqs.~13! into ~10!, one has

Ui j ~x,y,a!5H jE
2a

a S a1j

a D 1/2

Vi~x,y,j!dj5H jBi~x,y,a!

~ i 52,3, . . . ,7; j 51,2!, (14)

where

Bi~x,y,a!5E
2a

a S a1j

a D 1/2

Vi~x,y,j!dj ~ i 52,3, . . . ,7!.

(15)

After substituting Eq.~14! into Eqs.~11! and~12!, one can obtain

ux5Hs@2~12n!B3~x,y,a!2yB5~x,y,a!#

1Hn@2~122n!B2~x,y,a!2yB4~x,y,a!#,
(16)

uy5Hs@~122n!B2~x,y,a!2yB4~x,y,a!#

1Hn@2~12n!B3~x,y,a!2yB5~x,y,a!#,

and

Fig. 4 Schematic of the left crack-tip displacement discontinu-
ity element
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sxx52GHs@2B4~x,y,a!1yB6~x,y,a!#

12GHn@2B5~x,y,a!1yB7~x,y,a!#,

syy52GHs@2yB6~x,y,a!#

12GHn@2B5~x,y,a!2yB7~x,y,a!#,
(17)

sxy52GHs@2B5~x,y,a!

1yB7~x,y,a!#12GHn@2yB6~x,y,a!#.

It can be seen by comparing Eqs.~16! and ~17! with Eqs. ~2!
and ~3! that the displacements and stresses due to the crack-tip
displacement discontinuity possess the same forms as those due to
a constant displacement discontinuity, withFl(x,y,a) ( i
52,3, . . . ,7) inEqs. ~2! and ~3! being replaced byBi(x,y,a) ( i
52,3, . . . ,7), andDx and Dy by Hs and Hn , respectively. This
enables the boundary element implementation to be easy.

The computation ofBi ( i 52,3, . . . ,7) inEqs. ~16! and ~17!
will be carried out in the following from four respects.

~1! For an arbitrary pointP(x,y) (yÞ0), generally, the analyti-
cal solutions of integrals~15! are obtained difficultly. In this pa-
per, the Gauss numerical integration is used to calculate them. The
following transformation is made:

j5at, (18)

and then

Bi~x,y,a!5E
2a

a S a1j

a D 1/2

Vi~x,y,j!dj

5aE
21

1

Vi~x,y,at!~11t !1/2dt ~ i 52,3, . . . ,7!.

(19)

Therefore,Bi(x,y,a) can be given by

Bi~x,y,a!5a(
j

Vi~x,y,az j !~11z j !
1/2wj ~ i 52,3, . . . ,7!,

(20)

wherez i andwi are the Gauss point coordinates and correspond-
ing weighed factors, respectively.

~2! For an arbitrary pointP(x,y) (y50), integralsB2 , B4 ,
B5 , B6 , andB7 in Eq. ~14! can be solved analytically. Forx.
2a,

B2~x,0,a!5
21

4p~12n! H 22&1Ax1a

a
lnUAx1a1A2a

Ax1a2A2a
UJ ,

B4~x,0,a!50,

B5~x,0,a!5
1

4p~12n! H &x2a
2

1

2Aa~x1a!
lnUAx1a1A2a

Ax1a2A2a
UJ ,

(21)

B6~x,0,a!5
1

4p~12n! H &

~x2a!22
&

2~x22a2!

2
1

4Aa~x1a!3/2
lnUAx1a1A2a

Ax1a2A2a
UJ ,

B7~x,0,a!50.

While for x,2a, let r denote the distance from the crack tip
along the crack extension line, i.e.,

r 5uxu2a. (22)

Then
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,

B2~x,0,a!5
21

4p~12n! H 22&12Ar

a
arctanA2a

r J ,

B4~x,0,a!50,

B5~x,0,a!5
1

4p~12n! H 2
&

r 12a
1

1

Aar
arctanA2a

r J ,

(23)

B6~x,0,a!5
1

4p~12n! H &

~r 12a!22
&

2r ~r 12a!

2
1

2Aar3/2
arctanA2a

r J ,

B7~x,0,a!50.

~3! For an arbitrary pointP(x,y) (y50), the integralB3 in Eq.
~14! is

B3~x,0,a!55
0, uxu.a

1
1

4~12n!
, y501 , uxu,a

2
1

4~12n!
, y502 , uxu,a

(24)

~4! From Eqs.~21! and ~24!, one can obtain the element se
effects easily:

B2~0,0,a!5
21

4p~12n! F22&1 lnU11&

12&
UG ,

B3~0,0,a!5H 1
1

4~12n!
, y501

2
1

4~12n!
, y502

B4~0,0,a!50,
(25)

B5~0,0,a!5
1

4p~12n! F2&2
1

2
lnU11&

12&
UGY a,

B6~0,0,a!5
1

4p~12n! F2
3&

2
2

1

4
lnU11&

12&
UGY a2,

B7~0,0,a!50.

For the right crack-tip displacement discontinuity element, sim
formulas can be obtained and do not be given here.

2.4 Implementation of the Present Numerical Approach
and Some Illustrations. Crouch and Starfied@20# used Eqs.~2!
and~3! to set up the constant displacement discontinuity boun
element method~BEM!. Similarly, we can use Eqs.~16! and~17!
to set up boundary element equations associated with the cra
elements. The constant displacement discontinuity elements
sented by Crouch and Starfield@20# together with the crack-tip
elements presented in this paper are easily combined to fo
very effective numerical approach for calculating the SIFs of g
eral plane cracks. In the boundary element implementation
left or the right crack-tip element is placed locally at the cor
sponding left or right crack tip on top of the constant displacem
discontinuity elements that cover the entire crack surface and
other boundaries. The method is called as the HDDM.

The hybrid displacement discontinuity method presented in
paper differs from hybrid boundary element codes@27# that, when
used to analyze the SIFs of a branched crack, require the pla
be modeled as a finite plate of huge dimensions by fictitious s
334 Õ Vol. 72, MAY 2005
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elements@20#, while the crack could be modeled by displacement
discontinuity elements. This brings about a higher computational
effort.

Pan @28# pointed out that ‘‘the displacement discontinuity
method@20# is quite suitable for cracks in infinite domain where
there is no no-crack boundary. However, it alone may not be ef-
ficient for finite domain problems, since the kernel functions in
DDM involve singularities with order higher than those in the
traditional displacement BEM.’’ The hybrid displacement discon-
tinuity method is used by the author to calculate the SIFs of com-
plex plane cracks in a finite plate~e.g., a center slant cracked
rectangular plate subjected to tension load; cracks emanating from
an elliptical hole in a rectangular plate under biaxial loads!. These
numerical results show that the present numerical approach is als
simple, yet very accurate. Because of the limitation to the length
of this paper, these results are not reported here.

By the way, it is pointed out here that the displacement discon-
tinuity boundary element program listed in Ref.@20# has one re-
striction concerning the placement of boundary elements in a
problem involving symmetry: a boundary element cannotlie
along a line of symmetry. Obviously, this restriction means that
the symmetric conditions about thex-axis andy-axis for the crack
problems shown in Figs. 7–9 cannot be used and that the sym
metric condition about thex-axis for the crack problem shown in
Fig. 5 cannot be used also. This leads to the result that when th
program is used to analyze the crack problems shown in Figs. 5
7, 8, and 9, it is not much more efficient than the hybrid displace-
ment discontinuity method, which has no such restriction.

3 Computational Formulas of Stress Intensity Factors
and Simple Test Examples

The objective of many analyses of linear elastic crack problems
is to obtain the SIFsK I andK II . Based on the displacement fields
around the crack tip, the following formulas exist:

K I52
GA2p

4~12n!
lim
r→0

$Dy~r !/r 0.5%,

(26)

K II52
GA2p

4~12n!
lim
r→0

$Dx~r !/r 0.5%,

whereDy(r ) andDx(r ) are the normal and shear components of
displacement discontinuity at a distancer from the crack tip~s!.
For practical purposes, the limits in Eq.~26! can be approximated
by simply evaluating the expression for a fixed value ofr that is
small in relation to the size of the crack. By means of the crack-tip
displacement discontinuity functions defined in Eqs.~13!, thus,
the approximate formulas of the SIFsK I andK II can be obtained
by letting r in Eqs. ~26! be a, one-half length of the crack-tip
element:

K I52
A2pGHn

4~12n!Aa
, K II52

A2pGHs

4~12n!Aa
. (27)

To prove the efficiency of the suggested approach, two simple
test examples are given here. An infinite plate with a through
crack of length 2a that is subjected to uniform stress normal to the
crack plane at distances sufficiently far away from the crack, is
taken to compute the stress intensity factorK I . Owing to its sym-
metry, only half is taken for the analysis. Table 1 gives the ratio of
the numerical solution to the analytical stress intensity factorK I as

Table 1 Variation of SIFs for a center crack in an infinite plate
with the number of elements

Number of elements 3 5 7 10 15 25

K1 /sApa 0.9621 0.9775 0.9838 0.9885 0.9921 0.995
Transactions of the ASME



Table 2 Variation of SIFs for a center crack in an infinite plate with the ratio of the size of the crack-tip element to that of constant
elements

acrack/aconstant 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

K1 /sApa 1.2048 1.1690 1.1394 1.1143 1.0928 1.0742 1.0578 1.0433 1.0303
acrack/aconstant 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45

K1 /sApa 1.0186 1.0080 0.9984 0.9896 0.9815 0.9741 0.9671 0.9607 0.9547
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the number of elements is increased. In this calculation, the cr
tip element and constant elements are taken to be equal in
Table 2 gives the ratio of the numerical solution to the analyt
stress intensity factorK I as the ratio of the size of the crack-t
element to the one of constant elements is changed. Here
sizes of the constant elements are taken to be equal and the
number of elements is 11. It can be seen from Table 1 that a
result for the stress intensity factorK I can be obtained using th
crack-tip element. It can be seen from Table 2 that the ratio o
size of the crack-tip element to that of constant elements mu
taken to be from 1.0 to 1.3 to obtain a good result with a rela
error of less than 3%. This can be regarded as the limitation to
approach presented in the present article.

An inclined crack plate with a through crack of length 2a that
is subjected to uniform stress at distances sufficiently far a
from the crack is taken as another example to compute the SIFK I
andK II , whose exact solution is available@29#. Here, the SIFsK I
andK II calculated by the present study are normalized by

K I5F I /~sApa sin2 b!, K II5F II /~sApa sinb cosb!,
(28)

whereb is the angle between the load and the crack plane. S
numerical results are given in Table 3. In this calculation,
crack-tip elements and constant elements are taken to be the
size and the total number of elements is taken to be 20, i.e.,
crack-tip elements and 18 constant elements. It is observed
Table 3 that regardless of the size of the angleb between the load
and the crack plane, the present numerical results of the SIFK I
andK II are in good agreement with the analytical results.

4 Numerical Examples
From the 1970s to today, many researchers have paid atte

to branched cracks@1–12#, in particular, a singly branched crac
The investigation approaches for these include mostly
Muskhelishvili potential formulation@1,9,30#, the conformal map
ping method@6–8#, the dislocation distribution method@12#, and
numerical methods, mostly, finite element methods@11,19# and
boundary element methods@16,19,31,32#. Here, the present nu
merical approach is used to calculate the SIFs of branched c
in an infinite sheet and the present numerical results are comp
with the available solutions. Evidently, Bueckner’s principle c
be used in these analyses.

4.1 A Singly Branched Crack. First, the boundary-elemen
method presented in this article is used to calculate the SIFs
singly branched crack~see Fig. 1! in an infinite sheet under un
form tension. The SIFs at the branched crack tipB are normalized
by

F IB5K IB /sApc, F IIB5K IIB /sApc (29)

Regarding the discretization of boundary elements, the num
of elements discretized on the branched crack is varied withb/a
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~see Table 4!, and the other boundaries are discretized accordi
to the limitation condition that all boundary elements have a
proximately the same length. For the case ofb/a50.01, for ex-
ample, 2000 elements, which have the same size 2a/2000, are
discretized on the main crackAO, and 10 elements, which have
the same sizeb/10, are discretized on the branched crackOB.
Here, 2a/20005b/10. The element number at the crack tipA is
denoted by 1 and the element number at the crack tipB is denoted
by 2010. Thus, the element 1 and the element 2010 are the left
the right crack-tip elements, respectively. The elements who
numbers are from 2 to 2009 are all common elements.

Table 5 shows the SIFs at the branched crack tipB obtained in
the present article as the branched angleu andb/a are changed.
For comparative purposes, Table 6 lists the analytical results
tained by Kitagawa et al.@6,7# ~also see p. 352 in Ref.@29#! by
means of the conforming mapping method, whose conjecture
been proven by Lo@9# through the Muskhelishvili potential for-
mulation. It can be seen from Tables 5 and 6 that the pres
numerical results are in extremely good agreement with those
Kitagawa et al.@6,7#.

For a small singly branched crack (b/a50.01), it can be seen
by comparing the SIFs given from the present study with those
Kitagawa et al.@6,7# ~also see p. 353 in the Ref.@29#! that the
agreement is, respectively, within 0.7% and 4% for the stress
tensity factorsF IB andF IIB ~see Table 7!.

4.2 A Symmetrically Branched Crack. Second, the
present numerical method is used to calculate the SIFs of a s
metrically branched crack~see Fig. 5! in an infinite sheet under
uniform tension. The SIFs at the main crack tipA and at the
branched crack tipB are normalized by

F I
A5K IA /sApc,

(30)

F I
B5K IB /sApc, F II

B5K IIB /sApc.

Regarding the discretization of boundary elements, the numbe
elements discretized on a branched crack is varied withb/a ~see
Table 8!, and the other boundaries are discretized according to
limitation condition that all boundary elements have approx
mately the same length. Table 9 shows the present numerical
sults of the normalized SIFs at the main crack tipA and at the
branched crack tipB as the branched angleu andb/a are changed.
For comparative purposes, Table 9 lists also the normalized S
given by Kitagawa et al.@6,7# ~also see p. 374 in Ref.@29#! by
means of the conforming mapping method, whose conjecture
been proven by Lo@9# through the Muskhelishvili potential for-
mulation. It is found from Table 9 that the agreement is, respe
tively, within 1%, 2.4%, and 3% for the SIFsF I

A , F I
B , andF II

B .

4.3 A Skew-Symmetric Branched Crack. Third, the SIFs
of a skew-symmetric branched crack in an infinite sheet und
Table 3 Variation of SIFs for an inclined center crack in an infinite plate with the angle b

b 5 deg 10 deg 20 deg 30 deg 40 deg 45 deg 50 deg 60 deg 70 deg 80 deg 85 deg

F I 0.9895 0.9898 0.9896 0.9898 0.9898 0.9885 0.9897 0.9897 0.9898 0.9897 0.9896
F II 0.9896 0.9897 0.9897 0.9897 0.9897 0.9885 0.9897 0.9897 0.9897 0.9897 0.9896
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uniform tension~see Fig. 6! are analyzed by means of the prese
numerical approach. The SIFs at a branched crack tip are nor
ized by

F I5K I /sApc, F II5K II /sApc. (31)

Regarding the discretization of boundary elements, the numb
elements discretized on a branched crack is varied withb/a ~see
also Table 8!, and the other boundaries are discretized accord
to the limitation condition that all boundary elements have
proximately the same length. Table 10 shows the SIFs at
branched crack tip given by the present study and by Kitag
et al. @6,7# ~also see p. 362 in Ref.@29#! as the branched angleu
andb/a are changed. Evidently, the present numerical results
in extremely good agreement with those obtained by Kitaga
et al. @6,7# by using the conforming mapping method.

4.4 A Doubly Symmetrically Branched Crack. Finally,
the SIFs of a doubly symmetrically branched crack in an infin
sheet under uniform tension~see Fig. 7! are analyzed by means o

Table 4 Variation of the number of elements discretized on a
branched crack for a singly branched crack with b Õa

b/a
0.01 0.05 0.1 0.2 0.4 0.5 0.6 0.8 1.0 1.5 2.

10 10 15 30 30 30 30 30 30 45 60

Table 5 Normalized SIFs at the branched crack tip B
for a singly branched crack in the present study

b/a

15 deg 30 deg 45 deg 60 deg

F IB F IIB F IB F IIB F IB F IIB F IB F IIB

0.01 0.9654 0.1614 0.8709 0.2995 0.7309 0.3964 0.5665 0.4
0.05 0.9578 0.1938 0.8410 0.3572 0.6693 0.4667 0.4710 0.5
0.1 0.9530 0.2131 0.8234 0.3918 0.6332 0.5096 0.4140 0.5
0.2 0.9487 0.2349 0.8065 0.4314 0.5978 0.5595 0.3573 0.6
0.4 0.9448 0.2554 0.7938 0.4689 0.5725 0.6076 0.3185 0.6
0.5 0.9439 0.2607 0.7915 0.4786 0.5682 0.6197 0.3127 0.6
0.6 0.9433 0.2644 0.7902 0.4852 0.5661 0.6277 0.3107 0.6
0.8 0.9427 0.2688 0.7894 0.4929 0.5655 0.6363 0.3120 0.6
1.0 0.9425 0.2710 0.7896 0.4966 0.5667 0.6395 0.3158 0.6
1.5 0.9438 0.2729 0.7926 0.4992 0.5717 0.6388 0.3260 0.6
2.0 0.9448 0.2726 0.7950 0.4981 0.5761 0.6351 0.3330 0.6

Table 6 Normalized SIFs at the crack tip B for a singly
branched crack by Kitagawa et al. †6,7‡

b/a

15 deg 30 deg 45 deg 60 deg

F IB F IIB F IB F IIB F IB F IIB F IB F IIB

0.1 0.9540 0.2120 0.8245 0.3895 0.6339 0.5053 0.4106 0.5
0.2 0.9496 0.2346 0.8076 0.4307 0.5983 0.5578 0.3583 0.5
0.4 0.9466 0.2556 0.7957 0.4690 0.5741 0.6072 0.3189 0.6
0.6 0.9457 0.2648 0.7927 0.4858 0.5679 0.6283 0.3112 0.6
0.8 0.9456 0.2694 0.7922 0.4940 0.5678 0.6375 0.3128 0.6
1.0 0.9457 0.2718 0.7928 0.4981 0.5694 0.6413 0.3171 0.6
1.5 0.9463 0.2737 0.7951 0.5008 0.5744 0.6414 0.3273 0.6
2.0 0.9468 0.2733 0.7971 0.4996 0.5785 0.6377 0.3340 0.6

Table 7 Normalized SIFs at the small branch crack tip B for a
singly branched crack „b ÕaÄ0.01…

u ~deg!

F IB F IIB

Refs.@6#, @7# Present Refs.@6#, @7# Present

15 0.971 0.9654 0.156 0.1614
30 0.876 0.8709 0.296 0.2995
45 0.732 0.7309 0.389 0.3964
60 0.569 0.5665 0.431 0.4422
75 0.404 0.4000 0.420 0.4368
336 Õ Vol. 72, MAY 2005
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the present numerical approach. The SIFs at a branched crack
are determined still by using formulas~31!. Regarding the dis-
cretization of boundary elements, the number of elements d
cretized on a branched crack is varied withb/a ~see also Table 8!,
and the other boundaries are discretized according to the limi
tion condition that all boundary elements have approximately t
same length. Table 11 shows the SIFs at a branched crack tip
the branched angleu and b/a are changed. For the comparison
purpose, Table 11 lists also the SIFs at the branched crack
obtained by Vitek@12# ~also see p. 386 in Ref.@29# by means of
the dislocation distribution method. It can be seen from Table
that for the doubly symmetric branched crack the present nume
cal results are in good agreement with those by Vitek within 2.2%

5 Cracks Emanating From a Rhombus Hole in an
Infinite Plate Under Biaxial Loads

In this section, specifically, the boundary element method pr
sented in this article is used to study cracks emanating from
rhombus hole in an infinite plate under biaxial loads. The prese
numerical results for this crack problem indicate further that th
present approach is very effective for calculating the SIFs of com
plex plane cracks and can reveal the effect of the biaxial load
the SIFs.

Shown in Fig. 8 is the schematic of cracks emanating from
rhombus hole in an infinite plate under biaxial loads. For th
problem, symmetric conditions about thex-axis andy-axis can be
used. The following cases are considered:

l50,1,21

u515 deg, 30 deg, 45 deg,

a/b51.05, 1.1, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0.

Regarding the discretization of boundary elements, the number
elements discretized on a quarter of rhombus hole is 100, and
other boundaries are discretized according to the limitation con
tion that all boundary elements have approximately the sam

Fig. 5 A symmetrically branched crack

0

422
105
527
037
539
655
724
775
766
668
563

462
996
514
718
770
775
682
580

Table 8 Variation of the number of elements discretized on a
branched crack for a symmetrically branched crack with b Õa

b/a
0.01 0.05 0.1 0.2 0.4 0.5 0.6 0.8 1.0 1.5 2.0

10 10 15 30 30 30 30 30 30 45 60
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Table 9 Normalized SIFs for a symmetrically branched crack

b/a

60 deg 45 deg 30 deg

Refs.@6#, @7# Present Refs.@6#, @7# Present Refs.@6#, @7# Present

0.01 F I
A 1.0001 0.9998 0.9994

F I
B 0.5390 0.6499 0.7138

F II
B 0.3158 0.2223 0.0913

0.05 F I
A 1.01 1.0054 1.01 1.0043 1.01 1.0027

F I
B 0.45 0.4450 0.59 0.5918 0.70 0.6888

F II
B 0.39 0.3889 0.29 0.2994 0.15 0.1575

0.1 F I
A 1.01 1.0097 1.01 1.0080 1.01 1.0057

F I
B 0.39 0.3899 0.56 0.5588 0.68 0.6764

F II
B 0.43 0.4362 0.34 0.3479 0.19 0.1985

0.2 F I
A 1.02 1.0159 1.02 1.0135 1.01 1.0105

F I
B 0.34 0.3349 0.54 0.5268 0.66 0.6651

F II
B 0.49 0.4923 0.40 0.4042 0.24 0.2464

0.4 F I
A 1.03 1.0248 1.02 1.0199 1.02 1.0155

F I
B 0.29 0.2944 0.51 0.5029 0.65 0.6564

F II
B 0.55 0.5451 0.46 0.4583 0.28 0.2938

0.5 F I
A 1.0298 1.0227 1.0175

F I
B 0.2869 0.4982 0.6551

F II
B 0.5579 0.4728 0.3074

0.6 F I
A 1.04 1.0355 1.03 1.0257 1.02 1.0192

F I
B 0.28 0.2829 0.50 0.4956 0.65 0.6545

F II
B 0.57 0.5658 0.49 0.4830 0.32 0.3175

0.8 F I
A 1.05 1.0487 1.04 1.0320 1.03 1.0225

F I
B 0.28 0.2801 0.50 0.4933 0.65 0.6544

F II
B 0.58 0.5731 0.50 0.4957 0.33 0.3313

1.0 F I
A 1.07 1.0632 1.04 1.0387 1.03 1.0255

F I
B 0.28 0.2802 0.50 0.4927 0.66 0.6548

F II
B 0.58 0.5742 0.51 0.5028 0.34 0.3402
d
b

m

l
-

length. The present numerical results of the SIFs normalize
sApa are given in Table 12. For purposes of comparison, Ta
12 also lists the numerical results in Ref.@29#. From Table 12, it is
found that the present numerical results are in excellent agree

Fig. 6 A skew-symmetric branched crack
ournal of Applied Mechanics
by
le

ent

with those reported in Ref.@29#. From Table 12, it is found that
the effect of the load parameterl on the SIFs varies withu and
a/b and that the effect of the rhombus angleu on the SIFs varies
with load parameterl anda/b.

6 Numerical Simulation of Fatigue Crack Propagation
Process Under Mixed-Mode Conditions

On the application of boundary element methods to crack
propagation analysis, the first attempt to automatically model
crack propagation under mixed-mode conditions was given by
Ingraffea, Blanford, and Liggett@22# for two-dimensional prob-
lems. They used the multiregion method@13# together with the
maximum circumferential stress criterion to calculate the direction
of crack propagation. Aliabadi@23# pointed out that the difficulty
with the multiregion method is that the introduction of artificial
boundaries to divide the regions is not unique, and thus it is not
easy to implement it in an automatic procedure. In an incrementa
crack extension analysis, these artificial boundaries must be re
peatedly introduced for each increment of crack extension. Finite
element simulations@25,26# when used to analyze crack problems
834
236
469
741
032
184
277
340
Table 10 Normalized SIFs at a branched crack tip for a skew-symmetric branched crack

b/a

60 deg 45 deg 30 deg

Refs.@6#, @7# Present Refs.@6#, @7# Present Refs.@6#, @7# Present

F I F II F I F II F I F II F I F II F I F II F I F II

0.01 0.5905 0.4120 0.5936 0.4243 0.7485 0.3686 0.7485 0.3772 0.8809 0.2780 0.8792 0.2
0.05 0.5232 0.4610 0.5274 0.4731 0.7058 0.4184 0.7069 0.4268 0.8603 0.3182 0.8600 0.3
0.1 0.4822 0.4920 0.4853 0.5022 0.6805 0.4507 0.6811 0.4560 0.8483 0.3436 0.8479 0.3
0.2 0.4306 0.5350 0.4384 0.5391 0.6532 0.4888 0.6532 0.4913 0.8356 0.3727 0.8351 0.3
0.4 0.3934 0.5794 0.3944 0.5830 0.6280 0.5284 0.6273 0.5303 0.8242 0.4021 0.8231 0.4
0.6 0.3734 0.6031 0.3737 0.6062 0.6161 0.5491 0.6150 0.5508 0.8187 0.4176 0.8172 0.4
0.8 0.3629 0.6170 0.3626 0.6197 0.6095 0.5617 0.6080 0.5630 0.8156 0.4271 0.8137 0.4
1.0 0.3570 0.6253 0.3564 0.6278 0.6054 0.5698 0.6036 0.5709 0.8135 0.4335 0.8114 0.4
MAY 2005, Vol. 72 Õ 337



have to face difficult computational problems connected with
discretization of the continuum into finite elements, particula
when some cracks propagate, thus changing the interior bo
aries of the solids.

In this paper, the hybrid displacement discontinuity method
the maximum circumferential stress criterion@24# are combined to
form a very effective numerical approach for simulating the
tigue crack propagation process in plane elastic bodies u
mixed-mode conditions. In the numerical simulation, for each
crement of crack extension, remeshing of existing boundarie
not required because of an intrinsic feature of the HDDM. Cr
propagation is simulated by adding new boundary elements on
incremental crack extension to the previous crack boundaries
the same time, the element characters of some related elem
are adjusted according to the manner in which the boundary
ment method is implemented. As an example, the fatigue pro
gation process of cracks emanating from a circular hole in a p
elastic plate is simulated using the numerical simulation appro

It is well known that the fatigue crack propagation, whi
propagates in a self-similar manner, obeys Paris’s equation

Da/DN5A~DK I!
m, (32)

whereDa/DN is the fatigue crack propagation ratio,A andm are
material constants, andDK I is the range of the stress intensi
factor K I .

In general, the fatigue propagation analysis of a crack un
mixed-mode conditions involves the determination of the cr

Fig. 7 A doubly symmetrically branched crack
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propagation direction~e.g., Sih and Barthelemy@33#! except for
an equation similar to Eq.~32!. Here, the fatigue propagation of a
crack under mixed-mode conditions is assumed to satisfy the fol-
lowing conditions:

~1! A fatigue crack will propagate to the direction of the maxi-
mum tangential stress surrounding the crack tip.

~2! The fatigue crack propagation rate equation is

Da

DN
5C~DKe!

n, (33)

where

DKe5
1
2 cos

u0

2
@DK I~11cosu0!23DK II sinu0#, (34)

where u0 is the crack propagation angle predicted according to
condition ~1!, DK I and DK II are, respectively, the ranges of the
stress intensity factorsK I andK II , andC andn are material con-
stants that are related to the material constantsA andm in Paris’s
equation~32! by the relations

C5A, n5m. (35)

As an example, the fatigue propagation process of cracks ema-
nating from a circular hole~see Fig. 9! in an infinite plate sub-

Fig. 8 Cracks emanating from a rhombus hole in an infinite
plate under biaxial loads
ent

742
258
611
096

993

911
Table 11 Normalized SIFs for a doubly symmetric branched crack

b/a

60 deg 45 deg 30 deg

F I F II F I F II F I F II

Vitek Present Vitek Present Vitek Present Vitek Present Vitek Present Vitek Pres

0.01 0.557 0.5664 0.292 0.2980 0.662 0.6685 0.200 0.2029 0.724 0.7240 0.073 0.0
0.05 0.491 0.5014 0.350 0.3565 0.627 0.6348 0.262 0.2646 0.718 0.7188 0.125 0.1
0.1 0.452 0.4615 0.394 0.3984 0.611 0.6184 0.307 0.3081 0.723 0.7240 0.162 0.1
0.2 0.410 0.4184 0.454 0.4576 0.600 0.6074 0.368 0.3686 0.740 0.7419 0.211 0.2
0.4 0.3830 0.5371 0.6127 0.4502 0.7839 0.2745
0.5 0.370 0.3764 0.562 0.5665 0.616 0.6208 0.481 0.4813 0.807 0.8060 0.301 0.2
0.6 0.3736 0.5916 0.6307 0.5085 0.8282 0.3212
0.8 0.3749 0.6332 0.6532 0.5551 0.8719 0.3589
1.0 0.377 0.3810 0.663 0.6673 0.676 0.6774 0.591 0.5946 0.919 0.9144 0.393 0.3
Transactions of the ASME



Table 12 Normalized SIFs for cracks emanating from a rhombus hole in an infinite plate under biaxial loads

a/b

l50 l521 l511

u515 deg u530 deg u545 deg u545 deg@29# u515 deg u530 deg u545 deg u515 deg u530 deg u545 deg

1.05 1.0146 1.0389 1.0433 1.0313 1.1208 1.2461 0.9979 0.9570 0.8405
1.1 1.0105 1.0372 1.0602 1.07 1.0237 1.1072 1.2487 0.9973 0.9672 0.8717
1.2 1.0066 1.0305 1.0639 1.069 1.0157 1.0834 1.2229 0.9975 0.9776 0.9049
1.4 1.0031 1.0202 1.0535 1.058 1.0081 1.0530 1.1667 0.9981 0.9874 0.9403
1.6 1.0015 1.0137 1.0423 1.046 1.0046 1.0354 1.1244 0.9984 0.9920 0.9602
1.8 1.0005 1.0095 1.0333 1.037 1.0025 1.0244 1.0941 0.9985 0.9946 0.9725
2.0 1.0000 1.0067 1.0264 1.030 1.0013 1.0173 1.0723 0.9987 0.9961 0.9805
2.5 0.9993 1.0028 1.0150 0.9998 1.0078 1.0393 0.9988 0.9978 0.9907
3.0 0.9989 1.0009 1.0087 0.9991 1.0034 1.0225 0.9987 0.9984 0.9949
4.0 0.9986 0.9993 1.0027 0.9986 1.0000 1.0079 0.9986 0.9986 0.9975
jected to uniform cycle stress in they direction at distances suffi
ciently far away from the hole is simulated. For this cra
problem, the symmetric conditions about thex andy-axes can be
used. In this analysis, the shear modulusG, Poisson’s ration, the
fracture toughnessK Ic , the material constantsA andm in Paris’s

Fig. 9 Cracks emanating from a circular hole in an infinite
plate

Fig. 10 Fatigue growth path of crack AB emanating from the
circle hole for the case of rÄ6 mm

Fig. 11 Fatigue growth path of crack AB emanating from the
circle hole for the case of rÄ3 mm
Journal of Applied Mechanics
-
ck

equation, the threshold value of the stress intensity factor,DK th ,
cyclic loading parameters, the mean stresssm , and the character-
istic of cyclic loading,R, are as follows:

G52744 kg/mm2, n50.321, K Ic5116 kg/mm3/2,

A51.039310210,

Fig. 12 Variation of the number of load cycle with crack
growth for the case of rÄ6 mm

Fig. 13 Variation of the number of load cycle with crack
growth for the case of rÄ3 mm
MAY 2005, Vol. 72 Õ 339
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m52.7438, DK th50, sm515.333 kg/mm2, R50.048,

The geometric parameters considered here are

R53 mm, a/r 51/20.

r 56 mm, a/r 51/20.

Some numerical results are given in Figs. 10–13. Shown in F
10 and 11 are, respectively, the fatigue propagation path of c
AB emanating from the circle hole for the cases ofr 56 and 3
mm. Shown in Figs. 12 and 13 are, respectively, the variation
the number of the load cycle with the crack propagation for
cases ofr 56 and 3 mm.

7 Conclusions
In the present paper, the crack-tip displacement discontin

elements are presented to model the singularity of stress ne
crack tip. Furthermore, the crack-tip elements and the cons
displacement discontinuity element presented by Crouch and S
fied are combined to form a numerical approach for calculat
the SIFs of general plane cracks. Numerical examples are g
and compared with the available solutions. It can be seen tha
numerical approach is simple, yet very accurate for calculating
SIFs of branched cracks. As a new example, cracks emana
from a rhombus hole in an infinite plate under biaxial loads
taken into account. The numerical results indicate the efficienc
the present numerical approach and can reveal the effect of
biaxial load on the SIFs. In addition, the hybrid displaceme
discontinuity method developed in this paper together with
maximum circumferential stress criterion becomes a very eff
tive numerical approach for simulating the fatigue crack propa
tion process in plane elastic bodies under mixed-mode conditi
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Analytical Solution for Shear
Horizontal Wave Propagation in
Piezoelectric Coupled Media by
Interdigital Transducer
An analytical solution for the shear horizontal wave propagation excited by interd
transducer in a piezoelectric coupled semi-infinite medium is developed. This solu
an extension of earlier work on wave propagation in a piezoelectric coupled plate
finitely long interdigital transducer by fully taking account of piezoelectric effec
analysis. In the current analysis, the mathematical model for a semi-infinite meta
strate bonded by a layer of interdigital transducer with infinite length is first derived
theoretical solutions are obtained in terms of elliptic integration of the first kind an
the standard integral representation for Legendre polynomial. The essential hypo
for the derivation of the analysis is investigated. Based on the solution for infinitely
interdigital transducer, an analytical solution for the wave propagation in this s
infinite piezoelectric medium excited by a finitely long interdigital transducer is obt
through Fourier transform. This theoretical research can be applied to health monit
of structures by interdigital transducer. It could also be used as a framework fo
design of interdigital transducer in wave excitation of smart structures.
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1 Introduction
An interdigital transducer wafer comprises a thin piezoele

film on which electrodes in the form of two alternating se
fingers are deposited, as shown in Fig. 1. Such wafer is su
bonded onto a substrate or structure for excitation or recepti
waves. In practice, an interdigital transducer is finite in lengt

Interdigital transducer was first used in surface acoustic w
devices, which can be found in radar communication equip
as filters and delay linesf1,2g, and consumer products such
pagers, mobile phones, and sensorsf3–5g. Interdigital transduce
has also been used for separating, amplifying, and storing s
as well as signal processing in acousto-electronicsf6–8g. Great
potentials have been found in using interdigital transducer as
sors for various physical variables, such as force, electric fi
magnetic fields, temperature, and pressuref1g. Interdigital trans
ducer is nowadays used in the area of structural health monit
due to its controllability of the excited waves and its convenie
in operation. Researches and experimental works using inte
tal transducer to excite Lamb wave for rapid monitoring of st
tures have also been attemptedf9,10g. The key issue for applica
tion of interdigital transducer in structural health monitoring
how to design the size of the interdigital transducer, such a
wavelength and finger width, so that a wave signal with hig
magnitude and less dispersive effect can be excited and s
Therefore, a complete mechanics analysis for the effect o
interdigital transducer on the wave solution is important and
sential for the design of interdigital transducer in its applicatio
structural health monitoring.

The availability of good analytical and design methods for

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIE
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF A
PLIED MECHANICS. Manuscript received by the Applied Mechanics Divis
February 19, 2003; final revision, September 1, 2004. Associate Editor: K.
Chandar. Discussion on the paper should be addressed to the Editor, Prof. Ro
McMeeking, Journal of Applied Mechanics, Department of Mechanical and Env
mental Engineering, University of California-Santa Barbara, Santa Barbara
93106-5070, and will be accepted until four months after final publication in

paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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terdigital transducer is essential for all the above applicat
Although there has been considerable literature on the analy
interdigital transducer, improvements can still be made. One
jor difficulty of the analysis lies in accounting for the full elect
mechanical coupling in the structure. Tsengf11g, Coquin and Tier
stan f12g, and Joshin and Whitef13g studied the analysis of th
interdigital transducer by solving an electrostatic problem, su
tuted the distribution of the electric fields into the electromech
cal coupled equation, and hence obtained the secondary e
fields and the displacement fields. In the monograph of Parto
Budryavsterf8g, the analytical solutions for an interdigital tra
ducer which generate Rayleigh surface waves in a hexa
6 mm piezoelectric medium was presented based on the
procedure. Another popular analysis was proposed by Balak
and Gilinskii f14g to use Green matrix method to solve a tw
dimensionals2Dd problem for a half-unbounded crystal. In pr
tice, the method is hardly feasible for an arbitrary crystal du
the difficulties in constructing the Green matrix. Some re
progresses are contributed through the finite element m
f15–17g, boundary element methodf18g, and 2D’s Green functio
f19g. However, the behavior of surface acoustic wave by inter
tal transducer still cannot be accurately modeled analytically
predicted. Kinof20g looked into the theory of excitation of su
face acoustic waves on a nonpiezoelectric material by using
digital transducer. The results were given in terms of the pe
bation in acoustic wave velocity. Enganf21g presented th
electrostatic field with an infinite number of space harmonics
relative amplitudes given by the corresponding Legendre po
mials. Ogilvy f22g presented an approximate analysis for pre
ing the generation of elastic waves by interdigital transduc
multilayered piezoelectric materials. However, the width of
interdigital transducer fingers is not explicitly taken into acco
and neither are the finite dimensions of the interdigital transd
Similarly, in the analysis of interdigital transducer in health m
toring of structures, the electromechanical effects are neglec
the design of the structure. Hence, the wave characteristic
still solely based on the metal substrate materials. Wang

i-
t M.
-
A
e

Varadanf23,24g provided an analytical mathematical solution for
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itel
zo

ag
ple
ect
ap
o

s a

et
th
fi

n
ns
gr

n f
ita
l i
th

ital
ope
tan
ita

er

c-
r
like
h
wi

iezo-
ctric
ri-

fore,
truc-

o
nents
y

d by

s
me-

, the
e as

r is

t,
o-

ric
ent in
wave propagation in a piezoelectric coupled plate with fin
long interdigital transducer by fully taking account of the pie
electric effects in their analysis.

As an extension of the research inf23,24g, this paper is to
derive an analytical solution for shear horizontal wave prop
tion excited by interdigital transducer in a piezoelectric cou
semi-infinite medium with the coupling electromechanical eff
fully modelled. Such a solution is especially essential for the
plication of interdigital transducer in the health monitoring
structures as discussed. The convergence of the algorithm i
investigated in the current research.

The substrate considered in this paper is a semi-infinite m
surface bonded with an interdigital transducer abutting
vacuum. The dispersion characteristics of the structure are
obtained. The mathematical solution for the wave propagatio
the piezoelectric medium with an infinitely long interdigital tra
ducer is next presented. The solutions in terms of elliptic inte
tion of the first kind and the standard integral representatio
Legendre polynomial are derived. The hypothesis for the lim
tion of the wavelength of interdigital transducer in the mode
presented and verified. Thirdly, the analytical solution for
wave propagation in the medium with finitely long interdig
transducer is obtained using Fourier transformation. It is h
that this paper provides fundamental contributions to unders
ing wave propagation in piezoelectric structure by interdig
transducer and useful for the design of interdigital transduc
practical applications.

2 Problem Description
Consider a metallic half-spacesx2.0d covered by a piezoele

tric layer of thicknessh s−h,x2,0d with interdigital transduce
electrodes deposited on it as shown in Fig. 1. Each “comb-
electrode has a regular finger spacing of 4L and the width of eac
finger is 2a. An electric voltage applied across the electrodes

Fig. 1 Piezoelectric coupled medium with surface bonded in-
terdigital transducer
generate an alternating periodic electric field in thex1-direction
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and cause wave propagation with a single frequency in the p
electric coupled structure. The poling direction of the piezoele
layer is in the transversex3-direction and hence only shear ho
zontal wave will be studied in this layered structure. There
the only nonvanishing displacement component in both host s
ture and piezoelectric layer is the one inx3-direction, which is als
independent ofx3. The corresponding shear stresses compo
and the equations of motion in the host medium are given b

s138 = c448
]u38

]x1
, s1ad

s238 = c448
]u38

]x2
s1bd

]s138

]x1
+

]s238

]x2
= r8

]2u38

]t2
s1cd

from which the propagation of shear horizontal wave excite
interdigital transducer in the host structure is obtained by:

c448 ¹2u38 = r8
]2u38

]t2
s1dd

wherec448 is the shear modulus,r8 the mass density, andu38 is the
deflection, all of the host medium. The Laplace operator i¹2

=s] /]x1d+s] /]x2d. The shear stress in the host semi-infinite
dium in x2-direction can be written as:

s238 = c448
]u38

]x2
s2d

In the piezoelectric layer, the equation of the electrostatic field
constitutive relations, and the equation of motion are giv
follows:

D1 = e15
]u3

]x1
− J11

]f

]x1
, s3ad

D2 = e15
]u3

]x2
− J11

]f

]x2
, s3bd

]D1

]x1
+

]D2

]x2
= 0 s3cd

s13 = c44
]u3

]x1
+ e15

]f

]x1
, s3dd

s23 = c44
]u3

]x2
+ e15

]f

]x2
s3ed

]s13

]x1
+

]s23

]x2
= r

]2u3

]t2
s3fd

from which, the coupling equation for the piezoelectric laye
given by f25g

c44¹
2u3 + e15¹

2f = r
]2u3

]t2
s4ad

e15¹
2u3 − J11¹

2f = 0 s4bd

wherec44 is the elastic modulus,e15 the piezoelectric coefficien
J11 the dielectric constant,r the mass density, all of the piez
electric layer, andu3 is the deflection,D1 and D2 the electric
displacement, andf the electric potential, in the piezoelect
layer. The shear stress, electric field and electric displacem
the piezoelectric layer in thex2-direction are written as,

s23 = c44
]u3 + e15

]f
s5d
]x2 ]x2
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E2 = −
]f

]x2
s6d

D2 = e15
]u3

]x2
+ J11E2 = e15

]u3

]x2
− J11

]f

]x2
s7d

The potentialf̃ in the vacuumsabove the piezoelectric layerd can
be derived by solving Maxwell’s equation as follows:

¹2f̃ = 0 s8d

The corresponding electric displacementD̃ is given by the
relationship

D̃ = − J0
]f̃

]x2
s9d

whereJ0 is the dielectric constant of the vacuum.
The boundary conditions for the kinematics, traction and e

tric fields of the piezoelectric coupled media are expressed
x2=0:

u3 = u38 s10d

s23 = s238 s11d

f = 0 s12d

at x2=−h:

s23 = 0 s13d

f = f̃ s14d

D2 = D̃ s15d
Based on the above equations, the solution for the wave exci
by interdigital transducer in the piezoelectric coupled med
including the propagation dispersion characteristics, will be
tained and discussed in the following sections.

3 Dispersion Characteristics of Shear Horizonta
Wave Propagation for the Close-Circuit Case

Prior to obtaining the wave excitation by interdigital transdu
in a coupled structure, the dispersion characteristics of the
horizontal wave propagation in the piezoelectric coupled me
is first summarized, based on an earlier studyf26g where the sur
faces of the piezoelectric layer are fully coated with elect
films for closed-circuit case, i.e. the potential on electrode
faces is equally null.

For the case when the piezoelectric layer is closely conne
the solution ofu38 is given by

u38 = f8sx2dejsvt−kx1d s16d

wherek is the wave number of propagating wave;v is circular
frequency of the motion;j =Î−1.

Substituting Eq.s16d into Eq. s1dd yields,

d2f8

dx2
2 + a2f8 = 0 s17d

wherea2=v2/v82−k2, v82=c448 /r8.
The solution forv=sv /kd,v8 is found to be

u38 = Āe−x8x2ejsvt−kx1d s18d

wherex8=kÎ1−sv /kv8d2. For vùv8, the solution represents r
fracted waves carrying energy away from the layer. Such a
system is not of significance at any distance because it lose
ergy quickly and will not discussed further in this paper.

The solution in the piezoelectric layer can be obtained by

substituting

Journal of Applied Mechanics
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c = f −
e15

J11
u3 s19d

into Eq. s4bd to yield

¹2c = 0 s20d

where the solution can be written as

c = sB1e
−kx2 + B2e

kx2dejvst−skx1/vdd s21d

In addition, substituting Eq.s4bd into s4ad gives

c̄44¹
2u3 = r

]2u3

]t2
s22d

wherec̄44=c44+se15
2 /J11d. The solution of Eq.s22d is given by

u3 = sA1e
−xx2 + A2e

xx2dejvst−skx1/vdd whenv , vp,v8 s23d

u3 = sA1 cosxx2 + A2 sinxx2dejvst−skx1/vdd whenv8 . v . vp

s24d

wherex=kÎu1−sv /kvd2u, vp
2= c̄44/r for the phase velocity of p

ezoelectric layer.
Substituting Eqs.s21d, s23d, ands24d into Eqs.s19d and s7d, f

andD2 can be expressed as

f = FsB1e
−kx2 + B2e

kx2d +
e15

J11
sA1e

−xx2 + A2e
xx2dGejvst−skix1/vdd

s25d

D2 = − J11fks− B1e
−kx2 + B2e

kx2dgejvst−skx1/vdd s26d

whenv,vp, v8, and

f = FsB1e
−kx2 + B2e

kx2d +
e15

J11
sA1 cosxx2

+ A2 sinxx2dGejvst−skx1/vdd s27d

D2 = − J11fksB1e
−kx2 − B2e

kx2dgejvst−skx1/vdd s28d

whenv8.v.vp.
Substituting Eqs.s18d ands23d–s26d into Eqs.s2d ands5d gives

s238 = c448 s− x8dĀe−x8x2ejvst−skx1/vdd s29d

s23 = fs− xdc̄44sA1e
−xx2 − A2e

xx2d + s− kde15sB1e
−kx2

− B2e
kx2dgejvst−skx1/vdd s30d

whenv,vp, v8, and

s23 = fs− xdc̄44sA1 sinxx2 − A2 cosxx2d + s− kde15sB1e
−kx2

− B2e
kx2dgejvst−skx1/vdd s31d

whenv8.v.vp.
In the paper, the solutions for the casev,vp, v8 is of main

concern when interdigital transducer is considered in wave
tation as will be explained later. Hence the expressions fo
deflection, shears stress and electric variables in the piezoe
coupled medium given by Eqs.s23d, s30d, s25d, and s26d will be
employed.

The boundary conditions pertaining to this closed-circuit
are as follows. Atx2=0, Eqs.s10d–s12d remain valid, but atx2=
−h, the conditions are given as,

s23 = 0 s32d

f = 0 s33d

Enforcing these five boundary conditions yields:

¯
A = A1 + A2 s34d

MAY 2005, Vol. 72 / 343
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s− xdc̄44sA1 − A2d + s− kde15sB1 − B2d = s− x8dc448 Ā s35d

B1 + B2 +
e15

J11
sA1 + A2d = 0 s36d

s− xdc̄44sA1e
xh − A2e

−xhd + s− kde15sB1e
kh − B2e

−khd = 0 s37d

sB1e
kh + B2e

−khd +
e15

J11
sA1e

xh + A2e
−xhd = 0 s38d

The existence of nontrivial solutions for the coefficientsĀ, A1, A2,
B1, and B2 is studied through the usual eigenvalue formula
and briefly summarized. First,A1 and A2 may be expressed
terms ofB1 andB2 from Eqs.s34d–s36d as follows

A1 = N1B1 + N2B2 s39d

A2 = S1B1 + S2B2 s40d
Substituting the above two equations into Eqs.s37d and s38d
yields the following two equations:

Q1B1 + Q2B2 = 0 s41d

R1B1 + R2B2 = 0 s42d

The variablesN1, N2, S1, S2 andQ1, Q2, R1, R2 in Eqs.s39d–s42d
are listed in the Appendix. The existence of nontrivial solut
for B1 andB2, and henceA1 andA2, is thus given by

D = R1Q2 − R2Q1 = 0 s43d
The dispersion curves corresponding to different wave mode
be given for the steel-PZT coupled medium. Table 1 lists
material properties used in the numerical simulations. The s
wave velocities for the host steel and piezoelectric material
vsteel8 =3281 m/s,vp=2351 m/s. The Bleustein–Gulyaev surf
wave velocities in PZT4 can be determined by the equation

vB = vpÎ1 −
k15

4

s1 + k15
2 d2 ,

wherek15
2 =e15

2 /c44J11 f27,28g. Numerically, this surface wave v
locity is vB=2181 m/s.

Figure 2 shows the phase velocities for the first four mo
where the nondimensional phase velocity is taken asv̄=v /vB and

the nondimensional wave number is given byk̄=kh/2p. For the
first mode, the phase velocity converges to the Bleustein–Gu
wave velocity for a large wave number. This is due to the fact
the surface wave for the piezoelectric layer becomes dom
when the wave number is large compared with the thickness o
layer. The higher modes only exist beyond certain a wave num

for example, the second mode begins at approximatelyk̄=0.4. The
wave velocities of the higher modes approach the shear ve
of the piezoelectric layer with increasing wave number. The

¯ ¯

Table 1 Material properties

Host structure
sSteeld

Piezoelectric laye
sPZT4d

Young’s module
sN/m2d

E=2103109 c44=8.53109

Mass density
skg/m3d

7.83103 7.53103

e15 sC/m2d ¯ 10.5
e31 sC/m2d ¯ −4.1
J0 sF/md ¯ 8.854310−12

J11/J0
¯ 800

J33/J0
¯ 660
respondingv−k is shown in Fig. 3, where the nondimensiona
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frequency is given byv̄= v̄k̄. It can be noted that at high wa
number the relationship is virtually linear. This figure will be
ferred to when searching for the wave number at a specific
quency in the process of solving for the shear horizontal w
propagation excited by interdigital transducer in the piezoele
coupled medium. Thus, the derived results for the shear horiz
wave motion in the piezoelectric coupled medium will provid
foundation for the wave solution excited by the interdigital tra
ducer proposed next.

4 Analytical Solution for Wave Propagation in the Me-
dium With Infinitely Long Interdigital Transducer

To provide a mathematical solution for shear wave propag
excited by an interdigital transducer with finite length, the th
retical solution for the wave motion by an infinitely long interd
tal transducer has to be studied preliminarily. For an infin
long interdigital transducer with periodic finger spacing show
Fig. 1, the solution ofu38 in the host medium may be written
periodic form with wavelength of 4L corresponding to the fing
spacing in each electrode in thex1-direction. Following Eq.s18d,
the deflectionu38 can thus be expressed in Fourier series as

u38 = o
i=i1

`

Āie
−xi8x2ejsvt−kix1d s44d

where

i1 = INTF v

v8

L

p
−

1

2
G ,

Fig. 2 Dispersive curves for PZT 4 piezoelectric coupled plate
l Fig. 3 Relationship between frequency and wave number
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L
Si +

1

2
D ,

xi8 = kiÎ1 −S v

kiv8
D2

and INTf.g stands for the integer part of the number within
bracket. The corresponding shear stress in the metal core giv
Eq. s2d is

s238 = o
i=I

`

c448 s− xi8dĀie
−xi8x2ejvst−skix1/vdd s45d

The variablesc andu3 for the piezoelectric layer following Eq
s21d, s23d, ands24d can similarly be written as

c = o
i=0

`

sB1ie
−kix2 + B2ie

kix2dejvst−skix1/vdd s46d

u3 = o
i=I

`

sA1ie
−xix2 + A2ie

xix2dejvst−skix1/vdd when
v

ki
, vp,v8

s47d

u3 = o
i=i1

i2

sA1i cosxix2 + A2i sinxix2dejvst−skix1/vdd whenv8 .
v

ki
. vp

s48d

where

xi = kiÎU1 −S v

kiv
D2U ,

i2 = INTFv

v

L

p
−

1

2
G

and I =maxsi1, i2d.
The expressions forf and D2 corresponding to those of Eq

s25d–s28d are shown below,

f = o
i=I

` FsB1ie
−kix2 + B2ie

kix2d +
e15

J11
sA1ie

−xix2

+ A2ie
xix2dGejvst−skix1/vdd s49d

D2 = o
i=I

`

− J11fkis− B1ie
−kix2 + B2ie

kix2dgejvst−skix1/vdd s50d

whenv /ki ,vp,v8, and

f = o
i=i1

i2 FsB1ie
−kix2 + B2ie

kix2d +
e15

J11
sA1i cosxix2

+ A2i sinxix2dGejvst−skix1/vdd s51d

D2 = o
i=i1

i2

− J11fkis− B1ie
−kix2 − B2ie

kix2dgejvst−skix1/vdd s52d

whenv8.v /ki .vp.

The shear stress in the piezoelectric layer based on Eq.s5d is

Journal of Applied Mechanics
by

s23 = o
i=I

`

fs− xidc̄44sA1ie
−xix2 − A2ie

xix2d + s− kide15sB1ie
−kix2

− B2ie
kix2dgejvst−skix1/vdd s53d

whenv /ki ,vp,v8, and

s23 = o
i=i1

i2

fs− xidc̄44sA1i sinxix2 − A2i cosxix2d + s− kide15sB1ie
−kix2

− B2ie
kix2dgejvst−skix1/vdd s54d

whenv8.v /ki .vp.
The potentialf̃ in the vacuum can be derived below by c

sidering Maxwell equation

¹2f̃ = 0 s55d

where the solution remains finite asx2→−`. Hence,f̃ andD̃ take
the form

f̃ = o
i=0

`

Cie
kix2ejvst−skix1/vdd s56d

D̃ = o
i=0

`

− J0kCie
kix2ejvst−skix1/vdd s57d

The boundary conditions pertaining to this infinitely long in
digital transducer set-up can be stated as follows. Atx2=0, Eqs
s10d–s12d hold, whereas atx2=−h,

s23 = 0 s58d

f = f̃ s59d

D2 = D̃ Outside the electrodes s60d

f = f̃ = V Inside the electrodes s61d

whereV is the magnitude of the alternating voltage applied on
interdigital transducer.

The analytical solution of the wave propagation excited by
terdigital transducer in the piezoelectric coupled medium prov
below is under the hypothesis ofI =maxsi1, i2d=0. This hypothesi
ensures that all the solutions of the physical variables in th
ezoelectric layer follow Eqs.s47d, s49d, ands50d by proper desig
of the basic wave numberk0=p /2L, i.e., the design of the wav
length of the interdigital transducer. The validity of this hypo
esis is discussed hereinafter.

As an illustration, consider a steel-PZT 4 piezoelectric cou
medium where the bulk shear wave velocity of steel and P
are aboutv8=3281 m/s,vp=2351 m/s. If the circular frequen
of the excitation voltage is used as 1.4 MHz, the hypothesisI
=0 requiresL,11.1 mm, which means the wavelength of in
digital transducer is 44.4 mm. Such requirement is satisfie
most interdigital transducer designs, especially for MEMS
signs. Upon the above observation, the hypothesis of using
s47d, s49d, and s50d for the solutions of wave propagation in
piezoelectric layer is thus reasonable and valid for most o
designs of the interdigital transducer.

Substituting the solutions into boundary conditions by ass
ing I =0 results in

o
`

Āie
−jkix = o

`

sA1i + A2ide−jkix1 s62d

i=0 i=0
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`

fs− xidc̄44sA1i − A2id + s− kide15sB1i − B2idge−jkix1

= o
i=0

`

s− xi8dc448 Āie
−jkix1 s63d

o
i=0

` SB1i + B2i +
e15

J11
+ sA1i + A2idDe−jkix1 = 0 s64d

o
i=0

`

ss− xidc̄44sA1ie
x2h − A2ie

−x2hd + s− kide15sB1ie
kih

− B2ie
−kihdde−jkix1 = 0 s65d

o
i=0

` SsB1ie
kih + B2ie

−kihd +
e15

J11
+ sA1ie

x2h + A2ie
−xihdDe−jkix1

= o
i=0

`

Cie
−kihe−jkix1 s66d

o
i=0

`

s− J11s− kiB1ie
kih + kiB2ie

−kihd + J0kiCie
−kihde−jkix1

= 0 a , x1 , L s67d

o
i=0

`

Cie
−kihe−jkix1 = V 0 , x1 , a s68d

The analytical solution for all the six sets of coefficientsĀi, A1i,
A2i, B1i, B2i, andCi si =1,2. . . ,̀ d will be determined in the sam
manner as in Sec. 3. The coefficientsA1i and A2i may be ex
pressed as follows:

A1i = N1iB1i + N2iB2i s69d

A2i = S1iB1i + S2iB2i s70d

where N1i, N2i, S1i, S2i, i =0,1,2, . . .3 ,̀ are shown in th
Appendix.

Substituting the above two equations into Eqs.s65d and s66d
yields

SN1ie
xih − S1ie

−xih +
kie15

xic̄44

ekihDB1i + SN2ie
xih − S2ie

−xih

−
kie15

xic̄44

ekihDB2i = 0 s71d

i.e. Q1iB1i + Q2iB2i = 0 s72d

Sekih +
e15

J11
N1ie

xih +
e15

J11
S1ie

−xihDB1i + Se−kih +
e15

J11
N2ie

xih

+
e15

J11
S2ie

−xihDB2i = Cie
−kih s73d

i.e. R1iB1i + R2iB2i = Cie
−kih s74d

From Eqs.s72d ands74d, B1i andB2i may obtained in terms ofCi
as

B1i =
Cie

−kih

R1i −
Q1i R2i

s75d
Q2i

346 / Vol. 72, MAY 2005
B2i =
Cie

−kih

R2i −
Q2i

Q1i
R1i

s76d

Substituting the above two expressions into Eq.s67d gives,

o
i=0

`

kiCie
−kih1J0 +

J11e
kih

R1i −
Q1i

Q2i
R2i

−
J11e

−kih

R2i −
Q2i

Q1i
R1i2e−jkix1

= 0 a , x1 , L s77d

Denoting

C̄i = Cie
−kih1J0 +

J11e
kih

R1i −
Q1i

Q2i
R2i

−
J11e

−kih

R2i −
Q2i

Q1i
R1i2 s78d

Eqs.s67d and s68d may be rearranged as

o
i=0

`

kiC̄ie
−jkix1 = 0 0, x1 , a s79d

o
i=0

`

C̄is1 + Fide−jkix1 = V a, x1 , L s80d

whereFi = 1J0 +
J11e

kih

R1i −
Q1i

Q2i
R2i

−
J11e

−kih

R2i −
Q2i

Q1i
R1i2

−1

− 1.

Rewriting Eqs.s79d ands80d in their real function forms give

o
i=0

` S1 +
1

2
DC̄i cosSi +

1

2
Dx̄ = 0 ā , x̄ , p s81d

o
i=0

`

C̄is1 + FidcosSi +
1

2
Dx̄ = V 0 , x̄ , ā s82d

wherex̄=px1/L, ā=pa/L are nondimensional parameters.
The solutions for Eqs.s81d and s82d can be obtained from a

infinite system of linear algebraic equationsssee Bateman an
Erdelyi f27g and Parton and Kudryavtserf8gd.

The set of equations is given as,

C̄i =
VPiscosād

Si +
1

2
DKScos

ā

2
D − o

n=0

`

C̄nFnbni si = 1,2, . . . ,̀ d s83d

where

wherebni = Si +
1

2
DE

0

ā

PnscosjdPiscosjdsinjdj s84d

Piscosjd =
Î2

p
E

0

j cosSi +
1

2
Dxdx

Îcosx − cosj
s85d

Piscosjd in the above equation is the standard integral repre
tation for the Legendre polynomial, and

KScos
j

2
D = o

i=0

`
Piscosjd

Si +
1

2
D

is the full elliptic integral of the first kindf22g.
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In practice, finiteN terms are used in Eq.s83d, whereN must be
sufficiently large to ensure convergence of the solution. The

tem of N equations to solve for the coefficientsC̄i si
=1,2, . . . ,Nd is

fFghC̄j =
V

KScos
ā

2
D hPj s86d

where

fFg = 3
1 + F1b11 F2b21 . . . FNbN1

F1b12 1 + F2b22 . . . FNbN2

¯ ¯ ¯ ¯

F1b1N F2b2N . . . 1 +FNbNN

4 s87d

hPj =5
P1scosād/s1 + 1/2d
P2scosād/s2 + 1/2d

¯

PNscosād/sN + 1/2d
6 s88d

and hC̄j=hC̄1,C̄2, . . . ,C̄NjT.

From Eq.s86d, the solution ofhC̄j is obtained as,

hC̄j =
V

KScos
ā

2
D fFg−1hPj s89d

Finally, the coefficientshCj=hC1,C2, . . . ,CNjT is derived accord
ing to Eq.s78d

hCj = diagsekihsFi + 1ddhC̄j =
V

KScos
ā

2
D diagsekihsFi + 1ddfFg−1hPj

s90d

where diags·d denotes a diagonal matrix.
The coefficients hB1j=hB11,B12, . . . ,B1NjT and hB2j

=hB21,B22, . . . ,B2NjT can be derived from Eqs.s75d ands76d, and
the coefficients, hA1j=hA11,A12, . . . ,A1NjT, hA2j
=hA21,A22, . . . ,A2NjT, and hĀj=hĀ1,Ā2, . . . ,ĀNjT can be obtaine
accordingly as well. All the variables are listed in the Append

The analytical solutions of the deflection in both the metal
strate and the piezoelectric layer, the electric potential and el
displacement in the piezoelectric layer and the electric pote
and electric displacement in the vacuum can then be obt

once the results of coefficientshĀj, hA1j, hA2j, hB1j, hB2j, andhCj
are known.

To illustrate the convergence of the solution in Eq.s89d, the
solution for Ci si =1,2, . . . ,25d is plotted in Fig. 4 whenā=0.3,
0.5, and 0.8, respectively. It can be seen that the convergen
the solution of Eq.s89d is assured numerically.

5 Analytical Solution for Wave Propagation in the Me-
dium With Finitely Long Interdigital Transducer

In engineering applications, the interdigital transducer is
ally of finite length. The solution for the wave propagation in
medium with finitely long interdigital transducer will be discus
based on the solution for wave propagation by an infinitely
interdigital transducer provided in the previous section. The
vation of the solution is accomplished through the use of Fo
transform, instead of Fourier series. The length of the interd

transducer is assumed to be 2L1.

Journal of Applied Mechanics
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First the electric potential in the vacuumf̃sx1,x2,td of the
metal forx2,−h is investigated, where its Fourier transform w
respect tox1 is

f̃sx1,x2,td =
1

2p
E

−`

`

fD sj,x2,tde−jjx1dj s91d

The image functionfD can be written according to Eq.s56d as

fD sj,x2,td = fD sj,0,tdejx2 s92d

The solution of the image function offD sj ,x2,td requires th

knowledge of the distribution off̃ throughout the boundary. Thu
it is assumed thatf̃sx1,−h,td is given by Eqs.s56d and s90d,
which are obtained from the solution for infinitely long interd
tal transducer in the electrodes region, and null outside the
trodes region. This assumption should be realistic for sufficie
long transducer gratings. Similar assumption was propose
Partonf8g when they studied the Lamb wave propagation exc
by interdigital transducer without the piezoelectric-mechan
coupling effect considered in the model.

Hence,

fD sj,− h,td =E
−L1

L1

f̃sx1,− h,tdejjx1dx1 s93d

Substituting Eq.s56d into the above equation yields,

fD sj,− h,td = o
i=0

N

e−kihCiSsinski + jdL1

ki + j
+

sinski − jdL1

ki − j
Dejvt

= FD sj,− hdejvt s94d

whereCi is given by Eq.s90d.
The image functions for the Fourier transform of the varia

u38sx1,x3,td in Eq. s1dd, csx1,x3,td in Eq. s19d, andu3sx1,x3,td in

Eq. s23d with respect to x1, are ū38sj ,x3,td, c̄sj ,x3,td, and
u3sj ,x3,td, respectively. Based on similar analyses in Eqs.s16d,
s23d, ands21d, the above variables can be written as follows:

ū38sj,x2,td = Ū38sjde−x8x2ejvt s95d

ū3sj,x2,td = sŪ31sjde−xx2 + Ū32sjdexx2dejvt s96d

csj,x2,td = sc̄1sjde−jx2 + c̄2sjdejx2dejvt s97d

Thus, substituting the above variables into the boundary c

Fig. 4 The converge of the coefficient C
tions of Eqs.s10d–s12d, s58d, ands59d yields,
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Ū38 = U31 + Ū32 s98d

s− xdc̄44sŪ31 − Ū32d + s− jde15sc̄1 − c̄2d = s− x8dc448 Ū38 s99d

c̄1 + c̄2 +
e15

J11
sŪ31 + Ū32d = 0 s100d

s− xdc̄44sŪ31e
xh − Ū32e

−xhd + s− jde15sc̄1e
jh − c̄2e

−jhd = 0

s101d

sc̄1e
jh + c̄2e

−jhd +
e15

J11
sŪ31e

xh + Ū32e
−xhd = FD sj,− hde−jh

s102d

To solve for Ū38, Ū31, Ū32, c̄1, and c̄2, the same procedure
solving Eqs.s34d–s38d is adopted, that is,

Ū31 = N1c̄1 + N2c̄2 s103d

Ū32 = S1c̄1 + S2c̄2 s104d
Substituting the above two equations into Eqs.s101d and s102d
yields

Q1c̄1 + Q2c̄2 = 0 s105d

R1c̄1 + R2c̄2 = FD sj,− hd s106d
from which gives

c̄1 = −
Q2

D
FD sj,− hd s107d

c̄2 = −
Q1

D
FD sj,− hd s108d

whereD is given in Eq.s43d.
From Eqs.s103d, s104d, ands98d, we have

Ū31 =
FD sj,− hd

D
sN2Q1 − N1Q2d =

D1FD sj,− hd
D

s109d

Ū32 =
FD sj,− hd

D
sS2Q1 − S1Q2d =

D2FD sj,− hd
D

s110d

Ū38 =
FD sj,− hd

D
sD1 + D2d s111d

The variablesu38sx1,x3,td, csx1,x3,td, andu3sx1,x3,td can thus b
obtained by taking the inverse Fourier transform. As an exam

consideru38sx1,x3,td where the inverse Fourier transform ofŪ38 is
expressed as

u38sx1,x2,td =
1

2p
E

−`

`

Ū38sjde−x8x2ejvte−jjx1dj

=
1

2p
E

−`

`
FD sj,− hd

D
sD2 + D1dejvte−x8x2e−jjx1dj

s112d

The above improper integral can be solved by the residue
rem. A single pole in the complex integrand of the last equatio
js, i.e. the root of the following equation,

D = 0 s113d

The integration of the complex function is along a close

which comprises a curve with radiusR in the upper half plane and
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le,

o-
s,

h

the real axis. Note that the exponential characteristic ofD is the
order ofe2jh, which ensures the integration is null along the cu
in the upper half-plane asR→`. The solution for the imprope
integration of Eq.s112d is thus obtained as,

u38sx1,x2,td =
j

2

FD sjs,− hd
uD8uj=js

usD2 + D1duj=js
eu − x8x2uj=jsejsvt−jsx1d

s114d

It is noted that Eq.s113d is the dispersion characteristic equa
of the piezoelectric coupled media with a pair of electrodes o
upper and lower surface of the piezoelectric layer shortly
nected, which was presented in Sec. 2. The value ofjs can be
easily obtained from the dispersion curve in Fig. 3 for a g
fixed frequencyv.

The deflection in the piezoelectric layer can be similarly
tained using Eqs.s96d and s97d

u3sx1,x3,td =
j

2

FD sjs,− hd
uD8uj=js

usD1e
−xx2 + D2e

xx2duj=js
ejsvt−jsx1d

s115d

The solution forcsx1,x3,td is obtained through Eq.s98d as

csx1,x3,td =
j

2

FD sjs,− hde−jsh

uD8uj=js

us− Q1e
−jx2 + Q2e

jx2duj=js
ejsvt−jsx1d

s116d

The electric potential in the piezoelectric layer can be expre
from Eq. s19d.

SinceFD sjs,−hd appears in the expressions of all physical v
ables discussed above and is the key term demonstrating the
of the geometry of interdigital transducer on the wave solut
the numerical simulations on this term will be conducted to in
tigate the design of the size of the interdigital transducer on
excited wave motion in the medium. In the following simulatio
the length of interdigital transducer is assumed to be half w
length of it which means only two fingers are used in
calculations.

Figure 5 shows the distribution ofFD sjs,−hd with respect toN
against the finger widthā=pa/L for the case whereL=6 mm and
h=0.1L. It is noted first that the convergence is obtained foN
.15. Another observation is that the maximum amplitude

FD sjs,−hd occurs sharply aroundā=0.9 and decays rapidly fro
this value. This conclusion is important in the design of the in
digital transducer since a wave signal with higher amplitude

¯

Fig. 5 Convergence of the amplitude
occur ata=0.9 in this case. Thus the design of the interdigital
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transducer withā=0.9 is useful in the application of structu
health monitoring as a clearer nondispersive signal is essen
damage detection of structures.

The effect of the thicknessh of the piezoelectric layer o

FD sjs,−hd is plotted in Fig. 6 forL=6 mm. The results show th

FD sjs,−hd increases withh which seems reasonable. This conc
sion implies that thicker piezoelectric layer is useful for produ
a clearer wave signal, i.e. wave motion with higher magnitud

Interesting observations on theL-dependent curves can
found in Fig. 7 for h=0.6 mm. Forā,0.5, the amplitude in
creases withā, whereas the reverse is observed forā.0.5. The
maximum amplitude occurs at higherā. The maximum amplitud
decreases asL increases until atL=1 cm, no distinct maximum

amplitude ofFD sjs,−hd is observed. This could possibly be due
the condition for assumingI =0 in deriving the analytical solutio
for the wave propagation, where for steel-PZT mediumL
,1.1 cm which is close toL=1 cm in the graph. In engineeri
applications, the length of the interdigital transducer cannot b
short as enough electrical input energy is also important in t
mitting the wave motion. Therefore, an optimal design of
length and the finger width of the interdigital transducer has t
investigated according to the proposed simulation conclusio

After the characteristics of the variableFD sjs,−hd have bee
derived, the physical phenomenon of other variables can the
be obtained easily. For example, the variation of the displace
u3sx1,x3,td can be studied from Eq.s115d. The displacement fo
lows a wave propagation motion inx1 direction. The distributio

Fig. 6 The amplitude of the excited motion at different heights
of the piezoelectric layer

Fig. 7 The variation of the amplitude at different wavelength of

IDT
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of the variation in x2 direction follows the functionD1e
−xx2

+D2e
xx2. The effect of the finger width,a, the wavelength of in

terdigital transducer,L, and the thickness of the piezoelectric la
finger, h, on the displacement all follow the conclusion deri
above from Figs. 5–7.

6 Concluding Remarks
An analytical solution for the shear horizontal wave prop

tion excited by an interdigital transducer in a piezoele
coupled medium is developed. The dispersion characterist
the shear horizontal wave in this medium are first presente
the close-circuit case as reference for deriving the subsequen
lytical solution. The solution is then shown for the case whe
infinitely long interdigital transducer is used on the structure.
mathematical solution is valid for the case where the wavele
is assumed to be designed appropriately, true for most interd
transducer used in practice with respect to steel-PZT media
solution of wave propagation for finitely long interdigital tra
ducer is obtained by assuming the distribution of the electric
tential in the vacuum is assumed to be the same as that ob
for the case of infinitely long interdigital transducer. The solu
reveals that the wave propagation in this piezoelectric cou
medium bonded by interdigital transducer follows the charac
tic equation of the dispersion curve for the same structure but
a pair of electrodes shortly connected. Convergence study f
algorithm used in the analysis is investigated where at lea
terms are needed. Parametric studies showed that the amplit
the displacement, electric displacement and potential increa
the thickness of the piezoelectric layer. As for the effect of
finger width, the maximum amplitude occurs aroundā=0.9. The
effect of the length of interdigital transducer is complicated.
smaller ā, longer transducer is required for wave motion w
higher magnitude, but reverse effect is observed for biggā.
Therefore, optimal design for the geometry of interdigital tra
ducer is thus necessitated in engineering applications. Furth
perimental work will be conducted in the near future. These
clusions are criteria for the design of interdigital transducer i
engineering applications, especially in the application of struc
health monitoring in which a nondispersive wave signal
higher magnitude is preferred and essential. It is hoped tha
current work could be used as a framework for the desig
interdigital transducer in wave excitation of smart structuresf28g.

Appendix

N1 =
1

2
S−

ke15

xc̄44

−
x8c448

xc̄44

J11

e15
−

J11

e15
D ,

N2 =
1

2
S ke15

xc̄44

−
x8c448

xc̄44

J11

e15
−

J11

e15
D ,

S1 = −
1

2
S−

ke15

xc̄44

−
x8c448

xc̄44

J11

e15
+

J11

e15
D ,

S2 = −
1

2
S ke15

xc̄44

−
x8c448

xc̄44

J11

e15
+

J11

e15
D ,

Q1 = N1e
xh − S1e

−xh +
ke15

xc̄44

ekh, Q2 = N2e
xh − S2e

−xh −
ke15

xc̄44

ekh,

R1 = ekh +
e15

J11
N1e

xh +
e15

J11
S1e

−xh,

R2 = e−kh +
e15 N2e

xh +
e15 S2e

−xh,

J11 J11
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N1i =
1

2
S−

kie15

xic̄44

−
xi8c448

xic̄44

J11

e15
−

J11

e15
D ,

N2i =
1

2
S kie15

xic̄44

−
xi8c448

xic̄44

J11

e15
−

J11

e15
D ,

S1i = −
1

2
S−

kie15

xic̄44

−
xi8c448

xic̄44

J11

e15
+

J11

e15
D ,

S2i = −
1

2
S kie15

xic̄44

−
xi8c448

xic̄44

J11

e15
+

J11

e15
D ,

hB1j = diag1 e−kih

R1i −
Q1i

Q2i
R2i2hCj =

V

KScos
ā

2
D diag1 sFi + 1d

R1i −
Q1i

Q2i
R2i2

3fFg−1hPj,

hB2j = diag1 e−kih

R2i −
Q2i

Q1i
R1i2hCj =

V

KScos
ā

2
D diag1 sFi + 1d

R2i −
Q2i

Q1i
R1i2

3fFg−1hPj,

hA1j =
V

KScos
ā

2
D diag1 N1isFi + 1d

R1i −
Q1i

Q2i
R2i

+
N2isFi + 1d

R2i −
Q2i

Q1i
R1i2fFg−1hPj,

hA2j =
V

KScos
ā

2
D diag1 S1isFi + 1d

R1i −
Q1i

Q2i
R2i

+
S2isFi + 1d

R2i −
Q2i

Q1i
R1i2fFg−1hPj,

hĀj =
V

KScos
ā

2
D diag1 sN1i + S1idsFi + 1d

R1i −
Q1i

Q2i
R2i

+
sN2i + S2idsFi + 1d

R2i −
Q2i

Q1i
R1i 2

3fFg−1hPj.
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Consistent Formulations of the
Interaction Integral Method for
Fracture of Functionally Graded
Materials
The interaction integral method provides a unified framework for evaluating fra
parameters (e.g., stress intensity factors and T stress) in functionally graded ma
The method is based on a conservation integral involving auxiliary fields. In fractu
nonhomogeneous materials, the use of auxiliary fields developed for homogeneo
terials results in violation of one of the basic relations of mechanics, i.e., equilib
compatibility or constitutive, which naturally leads to three independent formulat
“nonequilibrium,” “incompatibility,” and “constant-constitutive-tensor.” Each formul
tion leads to a consistent form of the interaction integral in the sense that extra term
added to compensate for the difference in response between homogeneous and n
geneous materials. The extra terms play a key role in ensuring path independenc
interaction integral. This paper presents a critical comparison of the three cons
formulations and addresses their advantages and drawbacks. Such comparison
both from a theoretical point of view and also by means of numerical example
numerical implementation is based on finite elements which account for the spati
dation of material properties at the element level (graded elements).
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1 Introduction
Solid mechanics problems consist of the following three r

tions:

• equilibrium
• compatibility
• constitutive

To determine fracture parameters, e.g., stress intensity fa
sSIFsd and T stress, by means of the interaction integralsM
integral3d method,auxiliary fields such as displacementssuauxd,
strainss«auxd, and stressesssauxd are needed. In fracture of fun
tionally graded materialssFGMsd, the use of the auxiliary field
developed for homogeneous materials results in violation of
of the three relations earlier, which leads to three indepen
formulations ssee Fig. 1d: nonequilibrium, incompatibility, an
constant-constitutive-tensor formulations. Each formulation l
to a different final form of the resultingM integral, and forcon-
sistency, extra terms are added to compensate for the differen
response between homogeneous and nonhomogeneous ma
Table 1 illustrates the auxiliary fields corresponding to each
mulation. Notice that the nonequilibrium formulation satis

1Present address: Department of Civil and Environmental Engineering, The
versity of Connecticut, 261 Glenbrook Road U-2037, Storrs, CT 06269.

2To whom correspondence should be addressed.
3Here, the so-calledM integral should not be confused with theM integral of

Knowles and Sternbergf1g, Budiansky and Ricef2g, and Chang and Chienf3g. Also,
see the book by Kanninen and Popelarf4g for a review of conservation integrals
fracture mechanics.
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compatibility s«aux=ssym¹ duauxd and the constitutive relatio
ssaux=Csxd«auxd, but violates equilibriums¹ ·sauxÞ0 with no
body forcesd. The incompatibility formulation satisfies equil
rium and the constitutive relations, but violates compatibility c
ditions s«auxÞ ssym¹ duauxd. The constant-constitutive-tensor f
mulation satisfies equilibrium and compatibility conditions,
violates the constitutive relationsssaux=Ctip«aux with CtipÞCsxdd.
Conservation integrals based on these three consistent for
tions are the focus of this paper.

This paper is organized as follows. Section 2 comment
related work. Section 3 presents auxiliary fields for SIFs anT
stress. Section 4 provides three consistent formulations usin
interaction integral approach. Sections 5 and 6 establish the
tionships betweenM and SIFs andT stress, respectively. Section
provides comparison and critical assessment of the three c
tent formulations. Sections 8 presents some numerical aspec
evant to the formulations. Section 9 presents two examples, w
test different aspects of the formulations. Finally, Sec. 10
cludes this work.

2 Related Work
The interaction integral method is an accurate and ro

scheme for evaluating mixed-mode SIFs andT stress. The metho
is formulated on the basis of conservation laws, which lead t
establishment of a conservation integral for two admissible s
of an elastic solid:actual and auxiliary. Yau et al.f5g presente
the interaction integral method for evaluating SIFs in hom
neous isotropic materials. Wang et al.f6g extended the method
homogeneous orthotropic materials, and Yauf7g used the metho
for bimaterial interface problems.

Recently, the interaction integral method has been explor
the field of fracture of FGMs. It has been extended for evalua
SIFs f8–11g in isotropic FGMs. Dolbow and Goszf8g employed
the extended finite element methodsX-FEMd; Rao and Rahma
f9g used the element-free Galerkin method; and Kim and Pa

ni-

r.
M.
-
A
e

f10,11g used the finite element methodsFEMd. In addition, the
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method has been employed to evaluateT stress in isotropicf11g
and orthotropicf12g FGMs. In the aforementioned papers,
interaction integral method has been investigated by mea
either an incompatibility formulation f8–12g or a constant
constitutive-tensor formulationf9g. Thus, for completeness a
unification of concepts, this work introduces anonequilibrium for-
mulation for evaluating SIFs andT stress in isotropic and orth
tropic FGMs. These three basic formulationsssee Sec. 1d will be
addressed in this investigation, which includes a critical as
ment and comparison of the formulations.

The FEM has been widely used for fracture of FGMs. Eisc
f13g evaluated mixed-mode SIFs by means of the p
independentJk

* integral. Gu et al.f14g evaluated SIFs using th
standardJ integral. Anlas et al.f15g calculated SIFs by using th
path-independentJ1

* integral. Marur and Tippurf16g investigated
crack normal to the material gradient using the FEM in conj
tion with experiments. Bao and Caif17g studied delaminatio
cracking in a graded ceramic/metal substrate under mech
and thermal loads. Bao and Wangf18g investigated periodi
cracking in graded ceramic/metal coatings under mechanica
thermal loads. Kim and Paulinof19g evaluated mixed-mode SI
by means of the path-independentJk

* integral, the modified crac
closure sMCCd, and the displacement correlation techniq
Moreover, Kim and Paulino investigated mixed-mode SIFs
cracks arbitrarily oriented in orthotropic FGMs using the M
methodf20g and the path-independentJk

* integralf21g. The nons
ingular stresssT stressd of the Williams’s eigenfunction expansi
f22g has also been computed by means of the FEM. Becker
f23g studied T stress and finite crack kinking in FGMs. Th
calculatedT stress using the difference of the normal stre
along u=0, i.e., ssxx−syyd. Recently, Kim and Paulinof11g pro-
posed a unified approach using the interaction integral meth
evaluateT stress and SIFs in FGMs, and also investigated
effect of T stress on crack initiation angles.

Fig. 1 Motivation for development of alternative consistent
formulations. Notice that C„x…ÅCtip for xÅ0. The area A de-
notes a representative region around the crack tip.

Table 1 Comparison of alternative formulations

Nonequilibrium
formulation

Incompatibility
formulation

Constant-constitutive-tens
formulation

uaux uaux uaux

«aux saux «aux

saux=Csxd«aux «aux=Ssxdsaux saux=Ctip«aux

= ·sauxÞ0 «auxÞ ssym=duaux CsxdÞCtip
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Other methods have also been used to investigate fractu
FGMs ssee the papers by Erdoganf24g, Nodaf25g, and Paulino e
al. f26gd. Analytical or semi-analytical approaches have been
by Delale and Erdoganf27g, Erdoganf24g, Erdogan and Wuf28g,
and Chan et al.f29g. Delale and Erdoganf30g investigated a crac
in a FGM layer between two dissimilar homogeneous half-pla
Gu and Asarof31g studied a semi-infinite crack in a FGM str
Shbeeb et al.f32,33g studied multiple cracks interacting in
infinite nonhomogeneous plate. Honein and Herrmannf34g stud-
ied conservation laws in nonhomogeneous plane elastostatic
investigated a semi-infinite crack by using the path-independeJe
integral. Gu and Asarof31g studied orthotropic FGMs consideri
a four-point bending specimen. Ozturk and Erdoganf35,36g used
integral equations to investigate mode I and mixed-mode c
problems in an infinite nonhomogeneous orthotropic medium
a crack aligned with one of the principal material directions.
to its generality, the FEM is the method of choice in this wor

3 Auxiliary Fields
The interaction integral makes use of auxiliary fields, suc

displacementssuauxd, strains s«auxd, and stressesssauxd. These
auxiliary fields have to be suitably defined in order to eval
mixed-mode SIFs andT stress. There are various choices for
auxiliary fields. Here we adopt fields originally developed for
mogeneous materials. For each formulations nonequilibrium, in
compatibility, constant-constitutive tensord, the selection of auxi
iary fields is done according to Table 1. The auxiliary fie
adopted in this paper are described later.

3.1 Fields for SIFs.For evaluating mixed-mode SIFs, we
lect the auxiliary displacement, strain, and stress fields a
crack-tip asymptotic fieldssi.e., Osr1/2d for the displacements a
Osr−1/2d for the strains and stressesd with the material propertie
sampled at the crack-tip locationse.g., Ref.f13gd: Figure 2 show
a crack in a FGM under two-dimensional fields in local Carte
and polar coordinates originating at the crack tip. The auxi
displacement, strain, and stress fields are chosen asf22,37g:

uaux= KI
auxf Isr1/2,u,atipd + KII

auxf IIsr1/2,u,atipd s1d

aux aux

Fig. 2 Cartesian „x1,x2… and polar „r ,u… coordinates originat-
ing from the crack tip in a nonhomogeneous material subjected
to traction „t… and displacement boundary conditions
« = ssym¹ du , s2d

Transactions of the ASME
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saux= KI
auxgIsr−1/2,u,atipd + KII

auxgIIsr−1/2,u,atipd s3d

whereKI
aux andKII

aux are the auxiliary mode I and mode II SIF
respectively, andatip denotes contracted notation of the com
ance tensorS evaluated at the crack tip, which is explained
Appendix A. The representative functionsfsr1/2,u ,atipd and
gsr−1/2,u ,atipd are given in Appendix B and can also be found
other references, e.g., Refs.f37,38g.

3.2 Fields forT stress.For evaluatingT stress, we choose t
auxiliary displacement, strain, and stress fields as those du
point force in thex1 direction, applied to the tip of a semi-infin
crack in an infinite homogeneous body as shown in Fig. 3.
auxiliary displacements, strains, and stresses are chos
f39–41g:

uaux= tusln r,u, f,atipd s4d

«aux= ssym¹ duaux s5d

saux= tssr−1,u, f,atipd s6d

wheref is the point force applied to the crack tip, andatip denotes
contracted notation of the compliance tensorS evaluated at th
crack tip, which is defined in Appendix A. The representa
functionstusln r ,u , f ,atipd andtssr−1,u , f ,atipd are given in Appen
dix C and can be found in other references, e.g., Refs.f39,41g.

For orthotropic materials, the auxiliary fields may be de
mined by either the Lekhnitskii or Stroh formalismf12g. There is
no difficulty in determining the auxiliary fields in the case
isotropic materialsf11g.

4 M-integral formulations
The standardJ integral f42g is given by

J = lim
Gs→0

E
Gs

sWd1j − si jui,1dnjdG s7d

whereW is the strain energy density expressed by

W = 1
2si j«i j = 1

2Cijkl«kl«i j s8d

andnj is the outward normal vector to the contourGs, as shown in
Fig. 4. The portion ofG with applied displacements is denotedGu,
and the portion ofG with applied traction is denotedGt. Moreover
G=Gu+Gt. Using a plateau-type weight function varying fromq
=1 onGs to q=0 onG0 f10g and assuming that the crack faces

Fig. 3 A point force applied at the crack tip in the direction
parallel to the crack surface
traction-free, Eq.s7d becomes

Journal of Applied Mechanics
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J = lim
Gs→0

R
G

ssi jui,1 − Wd1jdmjqdG s9d

Applying the divergence theorem to Eq.s9d, the equivalent do
main integralsEDId is obtained as

J =E
A

ssi jui,1 − Wd1jdq,jdA+E
A

ssi jui,1 − Wd1jd,jqdA s10d

The J integral of the superimposed fieldssactual and auxiliar
fieldsd is obtained as

Js =E
A

hssi j + si j
auxdsui,1 + ui,1

auxd − 1
2ssik + sik

auxds«ik + «ik
auxdd1jjq,jdA

+E
A

hssi j + si j
auxdsui,1 + ui,1

auxd − 1
2ssik + sik

auxds«ik + «ik
auxd

3sd1jdj,jqdA s11d

which is conveniently decomposed into

Js = J + Jaux+ M s12d

whereJaux is given by

Jaux=E
A

ssi j
auxui,1

aux− Wauxd1jdq,jdA+E
A

hsi j
auxui,1

aux

− 1
2sik

aux«ik
auxd1jj,jqdA

and the resulting interaction integralsMd is given by

M =E
A

hsi jui,1
aux+ si j

auxui,1 − 1
2ssik«ik

aux+ sik
aux«ikdd1jjq,jdA

+E
A

hsi jui,1
aux+ si j

auxui,1 − 1
2ssik«ik

aux+ sik
aux«ikdd1jj,jqdA

s13d

This general form ofM integral becomes a specific form ofM
integral for each of the three formulations, which is explaine
the next section.

4.1 Nonequilibrium Formulation. The name of the formula
tion is based on the fact that the auxiliary stress field

si j
aux= Cijklsxd«kl

aux s14d

Fig. 4 Conversion of the contour integral into an EDI where
G=G0+G+−Gs +G−,mj =nj on G0 and mj =−nj on Gs
does not satisfy equilibrium because it differs from

MAY 2005, Vol. 72 / 353
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si j
aux= sCijkldtip«kl

aux, s15d

where Cijklsxd is the constitutive tensor of the actual FGM a
sCijkldtip is the constitutive tensor at the crack tipssee Fig. 1d. The
derivatives of the auxiliary stress field are

si j ,j
aux= Cijkl ,jsxd«kl

aux+ Cijklsxd«kl,j
aux= sCijkldtip«kl,j

aux+ Cijkl ,jsxd«kl
aux

+ fCijklsxd − sCijkldtipg«kl,j
aux, s16d

where the underlined term in Eq.s16d vanishes. Thus this arg
ment confirms that the auxiliary stress field selected in this
mulationsEq. s14dd does not satisfy equilibrium, i.e.,si j ,j

auxÞ0 sno
body forces or inertiad. This choice of the auxiliary fields has be
discussed by Dolbow and Goszf8g, but a nonequilibrium formu
lation was not provided in their paper. The nonequilibrium in
stress field has to be taken into account in the interaction int
formulation, which is discussed in detail later.

Using the following equality:

si j«i j
aux= Cijklsxd«kl«i j

aux= skl
aux«kl = si j

aux«i j s17d
one rewrites Eq.s13d as

M =E
A

hsi jui,1
aux+ si j

auxui,1 − sik«ik
auxd1jjq,jdA+E

A

hsi jui,1
aux

+ si j
auxui,1 − sik«ik

auxd1jj,jqdA= M1 + M2 s18d

The last term of the second integralsM2d in Eq. s18d is expresse
as

ssik«ik
auxd1jd,j = ssik«ik

auxd,1 = ssi j«i j
auxd,1 = sCijkl«kl«i j

auxd,1

= Cijkl ,1«kl«i j
aux+ Cijkl«kl,1«i j

aux+ Cijkl«kl«i j ,1
aux

= Cijkl ,1«kl«i j
aux+ si j

aux«i j ,1 + si j«i j ,1
aux s19d

Substitution of Eq.s19d into Eq. s18d leads to

M2 =E
A

ssi j ,jui,1
aux+ si jui,1j

aux+ si j ,j
auxui,1 + si j

auxui,1jdqdA

−E
A

sCijkl ,1«kl«i j
aux+ si j

aux«i j ,1 + si j«i j ,1
auxdqdA s20d

Using compatibility sactual and auxiliaryd and equilibriumsac-
tuald si.e., si j ,j =0 with no body forced, one simplifies Eq.s20d as

M2 =E
A

hsi j ,j
auxui,1 − Cijkl ,1«kl«i j

auxjqdA s21d

Therefore the resulting interaction integralsMd becomes

M =E
A

hsi jui,1
aux+ si j

auxui,1 − sik«ik
auxd1jjq,jdA+E

A

hsi j ,j
auxui,1

− Cijkl ,1«kl«i j
auxjqdA s22d

where the underlined term is a nonequilibrium term, which
pears due to nonequilibrium of the auxiliary stress fields.
existence of the final form ofM integral for FGMs in Eq.s22d has
been proved by Kimf43g and Paulino and Kimf44g.

4.2 Incompatibilty Formulation. The incompatibility formu
lation satisfies equilibriumssi j ,j

aux=0 with no body forcesd and the
constitutive relationships«i j

aux=Sijklsxdskl
auxd, but violates compat

blity conditionss«i j
auxÞ sui,j

aux+uj ,i
auxd /2d. Thus Eq.s20d is also valid

for this formulation. Using equilibriumsactual and auxiliaryd and
compatibility sactuald, one simplifiesM2 as

M2 =E
A

hsi jsui,1j
aux− «i j ,1

auxd − Cijkl ,1«kl«i j
auxjqdA
Therefore the resulting interaction integralsMd becomes
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M =E
A

hsi jui,1
aux+ si j

auxui,1 − sik«ik
auxd1jjq,jdA+E

A

hsi jsui,1j
aux− «i j ,1

auxd

− Cijkl ,1«kl«i j
auxjqdA s23d

where the underlined term is an incompatibility term, which
pears due to incompatibility of the auxiliary strain fields. T
existence of the final form ofM integral for FGMs in Eq.s23d has
been proved by Kimf43g.

4.3 Constant-Constitutive-Tensor Formulation. The con
stant-constitutive-tensor formulation satisfies equilibriumssi j ,j

aux

=0 with no body forcesd and compatiblity conditionss«i j
aux

=sui,j
aux+uj ,i

auxd /2d, but violates the constitutive relationshipssi j
aux

=sCijkldtip«kl
aux with sCijkldtipÞCijklsxdd. Notice that si j«i j

aux

Þsi j
aux«i j due to the violated constitutive relationship. Thus

s13d becomes

M =E
A

hsi jui,1
aux+ si j

auxui,1 − 1
2ssik«ik

aux+ sik
aux«ikdd1jjq,jdA

+E
A

hsi j ,jui,1
aux+ si jui,1j

aux+ si j ,j
auxui,1 + si j

auxui,1j − 1
2ssi j ,1«i j

aux

+ si j«i j ,1
aux+ si j ,1

aux«i j + si j
aux«i j ,1djqdA s24d

Using equilibrium and compatibility conditions for both act
and auxiliary fields, one obtainsM as

M =E
A

hsi jui,1
aux+ si j

auxui,1 − 1
2ssik«ik

aux+ sik
aux«ikdd1jjq,jdA

+E
A

1
2hsi j«i j ,1

aux− si j ,1«i j
aux+ si j

aux«i j ,1 − si j ,1
aux«i jjqdA s25d

Notice that the resultingM involves derivatives of the actu
strain and stress fields, which arises due to the material mism
and may cause loss of accuracy from a numerical point of v
The existence of the final form ofM integral for FGMs in Eq.s25d
has been proved by Kimf43g.

5 Extraction of Stress Intensity Factors
For mixed-mode crack problems on orthotropic materials

energy release ratesGI andGII are related to mixed-mode SIFs
follows f37g:

GI = −
KI

2
a22

tip ImFKIsm1
tip + m2

tipd + KII

m1
tipm2

tip G s26d

GII =
KII

2
a11

tip ImfKIIsm1
tip + m2

tipd + KIsm1
tipm2

tipdg s27d

where Im denotes the imaginary part of the complex func
Thus

Jlocal = G = GI + GII = c11KI
2 + c12KIKII + c22KII

2 s28d

where

c11 = −
a22

tip

2
ImSm1

tip + m2
tip

m1
tipm2

tip D
c12 = −

a22
tip

2
ImS 1

m1
tipm2

tipD +
a11

tip

2
Imsm1

tipm2
tipd

c22 =
a11

tip

2
Imsm1

tip + m2
tipd s29d

For two admissible fields, which are the actualsu ,« ,sd and aux
aux aux aux
iliary su ,« ,s d fields, one obtainsf6g:
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Jlocal
s = c11sKI + KI

auxd2 + c12sKI + KI
auxdsKII + KII

auxd + c22sKII

+ KII
auxd2 = Jlocal + Jlocal

aux + M local s30d

whereJlocal is given by Eq.s28d, Jlocal
aux is given by

Jlocal
aux = c11sKI

auxd2 + c12KI
auxKII

aux+ c22sKII
auxd2 s31d

andM local is given by

M local = 2c11KIKI
aux+ c12sKIKII

aux+ KI
auxKIId + 2c22KIIKII

aux

s32d

The mode I and mode II SIFs are evaluated by solving the
lowing linear algebraic equations:

M local
s1d = 2c11KI + c12KII, sKI

aux= 1.0,KII
aux= 0.0d s33d

M local
s2d = c12KI + 2c22KII, sKI

aux= 0.0,KII
aux= 1.0d s34d

where the superscript inM local
sid si =1,2d is used just to indicate th

the values are distinct in each case. For isotropic materials
off-diagonal terms ofcij drop, and Eqs.s33d and s34d become

M local
s1d =

2

Etip
* KI sKI

aux= 1.0,KII
aux= 0.0d s35d

M local
s2d =

2

Etip
* KII, sKI

aux= 0.0,KII
aux= 1.0d s36d

respectively, whereEtip
* =Etip for plane stress andEtip

* =Etip / s1
−ntip

2 d for plane strain. The relationships of Eqs.s33d ands34d, and
Eqs.s35d ands36d are the same as those for homogeneous o
tropic f6g and isotropicf5g materials, respectively, except that,
FGMs, the material properties are evaluated at the crack-tip
tion. Notice that, for the orthotropic case, there is no need
Newton’s iteration, which is needed with other approaches su
the path-independentJk integral f21g and the MCC integralf20g.
Here the SIFs for mode I and mode II are naturally decoupledscf.
Eqs.s33d and s34dd.

6 Extraction of T Stress
T stress can be extracted from the interaction integral by n

fying the contributions of both singularsi.e., Osr−1/2dd and higher
order si.e., Osr1/2d and higherd terms. The derivation is explain
in detail by Kim and Paulinof11,12g and Paulino and Kimf44g.
From the earlier derivation of Eq.s13d, theM integral in the form
of line integral is obtained as

M local = lim
Gs→0

E
Gs

hsik«ik
auxd1j − si jui,1

aux− si j
auxui,1jnjdG s37d

Here we can consider only the stress parallel to the crack d
tion, i.e.:

si j = Td1id1j s38d

Substituting Eq.s38d into Eq. s37d, one obtains

M local = − lim
Gs→0

E
Gs

si j
auxnjui,1dG = Ta11

tip lim
Gs→0

E
Gs

si j
auxnjdG

s39d

Because the forcef is in equilibrium ssee Fig. 3d:

f = − lim
Gs→0

E
Gs

si j
auxnjdG s40d
and thus the following relationship is obtained:
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T =
M local

fa11
tip s41d

where a11
tip is a material parameter at the crack tip location

plane stress, and is replaced byb11
tip for plane strainscf. Eq. s65dd.

For isotropic materials, Eq.s41d becomes

T =
Etip

*

f
M local s42d

whereEtip
* =Etip for plane stress andEtip

* =Etip / s1−ntip
2 d for plane

strain.

7 Comparison and Critical Assessment
The three formulations presented earlier areconsistentin the

sense that extra terms are added to account for the differen
response between homogeneous and nonhomogeneous ma
However, each formulation has an independent final formssee
Eqs.s22d, s23d, ands25dd due to the different characteristics of
auxiliary fields. The final form of theM integral for each of thes
formulations is compared and assessed from a theoretical po
view later.

The nonequilibrium formulation results in the simplest finaM
integral thus requiring the least computation and implement
effort among the three formulations. This is observed by com
ing Eqs.s22d, s23d, and s25d. Moreover, the nonequilibrium fo
mulation is equivalent to the incompatibility formulation, beca
both formulations involve the same constitutive relations and
responding material derivatives. This equivalence is observ
the numerical examples of Sec. 9. However, the cons
constitutive-tensor formulationf9g requires the derivatives of t
actual stress field, which may introduce accuracy problems
standardC0 elements commonly used in the displacement-b
FEM.

In order to further compare the three consistent formulat
let’s consider an exponentially graded material in which Poiss
ratio is constant and Young’s modulus varies in any directionssee
Fig. 5d:

Esx1d = E0 expsdx1d = E0 expsb1X1 + b2X2d s43d

n = constant s44d

whereX=sX1,X2d refers to a global coordinate system,x1 is the
direction of material gradationsinclined byum with respect to th
X1 coordinated, and the nonhomogeneity parametersd, b1, andb2

Fig. 5 Crack geometry in a nonhomogeneous material, which
is graded along the x1 direction
are related by
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b1 = d cosum, b2 = d sinum s45d

This selection of material property leads to simplification of
resultingM integrals and allows one to better assess and com
the characteristics of the formulations. Moreover, exponen
graded materials have been extensively investigated in the te
cal literature, e.g., Refs.f8,15,19,21,24,27–36,45–48g. The result
ing M integrals corresponding to the three formulations are
rived later in the global coordinate system, which is used in
numerical implementationssee Sec. 8 laterd.

7.1 Nonequilibrium Formulation. The derivatives of inter
est, with respect to the global coordinate system, aresm=1,2d

si j ,j
aux= Cijkl ,jsXd«kl

aux+ CijklsXd«kl,j
aux= b jCijklsXd«kl

aux+ CijklsXd«kl,j
aux

= b jCijklsXd«kl
aux+ apsCijkldtip«kl,j

aux= b jsi j
aux s46d

Cijkl ,m = bmCijklsXd s47d

whereap=expsb1X1+b2X2d is a factor that arises due to the p
portionality of Cijkl for the material gradation considered. T
global interaction integralsMmdglobal sm=1,2d is given by

sMmdglobal=E
A

hsi jui,m
aux+ si j

auxui,m − sik«ik
auxd1jj

]q

]Xj
dA

+E
A

hsi j ,j
auxui,m − Cijkl ,m«kl«i j

auxjqdA s48d

Substitution of Eqs.s46d and s47d into Eq. s48d yields sm=1,2d:

sMmdglobal=E
A

hsi jui,m
aux+ si j

auxui,m − sik«ik
auxdmjj

]q

]Xj
dA

+E
A

hb jsi j
auxui,m − bmsi j«i j

auxjqdA s49d

Notice that, for this particular case, a simpler expression than
for the general case is obtainedscf. Eq. s22dd. The derivatives o
material properties are represented by the material nonhomo
ity b in Eq. s49d. Moreover, the contribution of the nonequil
rium term to theM integral is related to the value ofb.

7.2 Incompatibility Formulation. The derivatives of inter
est, with respect to the global coordinate system, aresm=1,2d:

«i j ,m
aux = Sijkl ,msXdskl

aux+ SijklsXdskl,m
aux = − bmSijklsXdskl

aux

+ SijklsXdskl,m
aux = − bm«i j

aux+ SijklsXdskl,m
aux s50d

together with Eq.s47d. The global interaction integralsMmdglobal
sm=1,2d is given by

sMmdglobal=E
A

hsi jui,m
aux+ si j

auxui,m − sik«ik
auxdmjj

]q

]Xj
dA

+E
A

hsi jsui,mj
aux − «i j ,m

auxd − Cijkl ,m«kl«i j
auxjqdA s51d

Substitution of Eqs.s50d and s47d into Eq. s51d yields sm=1,2d:

sMmdglobal=E
A

hsi jui,m
aux+ si j

auxui,m − sik«ik
auxdmjj

]q

]Xj
dA

+E
A

hsi jui,mj
aux − si j ,m

aux«i jjqdA s52d

Notice that, for this particular case, the finalM integral does no
involve any derivatives of material propertiesscf. Eq. s23dd. In

this formulation, the first integral of Eq.s52d is the same as that
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for the nonequilibrium formulation, because both formulations
the same constitutive tensorCsXd.

7.3 Constant-Constitutive-Tensor Formulation. The de
rivatives of interest, with respect to the global coordinate sys
are sm=1,2d:

si j ,m = Cijkl ,msXd«kl + CijklsXd«kl,m = bmCijklsXd«kl + CijklsXd«kl,m

= bmsi j + CijklsXd«kl,m s53d

si j ,m
aux = sCijkldtip«kl,m

aux s54d

The global interaction integralsMmdglobal sm=1,2d is given by

M =E
A

Hsi jui,m
aux+ si j

auxui,m −
1

2
ssik«ik

aux+ sik
aux«ikddmjJ ]q

]Xj
dA

+E
A

1

2
hsi j«i j ,m

aux − si j ,m«i j
aux+ si j

aux«i j ,m − si j ,m
aux«i jjqdA s55d

Substitution of Eqs.s53d and s54d into Eq. s55d yields sm=1,2d:

M =E
A

Hsi jui,m
aux+ si j

auxui,m −
1

2
ssik«ik

aux+ sik
aux«ikddmjJ ]q

]Xj
dA

+E
A

1

2
hsi j«i j ,m

aux − bmsi j«i j
aux− Cijkl«kl,m«i j

aux+ si j
aux«i j ,m

− sCijkldtip«kl,m
aux «i jjqdA s56d

whereCijkl ;CijklsXd. Notice that, for this case, the finalM inte-
gral requires the derivatives of the actual strain field, which
have numerical accuracy problems. The derivatives of ma
properties are represented by the material nonhomogeneityb in
Eq. s56d. Moreover, the first integral of Eq.s56d is different from
those for the other two formulations.

8 Some Numerical Aspects
For numerical computation by means of the FEM, theM inte-

gral is evaluated first in global coordinatesssMmdglobald and then
transformed to local coordinatessM locald. The M integrals
sMmdglobal for the three consistent formulations have derivative
material properties in common. In this paper, we do not
closed-form expressions for derivatives of material propertie
cause these expressions would be specific to each specific
tion or micromechanics model. Thus, for the sake of gener
we determine such derivatives by using shape function deriva
of finite elementsf19,45g.

The derivatives involving material derivatives for each for
lation are

•nonequilibrium:si j ,j
aux= Cijkl ,j«kl

aux+ Cijkl«kl,j
aux s57d

•incompatibility: «i j ,m
aux = Sijkl ,mskl

aux+ Sijklskl,m
aux s58d

•constant-constitutive-tensor:si j ,m = Cijkl ,m«kl + Cijkl«kl,m

s59d

A simple and general approach to evaluate such derivatives
sists of using shape function derivativesf11g. Thus the derivative
of a generic quantityP se.g.,Cijkl , Sijkl , or «i j d are obtained as

]P

]Xm
= o

i=1

n
]Ni

]Xm
Pi, sm= 1,2d s60d

wheren is the number of element nodes andNi =Nisj ,hd are the
element shape functions which can be found in many refere

e.g., Ref.f49g. The derivatives]Ni /]Xm are obtained as
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H]Ni/]X1

]Ni/]X2
J = J−1H ]Ni/]j

]Ni/]h
J s61d

whereJ−1 is the inverse of the standard Jacobian matrix rela
sX1,X2d with sj ,hd f49g.

9 Numerical Examples
The performance of the interaction integral for evaluating S

and T stress in isotropic and orthotropic FGMs is examined
means of numerical examples. This paper employs the thre
mulations, such as nonequilibrium, incompatibility, and cons
constitutive tensor, for numerical investigation. The following
amples are presented

s1d Inclined center crack in a plate
s2d Strip with an edge crack

All the examples are analyzed using the FEM codeI-FRANC2D
4.

sIllinois; FRacture ANalysis Code2Dd, which is based on the co

4

Fig. 6 Example 1: FGM plate with an inclined
and boundary conditions „BCs … under fixed-gr
contours for EDI computation of M integral; „

rings „R4… around the crack tips „ū=18° coun
The FEM codeI-FRANC2D was formerly calledFGM-FRANC2D f19g.

Journal of Applied Mechanics
g

s
y
or-
t-
-

FRANC2D f50,51g developed at Cornell University. TheI-FRANC2D

element library for FGMs consists ofgraded elementsf19,46,45g,
which incorporate the material gradient at the size scale o
element. The specific graded elements used here are based
generalized isoparametric formulationpresented by Kim an
Paulinof19g, who have also compared the performance of t
elements with that of conventional homogeneous elements w
produce a step-wise constant approximation to a continuou
terial property fieldf45g.

All the geometry is discretized with isoparametric graded
mentsf19g. The specific elements used consist of singular qua
point six-node trianglessT6qpd for crack-tip discretization, eigh
node serendipity elementssQ8d for a circular region around crac
tip elements, and regular six-node trianglessT6d in a transition
zone toQ8 elementsssee, for example, Fig. 6, for a typical cra
tip region discretizationd.

All the examples consist of SIFs andT stress results for bo
isotropic and orthotropic FGMs, and those results are obtain
the interaction integral in conjunction with the FEM. In orde
validate SIFs andT stress solutions, the FEM results for the fi

ck with geometric angle ū: „a… geometry
oading; „b… typical finite element mesh; „c…
mesh detail using 12 sectors „S12… and four
-clockwise …
cra
ip l
d…
ter
examplesan inclined center crack in an exponentially graded plate
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subjected to fixed-grip loadingd are compared with available sem
analytical and numerical solutions. The second example inv
hyperbolic-tangent functions for material properties and inv
gates the effect of translation of these properties with respe
the crack-tip location.

9.1 Inclined Center Crack in a Plate.Figure 6sad shows an
inclined center crack of length 2a located with a geometric ang

u scounter-clockwised in a plate subjected to fixed-grip loadin
Fig. 6sbd shows the complete mesh configuration; Fig. 6scd shows
five contours used for EDI computation of theM integral; and Fig
6sdd shows the mesh detail using 12 sectorssS12d and four rings
sR4d of elements around the crack tips. The displacement bo
ary condition is prescribed such thatu2=0 along the lower edg
and u1=0 for the node at the lower left-hand side. The m
discretization consists of 1641Q8, 94 T6, and 24T6qpelements
with a total of 1759 elements and 5336 nodes. The fixed
loading results in a uniform strain«22sX1,X2d= «̄ in a correspond
ing uncracked structure, which corresponds tos22sX1,10d
= «̄E0ebX1 for isotropic FGMs ands22sX1,10d= «̄E22

0 ebX1 for
orthotropic FGMs ssee Fig. 6sadd. Young’s moduli and shea
modulus are exponential functions ofX1, while Poisson’s ratio i
constant. The following data were used in the FEM analyses

plane stress, 23 2 Gauss quadrature

dimensionless nonhomogeneity parameter:ba = 0.5

a/W= 0.1, L/W= 1.0, ū = 0 ° to 90 ° , «̄ = 1

Isotropic case

EsX1d = E0ebX1, nsX1d = n

E0 = 1.0, n = 0.3

Table 2 Example 1: comparison of normalized
=0.5 „K0= «̄E0Îpa… „see Fig. 6 …. Contour 5 s
constitutive-tensor formulation. The results for the
lations are almost identical and thus the results
here.

Method ū KI
+/K0

Konda and
Erdoganf47g

0° 1.424
18° 1.285
36° 0.925
54° 0.490
72° 0.146
90° 0.000

Nonequilibrium 0° 1.423
18° 1.283
36° 0.922
54° 0.488
72° 0.145
90° 0.000

Constant-
constitutive tensor

0° 1.426
18° 1.280
36° 0.922
54° 0.486
72° 0.143
90° 0.000

Dolbow
and Goszf8g

sX-FEMd

0° 1.445
18° 1.303
36° 0.930
54° 0.488
72° 0.142
90° 0.000
Orthotropic case
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es
i-
to

d-

h

ip

E11sX1d = E11
0 ebX1, E22sX1d = E22

0 ebX1,

G12sX1d = G12
0 ebX1, n12sX1d = n12

0

E11
0 = 104, E22

0 = 103, G12
0 = 1216, n12

0 = 0.3

Table 2 compares the present FEM results for normalized
obtained by the nonequilibrium and constant-constitutive-te
formulations of theM integral with semi-analytical solutions pr
vided by Konda and Erdoganf47g and the extended FEM resu
by Dolbow and Goszf8g for various geometric angles of a cra
in isotropic FGMs. The difference in the result for SIFs betw
nonequilibrium and incompatibility formulations is found to be
the orderOs10−4d in this example, and thus the results are
provided. The converged results obtained by the nonequilib
formulation are in good agreement with those by Konda and
doganf47g smaximum difference 1.3%, average difference 0.6d,
those by Dolbow and Goszf8g, and those obtained by t
constant-constitutive-tensor formulation. For the nonequilib
and incompatibility formulations, a domain including almost
of the square plate is used, and converged solutions are obt
However, for the constant-constitutive-tensor formulation, con
5 as shown in Fig. 6scd is used. We observe that the accuracy
the constant-constitutive-tensor formulation are reasonabl
small size of contours such as contours 1–5, but as the co
becomes large than contour 5, the solution does not converg
accuracy deteriorates. As explained in the theoretical discu
the constant-constitutive-tensor formulation may have nume
problems in the accuracy of derivatives of actual strain or s
fields. To reduce domain dependence, mesh discretization ov
plate shown in Fig. 6sbd needs to be improved.

Figure 7 showsJ=sKI
2+KII

2d /Etip value calculated by the inte

action integral for the right crack tip of an inclined crack witū
=18 deg using five contours for EDI computations as show
Fig. 6scd. The nonequilibrium formulation is used both consid
ing and neglecting the nonequilibrium termssee Eq.s22dd, and the

ixed-mode SIFs in isotropic FGMs for ba
wn in Fig. 6 „c… is used for the constant-
onequilibrium and incompatibility formu-

the latter formulation are not reported

KII
+ /K0 KI

−/K0 KII
− /K0

0.000 0.674 0.000
0.344 0.617 0.213
0.548 0.460 0.365
0.532 0.247 0.397
0.314 0.059 0.269
0.000 0.000 0.000

0.0000 0.6657 0.0000
0.3454 0.6104 0.2112
0.5502 0.4559 0.3625
0.5338 0.2451 0.3943
0.3147 0.0587 0.2670
0.0000 0.0000 0.0000

0.0000 0.6629 0.0000
0.3452 0.6081 0.2101
0.5512 0.4546 0.3607
0.5348 0.2460 0.3931
0.3144 0.0596 0.2670
0.0000 0.0000 0.0000

0.000 0.681 0.000
0.353 0.623 0.213
0.560 0.467 0.364
0.540 0.251 0.396
0.316 0.062 0.268
0.000 0.000 0.000
m
ho
n

from

4
5
4
0
1
0

2
7
4
2
9
0

incompatibility formulation is used both considering and neglect-
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ing the incompatible termssee Eq.s23dd. The solutions obtaine
by considering the nonequilibrium term for the nonequilibr
formulation, and the incompatibility term for the incompatibi
formulation are not distinguishable in a graphical form. No
that the converged solution is obtained when including eithe
nonequilibrium or the incompatibility term, however, such beh
ior is generally not observed when neglecting either term.

Table 3 compares the present FEM results for normalized
in orthotropic FGMs obtained by the nonequilibrium formulat
of the M integral with those obtained by the incompatibility f
mulation for various geometric angles of a crack in orthotr
FGMs. Notice that the two formulations provide similar FE
results for SIFs for each geometric angle. Comparison of Tab
and 3 indicates that the material orthotropy shows significan
fect on SIFs, and the SIFsKI

+ sright crack tipd andKII
− sleft crack

tipd for the orthotropic case are greater than or equal to thos
the isotropic case, however, the SIFsKII

+ andKI
− for the orthotro

pic case are smaller than or equal to those that for the isot
case.

Table 4 compares the present FEM results for normalizT
stress in isotropic FGMs obtained by the nonequilibrium for
lation of theM-integral with those reported by Paulino and Do
f48g who used the singular integral equation method. Table 5
pares the present FEM results for normalizedT stress obtained b
the nonequilibrium formulation of theM integral with those ob

Fig. 7 Example 1: comparison of J = „KI
2+KII

2
… /Etip for the right

crack tip of an inclined crack with ū=18° using the M integral.
The nonequilibrium formulation is used both considering and
neglecting the nonequilibrium term „see Eq. „22……. The incom-
patibility formulation is used both considering and neglecting
the incompatible term „see Eq. „23……

Table 3 Example 1: Comparison of normalized
=0.5 „K0= «̄E22

0 Îpa… „see Fig. 6 …

Formulation ū KI
+/K0

Nonequilibrium 0° 1.4279
18° 1.3224
36° 1.0177
54° 0.6008
72° 0.2154
90° 0.0000

Incompatiblity 0° 1.4285
18° 1.3224
36° 1.0177
54° 0.6008
72° 0.2158
90° 0.0000
Journal of Applied Mechanics
e
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tained by the incompatibility formulation for orthotropic FGM
Notice that the two formulations provide similar FEM results
T stress for each geometric angle. For the isotropic case,T stress
at both right and left crack tips changes sign in the range of a

u=30 deg–45 degssee Table 4d, while, for the orthotropic case,

changes sign in the range of angleū=15 deg–30 degssee Tabl
5d. Comparison of Tables 4 and 5 indicates that the ma
orthotropy shows significant effect onT stress in terms of bo
sign and magnitude.

9.2 Strip With an Edge Crack. Figure 8sad shows an edg
crack of length “a” in a plate, and Fig. 8sbd shows the comple
mesh discretization using 12 sectorssS12d and four ringssR4d of
elements around the crack tip. Figures 8scd–8sed illustrate the
three considered types of hyperbolic-tangent material grad
with respect to the crack tip: reference configuration, translati
the left, and translation to the right, respectively. The fixed-
displacement loading results in a uniform strain«22sX1,X2d= «̄ in
a corresponding uncracked structure. The displacement bou
condition is prescribed such thatu2=0 along the lower edge a
u1=0 for the node at the left-hand side. The mesh discretiz
consists of 208Q8, 37 T6, and 12T6qpelements, with a total o
257 elements and 1001 nodes.

Young’s moduli and shear modulus are hyperbolic-tan
functions with respect to the globalsX1,X2d Cartesian coordinate
while Poisson’s ratio is constantsFig. 9d. The following data wer
used for the FEM analysis:

plane strain, 23 2 Gauss quadrature

a/W= 0.5, L/W= 2.0, «̄ = 0.25, d = s− 0.5 to 0.5d

Isotropic case

EsX1d = sE− + E+d/2 + tanhfbsX1 + ddgsE− − E+d/2

ed-mode SIFs in orthotropic FGMs for ba

KII
+ /K0 KI

−/K0 KII
− /K0

0.0000 0.6663 0.0000
0.2176 0.5997 0.2436
0.4097 0.4150 0.4160
0.4477 0.1814 0.4379
0.2906 0.0056 0.2822
0.0000 0.0000 0.0000

0.0000 0.6663 0.0000
0.2194 0.5997 0.2427
0.4111 0.4149 0.4156
0.4480 0.1809 0.4373
0.2906 0.0052 0.2823
0.0000 0.0000 0.0000

Table 4 Example 1: comparison of normalized T stress in iso-
tropic FGMs for ba=0.5 „s0= «̄E0

… „see Fig. 6 …

ū

Nonequilibrium Paulino and Dongf48g

Ts+ad /s0 Ts−ad /s0 Ts+ad /s0 Ts−ad /s0

0° −0.896 −0.858 −0.867 −0.876
15° −0.773 −0.747 −0.748 −0.763
30° −0.434 −0.436 −0.420 −0.444
45° 0.036 0.011 0.039 0.010
60° 0.513 0.484 0.513 0.490
75° 0.868 0.850 0.870 0.858
90° 0.994 0.994 1.000 1.000
mix
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ined
rs “
iso-
ba = 15.0, n = 0.3

sE−,E+d = s1.00,3.00d

Orthotropic case

E11sX1d = sE11
− + E11

+ d/2 + tanhfasX1 + ddgsE11
− − E11

+ d/2

E22sX1d = sE22
− + E22

+ d/2 + tanhfbsX1 + ddgsE22
− − E22

+ d/2

G12sX1d = sG12
− + G12

+ d/2 + tanhfgsX1 + ddgsG12
− − G12

+ d/2

aa = ba = ga = 15.0, n12 = 0.3

Table 5 Example 1: comparison of normalized T stress in
orthotropic FGMs for ba=0.5 „s0= «̄E22

0
… „see Fig. 6 …

ū

Nonequilibrium Incompatibility

Ts+ad /s0 Ts−ad /s0 Ts+ad /s0 Ts−ad /s0

0° −2.822 −2.725 −2.832 −2.712
15° −1.407 −1.402 −1.384 −1.407
30° 0.156 0.079 0.168 0.074
45° 0.785 0.700 0.785 0.702
60° 0.971 0.909 0.970 0.910
75° 1.003 0.973 1.002 0.973
90° 0.996 0.996 0.997 0.997

Fig. 8 Example 2: strip with an edge crack in hy
BCs; „b… complete finite element mesh with 12
crack tip; „c… reference configuration „d =0.0…

„d = +0.5…; „e… translation of material gradation to the

360 / Vol. 72, MAY 2005
sE11
− ,E11

+ d = s1.00,3.00d, sE22
− ,E22

+ d = s1.25,2.75d,

sG12
− ,G12

+ d = s1.50,2.50d

Table 6 compares the present FEM results for mode I SIFsKId
obtained by the nonequilibrium formulation with those obta
by the incompatibility formulation for various translation facto
d” of hyperbolic-tangent material variation considering both

rbolic-tangent materials: „a… geometry and
tors „S12… and four rings „R4… around the
… translation of material gradation to the left

Fig. 9 Example 2: variation of material properties: E11, E22, and
G12 for the orthotropic case, and E for the isotropic case
pe
sec
; „d
right „d =−0.5…
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tropic and orthotropic FGMs. For the orthotropic case, the F
results obtained by the nonequilibrium formulation are comp
with those obtained by the incompatibility formulation repor
by Kim and Paulinof12g. Notice that the two equivalent form
lations provide similar FEM results for mode I SIF for each tra
lation factord. For the isotropic FGMs, the mode I SIF decrea
with the translation factord for the range between −0.1 and 0
For the orthotropic FGMs, the mode I SIF increases with
translation factord for the range between −0.5 and −0.1, howe
it decreases asd increases further. Table 6 also indicates that m
I SIFs for the orthotropic case are smaller than those for the
tropic case for each translation factord from −0.5 to −0.1, how
ever, the SIFs for the orthotropic case are greater than tho
the isotropic case ford=0 to 0.5.

Table 7 compares the present FEM results forT stress obtaine
by the nonequilibrium formulation with those obtained by the
compatibility formulation for various translation factorsd of
hyperbolic-tangent material variation considering both isotr
and orthotropic FGMs. Notice that the two formulations prov
similar FEM results, and theT stresses are negative for all
translation factorsd considered. For both isotropic and orthotro
FGMs, theT stress decreases with the translation factord for the
range between −0.5 and 0.0, however, it increases asd increase
further. Table 7 also indicates thatT stress for the orthotropic ca
is greater than or equal to that for the isotropic case for
translation factor.

Table 6 Example 2: comparison of mode I SIF „KI… for an edge
crack considering translation „d… of hyperbolic-tangent mate-
rial variation „see Fig. 8 …

d

Nonequilibrium Incompatibility

Iso Ortho Iso Orthof12g

−0.5 1.212 1.164 1.186 1.158
−0.4 1.211 1.167 1.201 1.163
−0.3 1.211 1.175 1.190 1.173
−0.2 1.218 1.189 1.209 1.189
−0.1 1.231 1.212 1.212 1.217

0 1.030 1.047 1.026 1.049
0.1 0.595 0.701 0.588 0.697
0.2 0.486 0.615 0.487 0.614
0.3 0.451 0.585 0.451 0.585
0.4 0.430 0.567 0.430 0.567
0.5 0.419 0.554 0.419 0.554

Table 7 Example 2: comparison of T stress for an edge crack
considering translation „d… of hyperbolic-tangent material
variation „see Fig. 8 …

d

Nonequilibrium Incompatibility

Iso Ortho Iso Ortho

−0.5 −0.463 −0.393 −0.452 −0.394
−0.4 −0.478 −0.407 −0.470 −0.406
−0.3 −0.507 −0.434 −0.493 −0.439
−0.2 −0.580 −0.499 −0.571 −0.501
−0.1 −0.797 −0.686 −0.797 −0.702

0 −1.123 −0.923 −1.181 −0.962
0.1 −0.444 −0.364 −0.431 −0.362
0.2 −0.218 −0.205 −0.217 −0.205
0.3 −0.175 −0.171 −0.175 −0.171
0.4 −0.157 −0.157 −0.157 −0.157
0.5 −0.152 −0.151 −0.152 −0.152
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10 Conclusions
This paper provides a critical assessment and comparis

three consistent formulations: nonequilibrium, incompatib
and constant-constitutive-tensor formulations. Each formul
leads to a consistent form of the interaction integral in the s
that extra terms are added to compensate for the differen
response between homogeneous and nonhomogeneous ma
These extra terms play a key role in ensuring path indepen
of the interaction integral for FGMs. In terms of numerical co
putations, the nonequilibrium formulation leads to the simp
final form of the M integral among the three formulations.
terms of numerical accuracy, the nonequilibrium formulatio
equivalent to the incompatibility formulation, which is obser
in numerical examples involving various types of material gr
tion. The constant-constitutive-tensor formulation requires th
rivatives of the actual stress and strain field, and may hav
merical accuracy problems with standardC0 elements common
used in the displacement-based FEM, as observed in exam

From numerical investigations, we observe that both ma
gradation and orthotropy have a significant influence on SIFs
T stresssi.e., both sign and magnituded, and the crack tip locatio
also shows a significant influence on the fracture paramete
hyperbolic-tangent materials. We also observe that the extra
se.g., nonequilibrium or incompatible termsd ensure convergen
to target solutionssSIFs orT stressd.
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Nomenclature
a 5 half crack length

a or aij 5 contracted notation of the compliance ten
sS or Sijkld for plane stress;i =1,2,6; j
=1,2,6

atip or aij
tip 5 a or aij evaluated at the crack tip locatio

i , j =1,2,6
A 5 a 232 complex matrix

bij 5 contracted notation of the compliance ten
for plane strain;i =1,2,6; j =1,2,6

bij
tip 5 bij evaluated at the crack tip location;i , j

=1,2,6
B 5 a 232 complex matrix

c11, c22, c12 5 coefficients in the relationship betweenJ and
stress intensity factorssKI andKIId

Csud 5 a 232 diagonal matrix
Cijkl or C 5 constitutive tensor;i , j ,k, l =1,2,3

d 5 translation factor in hyperbolic-tange
function

d0 5 x1 coordinate of a fixed point
e 5 natural logarithm base,e=2.71828182. . .
E 5 Young’s modulus for isotropic materials

E0 5 Young’s modulusE evaluated at the origin
Etip 5 Young’s modulusE evaluated at the crack t

E11, E22 5 Young’s moduli with respect to the princip
axes of orthotropy

E11
0 , E22

0 5 Young’s moduli E11,E22 evaluated at th
origin

f 5 a point force
f 5 a 231 force vector

f I, f II 5 representative functions for auxiliary d
placements for SIFs
G12 5 shear modulus for orthotropic materials
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G12
0 5 shear modulusG12 evaluated at the origin
G 5 energe release rates

gI, gII 5 representative functions for auxiliary stres
for SIFs

GI 5 mode I energe release rate
GII 5 mode II energe release rate
H 5 contour integral
h 5 a 231 real matrix

Im 5 imaginary part of the complex function
J 5 path-independentJ integral for the actua

field
Jaux 5 J integral for the auxiliary field

Js 5 J integral for the superimposed fieldssactua
plus auxiliaryd

KI 5 mode I stress intensity factor
KII 5 mode II stress intensity factor
K0 5 normalizing factor for stress intensity fa

tors, K0= «̄E0Îpa for the isotropic case an
K0= «̄E22

0 Îpa for the orthotropic case
L 5 length of a plate
L 5 a 232 real matrix
M 5 interaction integralsM integrald
Ni 5 shape functions for nodei of an element

N3sud 5 a 232 real matrix
mi, ni 5 unit normal vectors on the contour of the d

main integral
P 5 a generic propertysCijkl , Sijkl , or «i j d

Psud 5 a 232 diagonal matrix
pk 5 coefficients of the asymptotic displaceme

for orthotropic materials;k=1,2
qk 5 coefficients of the asymptotic displaceme

for orthotropic materials;k=1,2
q 5 weight function in the domain integral
r 5 radial direction in polar coordinates

Re 5 real part of the complex function
Sijkl or S 5 compliance tensor;i , j ,k, l =1,2,3

Ssud 5 a 232 real matrix
T 5 elasticT stress
tu 5 representative functions for auxiliary d

placements forT stress
ts 5 representative functions for auxiliary stres

for T stress
ui 5 displacements for the actual field;i =1,2

uaux or ui
aux 5 a vector for auxiliary displacements;i =1,2
W 5 width of a plate
W 5 strain energy density

Waux 5 strain energy density for the auxiliary field
xi 5 local Cartesian coordinates;i =1,2
Xi 5 global Cartesian coordinates;i =1,2
zk 5 complex variable,zk=xk+ iyk; k=1,2
a 5 material nonhomogeneity parameter for g

dation ofE11
ak 5 the real part ofmk; k=1,2
b 5 material nonhomogeneity parameter for g

dation ofE22 or E
bk 5 the imaginary part ofmk; k=1,2
g 5 material nonhomogeneity parameter for g

dation ofG12
G 5 contour forJ andM integrals

G0 5 outer contour
Gs 5 inner contour
G+ 5 contour along the upper crack face
G− 5 contour along the lower crack face
di j 5 Kronecker delta;i , j =1,2
«i j 5 strains for the actual field;i =1,2,3; j

=1,2,3
362 / Vol. 72, MAY 2005
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«k 5 contracted notation of«i j ; k=1, . . . ,6
«aux or «i j

aux 5 a vector for auxiliary strains;i , j =1,2,3
u 5 angular direction in polar coordinates w

respect to the local Cartesian coordinate

ū 5 the angle of the local Cartesian coordina
with respect to the global Cartes
coordinates

um 5 indication of direction of material gradati
with respect to the crack

k 5 material parameter for isotropic materia
s3−nd / s1+nd for plane stress and 3−4n for
plane strain

ktip 5 material parameterk evaluated at the cra
tip

mk 5 roots of the characteristic equation;k=1,2
mk

tip 5 mk evaluated at the crack tip location;k
=1,2

m̄k 5 complex conjugate ofmk; k=1,2
n 5 Poisson’s ratio for isotropic materials

n12, n21 5 Poisson’s ratios for orthotropic materials
sk 5 contracted notation ofsi j ; k=1, . . . ,6
s0 5 normalizing factor;s0= «̄E0 for the isotropic

cases0= «̄E22
0 for the orthotropic case

si j 5 stresses for the actual fields;i =1,2,3; j
=1,2,3

saux or si j
aux 5 a vector for auxiliary stresses;i , j =1,2,3

Appendix A: Anisotropic Elasticity
The generalized Hooke’s law for stress-strain relationsh

given by f40g:

«i = aijs j, aij = ajisi, j = 1,2, . . . ,6d sA1d

where the compliance coefficients,aij , are contracted notations
the compliance tensorSijkl and

«1 = «11, «2 = «22, «3 = «33, «4 = 2«23, «5 = 2«13,

«6 = 2«12

s1 = s11, s2 = s22, s3 = s33, s4 = s23, s5 = s13, s6 = s12

sA2d

For plane stress, theaij components of interest are

aijsi, j = 1,2,6d sA3d

and for plane strain, theaij components are exchanged withbij as
follows:

bij = aij −
ai3aj3

a33
si, j = 1,2,6d sA4d

Two-dimensional anisotropic elasticity problems can be for
lated in terms of the analytic functions,fkszkd, of the complex
variable,zk=xk+ iyk sk=1,2d, i =Î−1, where

xk = x + aky, yk = bkysk = 1,2d sA5d

The parametersak andbk are the real and imaginary parts ofmk
=ak+ ibk, which can be determined from the following charac
istic equationf40g:

a11m
4 − 2a16m

3 + s2a12 + a66dm2 − 2a26m + a22 = 0 sA6d

where the rootsmk are always complex or purely imaginary
conjugate pairs asm1,m1;m2,m2.

Appendix B: Representative Functions for SIFs
For orthotropic FGMs, the representative functi
1/2 tip
fsr ,u ,a d in Eq. s1d are given byf37g:
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f1
I = Î2r/p ReF 1

m1
tip − m2

tiphm1
tipp2

Îcosu + m2
tip sinu

− m2
tipp1

Îcosu + m1
tip sinujG

f1
II = Î2r/p ReF 1

m1
tip − m2

tiphp2
Îcosu + m2

tip sinu

− p1
Îcosu + m1

tip sinujG
f2
I = Î2r/p ReF 1

m1
tip − m2

tiphm1
tipq2

Îcosu + m2
tip sinu

− m2
tipq1

Îcosu + m1
tip sinujG

f2
II = Î2r/p ReF 1

m1
tip − m2

tiphq2
Îcosu + m2

tip sinu

− q1
Îcosu + m1

tip sinujG
where Re denotes the real part of the complex function,m1

tip and
m2

tip denote crack-tip material parameters, which are obtained
Eq. sA6d and taken forbk.0 sk=1,2d, andpk andqk are given by

pk = a11
tipsmk

tipd2 + a12
tip − a16

tipmk
tip

qk = a12
tipmk

tip +
a22

tip

mk
tip − a26

tip sB1d

respectively. The functionsgsr−1/2,u ,atipd in Eq. s3d are given by
f37g:

g11
I =

1
Î2pr

ReF m1
tipm2

tip

m1
tip − m2

tipH m2
tip

Îcosu + m2
tip sinu

−
m1

tip

Îcosu + m1
tip sinu

JG
g11

II =
1

Î2pr
ReF 1

m1
tip − m2

tipH sm2
tipd2

Îcosu + m2
tip sinu

−
sm1

tipd2

Îcosu + m1
tip sinu

JG
g22

I =
1

Î2pr
ReF 1

m1
tip − m2

tipH m1
tip

Îcosu + m2
tip sinu

−
m2

tip

Îcosu + m1
tip sinu

JG
g22

II =
1

Î2pr
ReF 1

m1
tip − m2

tipH 1

Îcosu + m2
tip sinu

−
1

Îcosu + m1
tip sinu

JG
g12

I =
1

Î2pr
ReF m1

tipm2
tip

m1
tip − m2

tipH 1

Îcosu + m1
tip sinu

−
1

tip JG
Îcosu + m2 sinu

Journal of Applied Mechanics
m

g12
II =

1
Î2pr

ReF 1

m1
tip − m2

tipH m1
tip

Îcosu + m1
tip sinu

−
m2

tip

Îcosu + m2
tip sinu

JG sB2d

Notice that, in the earlier expressions, the graded material p
eters are sampled at the crack tip.

For isotropic FGMs, the representative functionsfsr1/2,u ,atipd
for displacements in Eq.s1d, andgsr−1/2,u ,atipd for stresses in Eq
s3d are given in many referencesse.g., Ref.f38gd. The grade
material parameters are sampled at the crack tip.

Appendix C: Representative Functions forT Stress
The presentation follows the Stroh formalismf39g. For othotro

pic FGMs, the representative functionstusln r ,u , f ,atipd in Eq. s4d
are given byf39g:

t1
u = −

h1

2p
ln r −

1

2
sS11h1 + S12h2d

sC1d

t2
u = −

h2

2p
ln r −

1

2
sS21h1 + S22h2d

The parametersSij andhi in Eq. sC1d are the components in t
232 matrix Ssud, and the 231 vectorh as follows:

Ssud =
2

p
RefACsudBTg = FS11 S12

S21 S22
G

h = L−1f = Hh1

h2
J sC2d

where

A = Fl1
tipp1

tip l2
tipp2

tip

l1
tipq1

tip l2
tipq2

tip G, B = F− l1
tipm1

tip − l2
tipm2

tip

l1
tip l2

tip G
Csud = Fln s1sud 0

0 ln s2sud G, sksud = cosu + m2
tip sinu

L−1 = RefiAB−1g, f = ff,0gT sC3d

in which pk
tip andqk

tip sk=1,2d are given by Eq.sB1d, andlk
tip sk

=1,2d is the normalization factor given by the expression

2slk
tipd2sqk

tip/mk
tip − mk

tippk
tipd = 1. sC4d

The representative functionstssr−1,u , f ,atipd in Eq. s6d are
given by f39g:

t11
s = srr

auxcos2 u, t22
s = srr

auxsin2 u, t12
s = srr

auxsinu cosu

sC5d

where the auxiliary stresses are given byf39g:

srr
aux=

1

2pr
nTsudN3sudh, suu

aux= sru
aux= 0 sC6d

in which

n = fcosu,sinugT, N3sud = 2 RefBPsudBTg
sC7d

Psud = Fm1sud 0

0 m2sud G, mksud =
mk

tip cosu − sinu

mk
tip sinu + cosu

, sk = 1,2d

For isotropic FGMs, the representative functi
tusln r ,u , f ,atipd in Eq. s4d for displacements, andtssr−1,u , f ,atipd
for stresses in Eq.s6d are given in many referencesse.g., Ref

f41gd. The graded material parameters are sampled at the crack tip.
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A Method to Determine the Effect
of Microscale Heterogeneities on
Macroscopic Web Mechanics
The effect of a spatially heterogeneous density distribution on the development of
during the transport of nonwoven webs through roller systems has been inves
numerically. A modeling approach has been developed by which the spatial hetero
in web mechanical properties can be characterized statistically and recreated for
finite element simulations. The approach has been applied to model the transpo
carded nonwoven web, consisting of an agglomeration of polypropylene fibers
together by a regular array of thermal bond points. The web was scanned optic
obtain a gray scale light distribution representing the local material density. Analy
the local density distribution permitted the generation of “virtual webs” for use in
erogeneous finite element models, in which local mechanical properties were gove
local density. Virtual web response was investigated under two loading configura
simple tensile testing, and web transport under tension through a three-roller syste
modeling approach provided results that were in good agreement with experim
observed web mechanics, failure mechanisms, and processing instabilities. Spa
erogeneity in material properties was found to strongly influence both general we
havior and the tendency for the web to incur manufacturing defects during tran
through roller systems.fDOI: 10.1115/1.1876396g
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1 Introduction
Knowledge of the relationship between microstructure

macroscopic properties is essential to understanding the me
cal behavior of materials. Nonwoven webs, which are used i
manufacture of a wide range of consumer goods, provide a
ample where microstructural heterogeneity can significantly i
ence macroscopic behavior in ways that are not well unders
The fiber laydown processes used to manufacture nonwoven
make it difficult to precisely control local material density. Und
standing the effects of this nonuniform density distribution i
particular importance in the assessment of product manufac
processes, where the webs are commonly transported unde
sion through a variety of roller and guide systems.

It is well known that deformation and stress fields within w
during transport strongly influence the incidence of manufactu
defectsf1–3g. Spatial heterogeneity may contribute to the ini
tion of instabilities in the manufacturing process and thereby
erate product defects, resulting in processing machine down
This investigation explored the critical defect known

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIE
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF A
PLIED MECHANICS. Manuscript received by the Applied Mechanics Divis
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accepted until four months after final publication in the paper itself in the A

JOURNAL OF APPLIED MECHANICS.

Journal of Applied Mechanics Copyright © 200
d
ni-
e
x-
-
d.
bs

-
f
ng
en-

s
g

-
n-
e.

“foldover,” in which a bending induced trough or wrinkle fo
over at a roller and remains trapped during subsequent tran
creating aesthetic or dimensional defects in the finished pro
Industrial interest in identifying factors contributing to foldo
events, and thus establishing criteria to guide the tailoring of
material properties, motivated the present investigation. Th
jective was to develop a modeling approach by which the sp
heterogeneity in mechanical properties across the web cou
characterized, and then incorporated in finite element simula
in a statistically reproducible manner.

The transport of nonwoven webs has not been widely discu
in the open literature. Nonwoven webs are based on loose a
blies of discrete fibers or continuous filaments, which are con
dated via thermal or chemical bonding, mechanical entangle
or a combination of these approaches. The fibers may be ran
distributed or preferentially oriented via dynamic combings“card-
ing”d or hydrodynamic methodssKo and Du f4gd. The curren
investigation considered the behavior of a thermally bon
carded web, in which the polypropylene fibers were preferen
aligned with the longitudinal, or “machine,” direction of the w
Consolidation of the web is achieved via “calendaring,” a pro
in which the loose fiber mat is passed through heated rollers
of which is engraved to yield the desired pattern of bond po
Bonding is achieved by fusing fibers together under the comb
effect of pressure and temperature at these bond points. An
micrograph depicting the resulting microstructure is present
Fig. 1.

Understanding the mechanical behavior of these materia

n
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e

essential to the formulation of novel material and product designs
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that reduce product defects, machine downtime, and time to
ket. In the web mechanics literature, the web is often treated
homogeneous continuum, neglecting both the effects of disc
nuity and the effects of spatial nonuniformitysStack et al.f5g;
Good et al.f6g; Swansonf7g; Lin and Motef8–10gd. The emphasi
has been to identify boundary or initial conditions in the trans
process that can cause manufacturing defects. The web is typ
treated as a beam or plate, and the tendency of the web to de
a defect is related to the stress field.

The deformation and failure of heterogeneous materials
been widely investigated. Materials considered include geo
materials, porous metals, composites, woven and braided t
materials, and foam. Investigations range from phenomenolo
continuum modeling to investigations at the micromechan
level. The effect of a nonuniform distribution of porosity on fl
localization and failure in porous metal alloys was analyzed
merically by Beckerf11g, and Khvastunkov et al.f12g. Nakamura
and Sureshf13g and Brockenbrough et al.f14g used finite elemen
analysis to determine the effects of fiber distribution and l
microstructure on deformation and stress in metal-matrix com
ites. Leggoe et al.f15g, and Chen and Maif16g have carried ou
three-dimensional finite element analyses to study the effec
microstructural heterogeneity on deformation and effective s
in composites. All of these studies have demonstrated the
ence of microstructural heterogeneity on macroscale mecha
behavior, the effects being most pronounced for phenomen
are highly sensitive to localized effectsssuch as failured.

One of the challenges in simulating the stochastic natur
material properties lies in characterizing the natural spatial he
geneity of materials. If spatial property distributions were t
random, this would be a relatively trivial matter; once the m
and standard deviation of the variation is determined, the ge
tion of simulated materials having equivalent randomly dis
uted properties may be accomplished using codes that em
random number generation. Leggoe et al.f15g provide an exampl
of an investigation where this was successfully accomplishe
actual materials, however, there is often an underlying spatia
tern that arises during material synthesis, so that the propert
tribution must properly be decomposed into two components
underlying pattern, and a Gaussian “noise” superimposed o

Fig. 1 Secondary electron SEM micrograph illustrating typical
web microstructure. The diamond-shaped dark regions are
bond points, where fibers have fused together under tempera-
ture and pressure during calendaring.
underlying distribution.
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This paper describes the development of a methodolog
simulating the transport of heterogeneous nonwoven
through a roller system as part of a manufacturing process
objective being to identify material and system conditions
lead to product defects and machine downtime. In order to
acterize the natural spatial heterogeneity of the carded w
interest, samples of the web were optically scanned to dete
the spatial variation in density. Following the technique of T
pen et al.f17g, a covariance function was fit to the images, wh
was then used to generate simulated “virtual” webs having s
characteristics equivalent to those of the real material.

The virtual webs were then used to formulate finite elem
models in which the local mechanical properties of the web
assumed to be governed by the local web density. Models
formulated representing two common loading configurationss1d
conventional tensile testing of rectangular web specimens, ans2d
web transport under tension over a three-roller system. The t
test models revealed that heterogeneous webs were weake
homogeneous webs of equivalent mean density. In three
models, the heterogeneous web exhibited behavior that qu
tively matched experimental observations, indicating that sp
heterogeneity in material density may potentially contribute to
initiation of process instability and product defects.

2 Simulation of the Spatial Heterogeneity of Non
woven Web Fabrics

Creation of the “virtual” web was based on grayscale op
scanning of samples of the carded web. The specimen
scanned against a “black” background, ensuring that only the
reflected by the web itself was returned to the scanner; th
corded grayscale level should therefore reflect the local web
sity. The scanning process yielded TIFF images of the we
example of which is provided in Fig. 2. These image files w
then converted into text files containing the grayscale level
each individual pixel.

It is assumed that the web density is a two-dimensional is

Fig. 2 Gray scale TIFF image resulting from optically scanning
a web sample
pic random field. Analysis of the gray scale level data thus enables
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the formulation of a covariance matrix describing the spatial
tribution of web density. To create the virtual web, the covaria
matrix was fit to an analytical function;

Cshd = s2H1 +S ihi2

b2 DJ−b

, h P Rd, b . 0, s1d

whereb=1.268465,b=0.540665, the separation vector betw
spatial locationsxi andxj on the web ish=xi −xj, s2 is the vari-
ance,Rd is the spatial domain, and the number of dimensiod
=2. The normalized covariance matrix is then obtained by d
ing Cshd by the variances2.

The objective is to create a “virtual” web having a spatial
tribution of density,Zsxd, which is statistically equivalent to th
measured characteristics of the actual web. It is assumed th
process to be simulated is Gaussian, is second-order stat
with zero mean, and yields the covariogamCshd. From Eq.s1d,
Cs0d=s2, and must by definition be greater than zero. A pro
with nonzero mean is easily obtained by adding the required
to the simulated zero-mean process. The covariance matrix
second-order stationary stochastic processZsxd is positive definite
and boundedsKarlin and Taylorf18gd, so that

E
−`

` E
−`

`

uCshdudh , `. s2d

The covariance matrix defined in Eq.s1d is an even function ofh.
Therefore, the covariance matrix has the spectral representa

Cshd =E
−`

` E
−`

`

cossvThdssvddv s3d

where ssvd.0 is called the spectral function. Dividing by t
variance yields the spectral densitys/Cs0d, whereCs0d represent
the variancesCressief19gd. The spectral density function of t
process,Zsxd, is given by

ssvd =E
−`

` E
−`

`

CshdcossvThddh. s4d

Shinozukaf20g and Shinozuka and Janf21g suggested simulatin
the stochastic process,Zsxd, by the discrete cosine transform

ZNsxd = sS 2

N
D1/2

o
k=1

N

cossv1kx1 + v2kx2 + fkd s5d

with fk being independent random variables uniformly distribu
between −p andp. The random frequenciesv1k,v2k are distrib-
uted according to the joint density function,gsv1,v2d
=ssv1,v2d /s2, where

s2 =E
−`

` E
−`

`

ssv1,v2ddv1dv2. s6d

Shinozukaf20g and Shinozuka and Janf21g showed that the ran
dom process given in Eq.s5d has zero mean and covariance,Cshd.
As the number of the terms in the seriesN tends to infinity,ZN
converges to a Gaussian processsCressief19gd.

To create virtual webs having spatial density distributions
tistically equivalent to those derived from the gray scale scan
the procedure was as follows:

s1d Compute the covariance matrix from the two-dimensio
grid of gray scale data using the function given by Eq.s1d,
and normalized by the variances2.

s2d Perform the inversescosined Fourier Transform on the no
malized covariance matrix generated in steps1d to obtain
the joint spectral density function,gsvd.

s3d Convolve the square root of the joint spectral density fu

tion with cosine transformed Gaussian white noise, an
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transform to the spatial domain to obtain a random pro
YNsxd, having zero mean and unit variance. Zero pad
was necessary to eliminate pollution due to edge effec
a nonperiodic signal.

s4d Scale and location adjust the process,YNsxd, defined in ste
s3d to get the final process,ZNsxd, given by

ZNsxd = sS 2

N
D1/2

o
k=1

N

cossv1kx1 + v2kx2 + fkd + m s7d

wheres is the desired standard deviation andm is the de
sired mean of the density distribution.

s5d Output the simulated two-dimensional density distribut

3 Experimental and Modeling Procedures

3.1 Tensile Testing.Rectangular web specimens were s
jected to tensile testing using an Instron 1125 uniaxial loading
equipped with self aligning grips and fixtures. The specimen
were attached to aluminum plates using superglue to ensur
the applied load was distributed evenly across the full width o
specimen. In no instance was there any evidence of failu
distortion of the web in the attachment region. Loading was
complished by displacement of the crosshead at a fixed vel
The negligible stiffness of the webscompared to the fixtures a
gripsd enabled the extension of the specimen to be regard
effectively equal to the crosshead displacement.

All specimens were prepared with an aspect ratio of 4:1,
has their major axis aligned with the longitudinalsmachined direc-
tion of the web. Specimens of varying dimension were teste
support future investigations of the effect of scale on the vari
ity of specimen behavior. A series of 80320 mm specimens we
tested with the crosshead speed set to 0.025 m/min, givin
engineering strain rate of 0.0053 s−1. A series of 320380 mm
longitudinal specimens were then tested, with the cross-
speed set to 0.101 m/minsa strain rate of 0.0053 s−1d. The typica
strain rate experienced by the web during transport through
systems is expected to be on the order of 10−2 s−1.

3.2 Finite Element Model Formulation

3.2.1 Material Properties for Heterogeneous Webs. All finite
element computations were performed with the ABAQUS/Exp
software packagef22g. The use of finite element models dicta
that the discontinuous web be approximated as a continuum
web was modeled with quadrilateral, finite membrane-finite st
shell sS4Rd elements. Shell element characteristics were de
to ensure that the bending properties of the webscritical in deter
mining the tendency of the web to wrinkle and create fold
defectsd were represented accurately in the model.

The web was modeled as being an isotropic, strain-rate i
sitive, linear elastic-perfectly plastic material. Tensile testing
periments have confirmed that the web displays some viscoe
behavior, as expected given that it is an agglomeration of
propylene fibers. However, in manufacturing processes, the
of web transport is such that the total transport time is usuall
short for relaxation to significantly affect the process. The st
encountered during web transport are generally low enoug
ensure that the assumption of linear elastic behavior is reaso

The assumption ofJ2 plasticity is also a significant approxim
tion. The web is a mat of aligned fibers, and as such devia
stresses will actually have little direct effect on plastic defor
tion. In fact, the web may plastically deform under the influe
of direct tensile stresses. The objective in introducing a y
stress was to simulate foldover defects, where some inelast
formation must occur for the fold become a permanent “creas
the web.J2 plasticity represented the most practical metho
accomplishing this for continuum elements.

d Relating material properties to density was an important ele-
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ment of the model formulation process. Experimental result
dicate that in the vicinity of the fracture path the web reduce
the thickness of individual fibers, as is evident in the microg
presented in Fig. 3. This implies that the mechanical prope
should depend directly on the relative density of the web mat
As the fiber number density increases within a region, the stiff
and yield strength of the web should also increase.

Appropriate relations for the Young’s modulus,E, and yield
strength,sel, were sought in the literature. A variety of relatio
are available for braidedsSun and Qiaof23gd, wovensGao et al
f24g and Scida et al.f25gd, cellular sChristensenf26g; Ladd and
Kinney f27g; Choi and Lakesf28gd, and nonwoven materia
sWangf29gd. Drawing from the behavior of cellular materials a
experimental observations, it was assumed thatE and sel were
density dependent, and represented by the following equatio

E*

Es
= C1Sr*

rs
D2

s8d

sel
*

Es
= C2Sr*

rs
D2

s9d

where the superscriptspd denotes local material properties, a
subscript ssd denotes the properties of the material at ave
density.

The values selected for the proportionality constants and p
cal properties were as follows:

C1 = 1.00

C2 = 0.05

Average density,rs = 110 kg/m3

Young’s modulus at average density,Es = 1.63 107 Pa

Poisson’s ratio = 0.4

Yield strength at average density,sel = 8.03 105 Pa.

It should be noted that the value selected for the constantC2 will
give a yield strength considerably lower than that observe
longitudinal testing. The purpose in assigning the material ela
plastic constitutive behavior was to simulate foldover, which
pends on bending in the transverse direction. Given that ca

Fig. 3 Secondary electron SEM micrograph showing ruptured
fibers in the vicinity of the nonwoven web fracture path
webs are significantly less resistant to bending than continuu
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shells of similar thickness, a relatively low average yield st
was sought. Given the relatively low longitudinal strains du
transportsand thus the expected linear elastic behaviord, this ap-
proximation should not adversely affect the response of the m
webs during transport though the three roller system that i
focus of this investigation.

Regardless of the model configuration, the following proce
was used to create webs possessing spatially heterogeneou
sities for use in finite element analyses;

s1d Apply a regular finite element mesh to a plane rectang
web of the desired dimensions.

s2d Generate a heterogeneous density distribution using
web simulation procedure described previously. The ta
mean and variance for the model may be derived
analysis of grayscale images or defined by the investig

s3d Overlay the heterogeneous density distribution on the
element grid developed in steps1d. The overlay is accom
plished by manipulating the property definition section
the text input file used by the finite element analysis p
agesABAQUSd.

s4d Generate the final model geometry, including the app
tion of any defects in the case of roller system mod
using codes developed specifically for each of the mo
described in the next section.

In the models, the continuous set of real densities was app
mated by assigning element densities to one of 65 discrete d
values. This limit was imposed due to the necessity of creat
new property definition within the input file for every density t
is assigned. Subsequent investigationssKhvastunkov et al.f12gd
have indicated that as few as 11–12 distinct values may be
cient to accurately represent the behavior that would arise in
erogeneous materials given the continuous set of real densi

3.2.2 Conventional Tensile Test Models. The first loading con
figuration modeled represented a conventional tensile te
which a rectangular web specimen is loaded to eventual fa
The model configuration is illustrated schematically in Fig. 4.
length and width of the specimens were selected to matc
aspect ratio of the experimental specimens, and fall in the m
of the range of specimen dimensions tested in experiments
specimen thickness was selected in conjunction with the av
elastic modulus to ensure that the specimen exhibited an e
tensile response approximately equivalent to that of the ex
mental specimens. The resulting dimensions were as follow

LengthL = 0.16 m

Width W= 0.04 m

ThicknessT = 0.00025 m.

The model web was loaded by the incremental application
uniform displacement in thex-direction to the one end of the we

Fig. 4 Configuration and constraints for finite element models
simulating tensile testing of heterogeneous nonwoven web
specimens
mwhile the other end of the web was constrained to have zero
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displacement in the longitudinalsx1d direction. To recreate te
conditions in which the specimens were rigidly glued to alu
num loading plates, both ends of the web were constrained to
displacement in the transversesx2d direction.

3.2.3 Models of Web Transport Over a Misaligned Th
Roller System. The second model configuration represented a
being driven over rollers under tension, as illustrated sche
cally in Fig. 5. Rollers 1 and 2 were driven, while roller 3 wa
free idler sonly free idlers could be subjected to misalignmen
ABAQUSd. The Lagrangian nature of the finite element mo
requires that the model include a long tail “upstream” of rolle
in order to enable a reasonable length of the web to pass th
the roller system during a model run. The width used in the m
corresponded to the typical dimensions of a web used in a
ample manufacturing process, and the thickness was once
selected to yield the desired tensile and bending response
resulting dimensions of the web in a three roller model wer
follows:

LengthL = 8.0 m

Fig. 5 Schematic illustration of the geometry of a three-roller
web transport model. The shaded rollers „1 and 2 … are driven at
a fixed angular velocities; the unshaded roller „3… is an idler. A
tensile load of 20 N is maintained at each end of the web to
simulate line conditions.

Table 1 Roller characteristics

Roller
number

Roller center, m

RadiuX1 X2

1 0.0 0.0 0.
2 0.4 0.2 0.
3 0.8 0.2 0.
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Width W= 0.30 m

ThicknessT = 0.00025 m.

The finite element grid contained 10 660 elements. There
30 elements across the width of the web, giving an element a
ratio of 1.000625. This level of discretization was selected b
on trials conducted to determine the number of elements nee
achieve converged results for web troughing under the action
shearing displacement.

The rollers are rigid, and constrained at the roller center to
displacements. The driven roller axes were aligned with thx3
direction. The free rollers3d was allowed to have fixed angu
misalignments about both thex1 andx2 axes, and was driven b
friction only. The friction coefficient between all rollers and
web contact surface is assumed to be 0.80. The roller chara
tics are summarized in Table 1.

The web initially leads roller 1 by 0.3 m, and leaves at an a
of −45 deg with respect to the positivex1 axis. The tail of the we
approaches roller 3 at an angle of 90 deg with the with respe
the x1 axis. In order to create the natural stress and deform
state in the static web, the tensile loads and roller misalign
are ramped in during an initial preload step 0.1 s in duration.
web is ramped up to a tension of 20 Newtons during the pre
step. The tensioned web is then ramped up to the line veloc
5.08 m/s by ramping rollers 1 and 2 up to angular speed
−25.4 rad/s and 50.8 rad/s, respectively, and ramping the s
of the ends of the web up to the desired line velocity.

4 Results and Discussion

4.1 Tensile Testing: Experiments and Finite Elemen
Models. The results obtained from tensile testing a set of
320380 mm “longitudinal” specimenssspecimens cut so that t
major axis coincided with the machine direction of the webd are
presented in Fig. 6. The results are plotted in terms of tensile
per unit width; given that the thickness of a nonwoven we
difficult to define, this provides a more fundamental measu
the load supported by the web than would a stress based
artificially defined thickness. The tensile response is app
mately linear at low strainssless than 0.05d, and becomes increa
ingly non-linear with increasing strain. Final failure was relativ
abrupt, with little evidence of necking. There is significant sc
in the load to failure and elongation at failure. This is to be
pected, given the natural heterogeneity in local density—
specimen gives rise to a unique failure path and location.
80320 mm specimens exhibited similar behavior, with an
creased degree of scatter in the failure properties, as wou
expected given the increased characteristic dimension of th
erogeneity relative to the specimen dimensionssthis type of size
effect is commonly observed in the failure of ductile alloysf30gd.

Finite element models were formulated using material pro
ties drawn from Eqs.s8d ands9d. A set of models was analyzed
determine the effect of grid refinement on model response
results indicated that a mesh containing 3600 elementss30 ele-
ments across the width3120 elements along the lengthd yielded
converged results. Two calculations were then undertaken in
to evaluate the effects of spatial heterogeneity on web resp

d in finite element models

Mass, kg State Over speed

1.00 Driven 1.0
10.0 Driven 1.0
0.50 Idler 1.0
use

s, m

2
1
1
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320
one model representing a uniform web, and one representi
artificially generated spatially heterogeneous web. The m
characteristics are summarized in Table 2. Note that the disp
between the average overall densities in the uniform and he
geneous models results from the random nature of virtual
creation; each realization of the virtual web will have a uni
overall average density.

The load-displacement response for the models is com
with the averaged response of the experimental specimenssboth
320380 and 80320d in Fig. 7. Although the web material w
modeled as a linear elastic, perfectly plastic material, the ov
response of both finite element models exhibits slightly nonli
post yield behavior. For the uniform model, this is a natural re
of the constraint imposed on lateral displacement at the en
the web. For the heterogeneous model, the nonlinearity is
pronounced, and is particularly noticeable at the onset of p
deformation. The additional effect can be attributed to the v
tion in element yield stress associated with local density v
tions; weaker elements yield earlier than the average ele
creating nonlinearity as the number of elements participatin
plastic deformation gradually increases. The finite element m
provide good agreement with the linear elastic portion of the
perimental data, indicating that the combination of elastic m
lus and web thickness was chosen appropriately. The low
stress introduced into the models to simulate foldover resu
the models yielding at a significantly lower stress than the ex
mental specimens, as expected.

Examination of the onset of yielding in the heterogene
specimen can provide insight into the evolution of failure in
erogeneous materials. The heterogeneous specimen exhibits
nificantly lower yield strength than the uniform specimen, des
the comparable mean density of the two specimens. The p

Fig. 6 Tensile test results for 320 Ã80 mm “longitudinal”
specimens, with load plotted in units of Newtons per meter
specimen width

Table 2 Parameters

Model

Mean
density
skg/m3d

Maximum
density
skg/m3d

Heterogeneous 108.56 131.00
Uniform 110.00 110.00
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strain contours in Fig. 8sad show that during initial loading, plast
strain initiates in regions of low density, where the materia
weak, creating a locally heterogeneous strain field. Although
deformation was not homogeneous, no region within the m
was excessively distorted at this stage in the deformation
straining continuedsFig. 8sbdd, it is evident from the contours
plastic strain that deformation becomes concentrated in a n
band, as is typically observed in necking processes. Here the
tours of low plastic strain are obscured by the extreme pl
strain in the region of strain localization. Continued loading
sulted in effective failure of the material within the localizat
band, and an eventual complete loss of load carrying capac

It should be noted that the location and evolution of this lo
ization band is extremely sensitive to the spatial property d
bution. During the convergence tests, it was noted that with
ferent property distributions, the localization band emerged
different location in each specimen. This variation can also le
significant differences in the overall yield strength predicted
the models, as has previously been observed by Leggoe et af15g
and Khvastunkov et al.f12g.

The deformed mesh for the uniform web is shown in Fig
The necking pattern is typical of the behavior expected from
form specimens conforming toJ2 plasticity. Plastic deformatio
can be seen to localize in two symmetrically located regions,
responding to locations where the constraint imposed by
boundary conditions generates the highest deviatoric stre
Bands of localized deformation emerge at 45 deg to the loa
direction.

The failure patterns in the heterogeneous and uniform m
may be compared with the fracture path observed in the

tensile test models

Minimum
density
skg/m3d

Standard
deviation
skg/m3d

Number of
elements

85.00 8.81 3600
110.00 0.00 3600

Fig. 7 Comparison of tensile responses of finite element mod-
els representing uniform and heterogeneous web specimens
with experimental results obtained for “longitudinal”
specimens
for
Transactions of the ASME
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380 “longitudinal” test specimens illustrated in Fig. 10. Fail
in both the web specimen and the finite element model follow
irregular path across the width of the specimen. There are,
ever, qualitative differences between the model and actual fra
patterns. The actual fracture path is noticeably more jagged
the path in the model, with long sharp steps aligned parallel t
longitudinal direction of the web. These steps most likely co

Fig. 8 „a… Plot showing contours of equivalent plastic strain at
an applied displacement of 0.00625 m „representing an overall
applied strain of 0.02 …. „b… Plot showing contours of equivalent
plastic strain at an applied displacement of 0.0112 m „repre-
senting an overall applied strain of 0.035 …. Final necking of the
web has initiated.

Fig. 9 Deformed mesh for a model representing a uniform web
at an applied displacement of 0.0112 „representing an overall
applied strain of 0.035 …. The web is constrained to zero lateral
„x2… displacement at the ends to simulate being glued to load-
ing plates. The shaded web illustrates the undeformed web
path.

Table 3 Model parameters for t

Model

Mean
density
skg/m3d

Maximum
density
skg/m3d

WEBHND 110.00 110.00
WEBHWD 110.00 110.00
WEBRND 88.93 110.00
WEBRWD1 88.93 110.00
WEBRWD2 112.27 145.00
Journal of Applied Mechanics
n
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re
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spond to locations where adjacent regions of accumulated da
link up during the final stages of fracture. The alignment of th
steps is consistent with the preferred direction of fiber alignm

These differences may be considered in light of the mode
mulation. The model was loaded only until the onset of s
localization; the material model did not include a failure criter
Even if the model had been formulated to continue to final fai
the use of aJ2 plasticity model is likely to have distorted t
observed fracture pattern. As a fibrous mat, it is probable tha
web will yield in response to direct tensile stresses rather
shearing stresses. The authors have observed in SEM inve
tions that fibers tend to align with the straining direction as de
mation proceeds. With stress being supported solely by the fi
this renders the use of aJ2 plasticity model to represent lar
deformations questionable. For future investigations interest
web failure, it would be advisable to formulate a novel mate
model that more accurately captures the large strain behav
the web material.

4.2 Web Transport Under Tension Through a Three-
Roller System.Five models were formulated to investigate w
behavior during transport under tension through a three-rolle
tem, the objective being to examine how spatial heterogeneit
changes in the average material properties contributed to m
facturing defects. The defect introduced was a misalignme
the free rollersidlerd about its center point. In the manufactur
processes of interest, a maximum misalignment of 0.043
s2.5 degd about each axis is maintained; thus the worst ca
represented by a simultaneous misalignment of 2.5 deg abou
axis.

The individual model characteristics are summarized in Tab
In the first two models, a uniform web was transported; in m

Fig. 10 Fracture path for a 320 Ã80 mm “longitudinal” speci-
men of the carded nonwoven. The irregular failure path is simi-
lar in form to that arising in the heterogeneous web model of
Fig. 8 „b….

sport of web under tension

nimum
ensity
g/m3d

Standard
deviation
skg/m3d

Angular defect
sradiansd

x1 x2

110.00 0.00 0.0000 0.0
110.00 0.00 0.0436 0.0
65.00 9.31 0.0000 0.0
65.00 9.31 0.0436 0.0
76.00 8.89 0.0436 0.0
ran

Mi
d
sk
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WEBHND the rollers were perfectly aligned, while in model W
BHWD a worst case misalignment of roller three about thex1 and
x2 axes was introduced. Models WEBRND and WEBRW
transported a lower density heterogeneous web through sy
with and without misalignmentsrespectivelyd, while model WE-
BRWD2 transported a heterogeneous web of normal de
through a misaligned roller system.

The manufacturing defect of interest was web foldove
foldover arises when a “wrinkle”sshear-induced troughd, reache
a roller and becomes permanently folded upon itself. Once
ated, this defect is propagated along the length of the manuf
ing line, and production must be stopped while the defect is
rected. Roller misalignment is one of the principal cause
foldover.

The uniform web in the perfectly aligned model WEBHND
not undergo plastic deformation during the transport process
no wrinkling occurred. The web more or less followed the id
path described by the undeformed mesh through the roller sy
The introduction of a roller misalignment significantly affec
the web, as illustrated in Fig. 11. Distinct ridges developed in
trailing end of the websto the left side of Fig. 11d during the
initial pretensioning step. As the web accelerated to the t
velocity, the web oscillated due to the misalignment of rolle
though no wrinkling developed downstream of roller 3 and
foldover arose.

The results for the perfectly aligned heterogeneous web m
WEBRND were similar to those obtained for the uniform w
and once again no defects arose. Small isolated areas of
deformation three or four elements wide occurred during the
plication of the tensile load. As the web ramped up in velo
during the second stage of loading, a few additional pocke
plastic deformation occurred. However, the plastic strains rea
a maximum early in this stage of loading and no additional pl
strains occurred. This behavior is not typical of the real web
terial, and may be attributed to the artificially low yield stren
assigned to the web in this model. Even in the presence o
plastic deformation, no wrinkling or folding was observed in
web downstream of roller 3.

The results for WEBRWD1 are shown in Fig. 12. Under
influence of the roller misalignment, ridging in the tail of the w
and isolated pockets of plastic strain arise during the preten
ing stage of loading. As the web accelerated, additional regio
plastic strain formed between rollers two and three. As roller t
oscillates, contours of plastic strain show that this deforma
alternates from the top edge of the web to the bottom due to
tension as the web oscillates. New regions of plastic stra
develop through the motion, with localized bands of plastic de
mation arising and causing the web to develop wrinkles, a
clearly visible at roller twosthe middle rollerd in Fig. 12.

Figure 13 shows the deformation pattern for model 5, W

Fig. 11 Deformation of a uniform web during transport
through a three-roller system in which the idler roller „roller 3 …

is misaligned „model WEBHWD … after 1.0 s of web motion. The
shaded web illustrates the undeformed web path.
BRWD2 after 1.0 s of web motion. The deformation pattern
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show behavior similar to that of previous models. Although s
plastic deformation developed during loading, the web as a w
was able to support the loads throughout its transport wi
developing localized regions of plastic deformation. The we
this model was substantially stronger than the web in models
BRND and WEBRWD1, and better represents the response
real web than the artificially weak web used in those mo
Despite the development of substantial troughs in the ups
tail, no wrinkling or folding defects were observed.

Table 4 summarizes some of the results of the five case
web transport over the three-roller system. For future inves
tions, it will be important to investigate the effect of anisotropy
foldover. Carded nonwoven webs are strongly anisotropic,
can have transverse elastic moduli as much as a factor of 5
than the longitudinal modulus. Foldovers typically occur al
lines aligned parallel to the longitudinal direction, so it would
expected that transverse bending properties would strongly
ence foldover. The development of anisotropic elastic-plastic

Fig. 12 Deformation of a spatially heterogeneous web during
transport through a three-roller system in which the idler roller
„roller 3 … is misaligned after 0.8 s of web motion, for a web
having a mean density of 88.89 kg/m 3 and standard deviation
in element density of 9.31 kg/m 3

„model WEBRWD1 …. The
shaded web illustrates the undeformed web path.

Fig. 13 Deformation of a spatially heterogeneous web during
transport through a three-roller system in which the idler roller
„roller 3 … is misaligned after 1.0 s of web motion, for a web
having a mean density of 112.27 kg/m 3 and standard deviation
in element density of 8.89 kg/m 3

„model WEBRWD2 …. The
shaded web illustrates the undeformed web path.

Table 4 Some results of the finite element analyses for the
three-roller system

Model
Strain

localization

Ridge in
trailing

end of web Oscillations Wrinkles

WEBHND NO NO NO NO
WEBHWD NO YES YES NO
WEBRND NO NO NO NO
WEBRWD1 YES YES YES YES
WEBRWD2 NO YES YES NO

s

Transactions of the ASME



ov
abl

d t
d

kle
no
ist
ctr
te

fit t
ge
th

l w
mo
tio
we

s o
uri
el
s

spo
pla
ve

infl
ts
an

eb
ee
en

Ala
rni
De

gs
Un

f th
rsi

in a
ourt
Stil

-
397

7,
f th
rsi

late

Han-
462–

Anti-
e on
1–4,

tress
rse

ebs

tan-

,” J.

ta to

es and
tall.

ion of
f Fi-

ite
trix

oly-

2000,
on
nal

es

an-

Pro-

nsen,

s of

1999,
nsile
per-

Mi-
osite

inties

ven-
’s Ra-

per-
r.,

sity

atter
nt of
terial models representing the unique characteristics of nonw
webs for implementation in ABAQUS will be necessary to en
further investigation of this effect.

5 Summary and Conclusions
The primary objective of this work was to develop a metho

analyze the effects of random material property variations on
velopment of manufacturing defects such as folds and wrin
during web transport. The spatial heterogeneity of a carded
woven web has been simulated by transforming grayscale d
butions, obtained by optically scanning real webs, into spe
density matrices in the frequency domain using FFT, ultima
providing the covariance matrix. The covariance matrix was
an analytical function, and a computer code was created to
erate “virtual webs” possessing a density distribution having
same mean, variance and spatial characteristics as the rea
Finite-element models were then developed using idealized
els relating material property variations to the density distribu
in order to investigate the effect of spatial heterogeneity on
transport.

In models of conventional tensile testing, isolated region
plastic strain arose in the weaker elements of the models d
initial loading. As loading continued, competing regions of
evated plastic strain developed until localization formed band
extreme strain spanning the width of the web. For web tran
through a three roller system, wrinkles were associated with
tic straining and plastic strain localization. It is therefore belie
that spatial heterogeneity in material properties can strongly
ence the tendency of a web to develop manufacturing defec
should be noted that a unique web with its own properties
transport characteristics is generated each time a virtual w
created. Future investigations should investigate the degr
variation in web response across a set of virtual web specim
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Nonlinear Vibration of
Parametrically Excited,
Viscoelastic, Axially Moving
Strings
The dynamic response of parametrically excited, axially moving viscoelastic belts is in-
vestigated in this paper. Results are compared to previous work in which the partial, not
material, time derivative was used in the viscoelastic constitutive relation. It is found that
this added ‘‘steady state’’ dissipation greatly affects both the existence and amplitudes of
nontrivial limit cycles. The discrepancy increases with increasing translation speed. To
limit the comparison to the additional physics included in the model, the solution proce-
dure of Zhang and Zu [1,2], who applied the method of multiple scales to the governing
equations prior to discretization, is retained. The excitation here is provided by physically
stretching the belt. In this case, viscoelastic behavior and excitation frequency also affects
the amplitude of the tension fluctuations.@DOI: 10.1115/1.1827248#
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Introduction
Axially moving materials are present in many engineering s

tems from material processing machines to power transmis
belts. For this reason, a great many investigators have studie
dynamic behavior of these structures; see@1–10# and the refer-
ences therein. One prominent use of axially moving material
power transmission is the serpentine belt drive found in ne
every automobile produced in the last 15 years. Because
crankshaft pulley, which drives the serpentine belt, does not ro
at a steady angular velocity over one revolution and the torque
the accessory pulleys are periodic, the tension in each belt
varies periodically. Front end accessory drive designers then
be aware that tension fluctuations may cause a parametric
nance in the belt span. The belt drive can then be designed
that engine speeds~excitation frequencies! which cause reso
nances can be moved away from frequent operating ranges.

To better understand the effect of parametric excitation in in
vidual belt spans, Mockensturm et al.@10# used a string model to
investigate the regions where principal, and first summation
difference parametric resonances may occur. Discretization
performed using the eigenfunctions of an axially moving str
with constant tension. Modal damping was introduced and
order nonlinear terms were included to estimate the vibration
plitude in the resonance regions.

In a series of subsequent papers by Zu and co-authors@1,2,11–
16#, a better understanding of the mechanical energy dissipa
mechanisms was attempted by using a viscoelastic material m
for the belt. A variety of constitutive models and excitati
sources were investigated. Weakly nonlinear terms were reta
as the viscoelastic effect only appears in the nonlinear terms o
string model used. While these studies provided a system
method to include material damping in the analysis, an impor
material dissipation mechanism was not included in the deriva
of the equations of motion.

In what follows, this mechanism is included and a discussion

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, June 6, 20
final revision, November 3, 2004. Associate Editor: O. O’Reilly. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Enginee
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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its affects on the equations of motion is provided. A more physi-
cally motivated excitation source is also introduced. The effects
on the previous results for a parametrically excited belt span are
then studied. As the translation speed increases the discrepancy
between the previous and present results grows.

Equation of Motion
Here the weakly nonlinear equations of motion for an axially

moving string composed of a viscoelastic material and under para-
metric excitation are derived. It is important to make clear the
source of the parametric excitation so it can be modeled correctly.
The usual source of parametric excitation in a tensioned string is a
moving support which causes the tension in the string to change
but has negligible effect on the total length between the supports.
One could also assume that an external field is acting on the string
to alter the tension directly while holding the supports fixed. Such
excitation does not occur in most mechanical systems and is not
how tension fluctuations arise in a serpentine belt. The motion
of the crankshaft is assumed to be prescribed, with the accessory
drive system having no effect on its motion. Thus, in the follow-
ing, it is assumed tension fluctuations are caused by belt
stretching.

The primary difference between the following and previous
derivations is the generalization to a viscoelastic material model.
In previous work, the viscous material model did not include a
‘‘steady dissipation’’ term due to the axial motion of the string; the
elastic modulus was simply replaced by an operator such thatE
→Ê@•#5E(•)1h(•) t where E is the elastic modulus,h is the
viscous material constant, and a subscript denotes partial differen-
tiation. This transformation~model! neglects the dissipation
present when the belt is undergoing steady motions. A more physi-
cal transformation~model! would be E→Ê@•#5E(•)1h( •̇)
where a dot denotes material, not partial, time differentiation. For
an axially moving string, the material and partial time derivatives
are not identical and related by

~ •̇ !5~• ! t1v~• !x , (1)

where v is the axial velocity of a steadily translating reference
configuration.

In addition to the effects of translation speed on material vis-
cous dissipation, one must also be careful when determining the
effects of material damping on the parametric excitation. If the
string tension was being varied directly~by some means!, then
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viscous effects would not alter the parametric excitation. Ho
ever, if the tension fluctuations are a result of stretching,
change in constitutive model will alter the parametric excitatio
For an elastic string, the tension is approximated asEA« whereA
is the referential cross-sectional area. If the belt is being perio
cally stretched,« and, thus, tension are periodic functions of tim
If the belt is composed of a simple viscoelastic material, the t
sion is related to the strain by

T5A~E«1h«̇!5A@E«1h~« t1v«x!#. (2)

If the stretching is uniform, the partial with respect tox is zero and
the tension does not depend on the translation speed. The ten
however, does still depend on the strain rate. If the strain in
belt is varying harmonically as«5D sin(Vt), the dynamic tension
in the belt is given by

T/A5ED sin~Vt !1hDV cosVt5L sin~Vt1f!, (3)

whereL25(ED)21(hDV)2 and the phase,f, is not important if
only steady state behavior is studied. The excitation amplitude
well as the frequency, then affects the amplitude of parame
excitation.

Labeling the axial and transverse displacementsU and W, re-
spectively, the Lagrangian strain in the string is«(x,t)5Ux(t)
1Wx

2(x,t)/2. For the viscoelastic material the tension is

T/A5Ê@«#5E@Ux1
1
2 Wx

2#1h@Uxt1WxWxt1vWxWxx#.
(4)

The equation governing the transverse motion of the str
(Tx5rAẄ) becomes

rWtt12rvWxt1~rv22EUx2hUxt!Wxx

5$Wx@
1
2 EWx

21h~WxWxt1vWxWxx!#%x , (5)

wherer is the referential mass per unit volume.
The spatially constant axial strainUx is assumed to be addi

tively composed of a temporally constant strain,«0 , and a har-
monically varying strain,«1 cosVt, whereV is the frequency of
excitation.

With the nondimensional parameters

w5
W

L
, j5

X

L
, t5tAE«0

rL2
, c5vA r

E«0
,

(6)

a5
«1

«0
, v5VArL2

E«0
, z5hA 1

rE«0L2
, w5

1

«0
5

EA

T0
,

the nondimensional equation of the transverse motion is

wtt12cwtj1~c2212a cosvt1zva sinvt!wjj5N̂@w#,
(7)

where the nonlinear operatorN@w# is defined as

N̂@w#5
3
2 wwj

2wjj1zwjwjjwjt1zwj~wjjwjt1wjwjjt!

1czwj~2wjj
2 1wjwjjj!. (8)

If underlined terms are ignored Zhang and Zu’s model@1,2# is
recovered. Note, in this formulation the viscoelastic constant
pears in both the parametric excitation in Eq.~7! and the nonlinear
terms in Eq.~8!.

Following Wickert and Mote@17#, Eq. ~7! can be written in
canonical operator form by introduction of the operators

M̂ @•#5~• ! Ĝ@•#52c~• !j K̂@•#5~c221!~• !jj , (9)

as

M̂ @wtt#1Ĝ@wt#1K̂@w#5N̂@w#1a~cosvt2zv sinvt!wjj .
(10)
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Approximate Solution
Because the goal of this work is to investigate the importance

of the mechanics neglected in previous work and not to compare
solution methods, the solution procedure used by Zhang and Zu
@1,2# is employed. The perturbation method is applied directly to
the partial differential Eq.~10! and the sequence of perturbation
equations discretized using the traveling string eigenfunctions.

Thus, an approximation is sought in the form

w~j,t,«!5w0~j,T0 ,T1!1«w1~j,T0 ,T1!1 . . . , (11)

whereT05t is a fast time scale that, in steady state, characterizes
motions occurring atv. T15«t is a slow time scale on which the
amplitudes and phases depend.

If the amplitude of parametric excitation,a, is of order«, the
equations for the leading order and first correction terms in Eq.
~11! are

M̂ @w
++

0] 1Ĝ@w
+

0] 1K̂@w0#50, (12)

M̂ @w
++

1] 1Ĝ@w
+

1] 1K̂@w1#522M̂ @w
+

08] 2Ĝ@w08#1N̂@w0#

1ã sin~vT01f!~w0!jj , (13)

where (•
+

) and ~•!8 denote a partial differentiation with respect to
T0 andT1 , respectively. The dimensionless amplitude of paramet-
ric excitation is thenã25a2(11z2v2). Using the standard pro-
cedure to study resonances that may occur when the excitation
frequency is near a summative combination of any two system
natural frequencies, a detuning parameter,m, is introduced such
that

v5vn1v l1«m, (14)

in which vn andv l are natural frequencies of the linear system.
Solutions of Eq.~12! can be expressed as

w05cn~j!An~T1!eivnT01c l~j!Al~T1!eiv lT01cc, (15)

where only thenth and lth complex eigenfunctions,cn(j) and
c l(j), are retained to study combination parametric resonances.
To reduce equation length the notationcc is used to denote the
complex conjugate of all preceding terms in the expression. Func-
tions An andAl are found by eliminating the secular terms from
the equation governingw1 .

Substituting Eqs.~14! and~15! into Eq.~13! and expressing the
trigonometric functions in exponential form results in

M̂ Fw++

1
G1ĜFw+ 1

G1K̂@w1#5NST1H 22ivnAn8M̂ @cn#2An8Ĝ@cn#

1
ãAl

2

]2c̄ l

]j2
eimT11@M2n~3w

12ivnz!1cM3nz#An
2ĀnJ eivnT0

1H 22iv lAl8M̂ @c l #2Al8Ĝ@c l #

1
ãAn

2

]2c̄n

]j2
eimT11@M2l~3w

12iv lz!1cM3lz#Al
2ĀlJ eiv lT01cc,

(16)

where
MAY 2005, Vol. 72 Õ 375



M2k5
1

2 F S ]ck

]j D 2 ]2c̄k

]j2
12

]ck

]j

]c̄k

]j

]2ck

]j2 G , (17)

M3k54
]ck

]j

]2ck

]j2

]2c̄k

]j2
12

]ck

]j

]c̄k

]j

]3ck

]j3
12

]c̄k

]j S ]2ck

]j2 D 2

1S ]ck

]j D 2 ]3c̄k

]j3
, (18)

for k5n, l and the phase of the excitation has been neglected. T
nonsecular terms in Eq.~16! are unimportant in subsequent analy-
sis and combined into the term NST. The termM3k does not
appear in previous work.

Equation~16! has a solution only if a solvability condition is
satisfied. This requires that the right side of Eq.~16! be orthogonal
to every solution of the homogeneous equation. For the gene
case where internal resonances do not exist, the solvability con
tion can be expressed as

22ivnAn8mn2An8gni 1@~3w12ivnz!m2n2 iczm3n#An
2Ān

1
ãĀl

2
mlneimT150, (19)

22iv lAl8ml2Al8gl i 1@~3w12iv lz!m2l2 iczm3l #Al
2Āl

1
ãĀn

2
mnle

imT150, (20)
376 Õ Vol. 72, MAY 2005
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mk5^M̂ @ck#,ck&, gk52 i ^Ĝ@ck#,ck&,

m2k5^M2k ,ck&, m3k5 i ^M3k ,ck&, (21)

mnl5K ]2c̄n

]j2
,c l L , mln5K ]2c̄ l

]j2
,cnL

and the notation̂•,•& represents the standard inner product of two
complex functions overjP~0,1!.

Referring to Wickert and Mote@17#, the kth natural frequency
and mass normalized eigenfunction of translating strings arevk

5kp(12c2) and ck5A2 sin(kpj)eikpcj, respectively. Substitut-
ing these eigenvalues and eigenfunctions into Eqs.~19! and ~20!
leads to

gk52kpc2 m2k52
1

4
p4k4~312c213c4!

(22)

m3k5
1

2
p5k5c~716c213c4!
mnl

4pn2l 2c
5

2~21!n1 l sin@~n1 l !pc#1 i $12~21!n1 l cos@~n1 l !pc#%

~n1 l !@~n1 l !2c22~n2 l !2#
. (23)
-

n

Equation~23! is slightly different than that derived by Zhang
and Zu@1,2#. In particular, the sign toggling terms (21)n1 l were
incorrectly neglected in their derivation. Thus, whenn1 l is
even—for all the principal parametric resonances—and z is zero
the results here agree with those of Zhang and Zu. However, w
n1 l is odd, for some summation parametric resonances, the
sults here differ from Zhang and Zu but agree with Mockenstu
et al. @10# when z is zero. Thus, in addition to neglecting th
dynamic dissipation, a mathematical mistake corrupted the res
of Zhang and Zu.

To solve the nonlinear Eqs.~19! and~20!, expressAn andAl in
polar form

An5
1

2
aneibn, Al5

1

2
a le

ib l. (24)

Note thatak andbk represent the amplitude and the phase of t
response, respectively. Substituting Eq.~24! into Eqs. ~19! and
~20! and separating the resulting equation into real and imagin
parts yields

an85
2vnm2n2cm3n

8np
zan

31
ãa l

4np
@mnl

I cos~mT12bn2b l !

1mnl
R sin~mT12bn2b l !#, (25)

a l85
2v lm2l2cm3l

8lp
za l

31
ãan

4lp
@mnl

I cos~mT12bn2b l !

1mnl
R sin~mT12bn2b l !#, (26)
hen
re-

rm
e
ults

he

ary

anbn852
3m2nw

8np
an

32
ãan

4np
@mnl

R cos~mT12bn2b l !

2mnl
I sin~mT12bn2b l !#, (27)

a lb l852
3m2lw

8lp
a l

32
ãa l

4lp
@mnl

R cos~mT12bn2b l !

2mnl
I sin~mT12bn2b l !#, (28)

wheremnl
I 5Im(mnl) andmnl

R 5Re(mnl).

Limit Cycles
Equations~25!–~28! govern the slowly varying amplitudes and

phases of the modal coordinates. If the amplitudes are not chang
ing with time, steady motions~limit cycles! are obtained. The
trivial solution (a l5an50) always exists, as expected. Since the
equations for the amplitudes and phases depend explicitly o
~slow! time, it is clear that if the amplitudes are constant the
phases must be functions ofT1 ; in particular, the phases must be
such thatbn81b l85m.

In the following, nontrivial steady motions are obtained for
both elastic and viscoelastic belts. Multiplying Eq.~27! by a l and
Eq. ~28! by an and summing the results provides

m523wS m2nan
2

8pn
1

m2la l
2

8p l D 2S ã

4np
1

ã

4lp D @mnl
R cosu

2mnl
I sinu#, (29)

where it has been assumed bothan and a l are nonzero, and the
constantu5mT12bn2b l .
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e

Elastic Limit Cycles. For the case when no viscous mater
effects are considered~z50!, nontrivial limit cycles only occur
when, from Eqs.~25! or ~26!, mnl

I cosu1mnl
R sinu50. Finding

sinu and cosu in terms of the system parameters,mnl
R and mnl

I ,
and inserting the result into Eq.~29! gives

n3an
21 l 3a l

25
8

w~916c219c4!
F4m

p3

7ãS 11n

nlp4DA~mnl
I !21~mnl

R !2G , (30)

where

A~mnl
R !21~mnl

I !25
4pn2l 2cA222~21!n1 l cos@~n1 l !pc#

~n1 l !@~n1 l !2c22~n2 l !2#
.

(31)

For a principle parametric resonance (l 5n), the limit cycle am-
plitudes are given by

an
25

8

n3w~916c219c4!
F2m

p3
7

ã

np4
A~mnl

I !21~mnl
R !2G .

(32)

Real values foran exist only if the right-hand side of Eq.~30! is
positive, or

m>6
ã

4p S 1

n
1

1

l DA~mnl
I !21~mnl

R !2. (33)

Zhang and Zu@1,2# give a relationship betweenan and a l for
combination resonances. However, it is not clear how this
derived and numerically integrating Eqs.~25!–~28! shows the re-
lationship is not valid.
Journal of Applied Mechanics
ial

was

Steady-State Response of Viscoelastic Moving Belts.When
the viscoelastic effects of the belt are not negligible, one finds the
steady state amplitudes of the excited modes are related by

a l
25

n2

l 2
An

l
an

2. (34)

Using this and Eq.~25! to eliminateu from Eq. ~29!, gives

C1an
61C2a4

41C3an
250, (35)

whereC1 , C2 , andC3 are time independent constants given by

C15AB1P2, C252Pm,

and C35m22B@~mnl
I !21~mnl

R !2#, (36)

with

A5
~2vnm2n2cm3n!z l 5/4

2ãn5/4
,

B5H ã

4p F1

l S n

l D
1/4

1
1

n S l

nD 1/4G J 2

,

P5
3w

8 S m2n

np
1

m2ln
5/2

l 7/2p
D . (37)

These expressions are identical to those of Zhang and Zu@1,2# if
m3n is set to zero.

Equation~35! obviously admits the trivial solutionan50. Non-
trivial solutions simply have amplitudes governed by

an0
2 5

2C26AC2
224C1C3

2C1
. (38)

The amplitudes of a general summation parametric resonance ar
then given by Eqs.~34! and ~38!. For the special case of a prin-
cipal parametric resonance, the amplitude simplifies to
an0
2

2np
5

26bcmm2n6A~3ãm2nw sinnpc!22z2~2vnm2n2cm3n!2~4m2c22ã2 sin2 npc!

c@z2~2vnm2n2cm3n!219w2m2n
2 #

. (39)
s-

d

e
-
at

-

s
t
e
l
,
l
se
-

-

Nontrivial limit cycles can then only exist ifan is real or

C2
224C1C3.0 and 2C26AC2

224C1C3.0. (40)

Substituting the expressions forC1 , C2 , andC3 into Eq. ~40!
leads to the conclusions that the first limit cycle of the viscoelas
system exists if

6SA4 n

l 5
1A4 l

n5D A~mnl
I !21~mnl

R !2

4p

<
m

ã
<

22A@~mnl
I !21~mnl

R !2#C1

~2vnm2n2cm3n!z S n

l D
5/4

. (41)

Results and Discussions
Although the energy dissipated during steady state motion

the belt may not seem significant, only slightly modifying th
governing equations, the effect on the parametric resonances
be substantial. As is expected, after correcting an algebra mist
the present analysis agrees with that of Zhang and Zu@1,2# when
the belt is not translating or steady state dissipation is abs
However, as the speed of the belt increases, the consequenc
not including steady state dissipation become significant. In
following these differences will be highlighted. Stability resul
are not presented in the present work since they are as woul
tic

of
e
can

ake,

ent.
es of
the
ts
d be

expected. The same dimensionless values of the elastic and vi
coelastic moduli used by Zhang and Zu~w5400, z510! are also
used here.

Results for primary parametric resonances can be compare
directly with those of Zhang and Zu. However, due to the alge-
braic mistake mentioned previously, the combination parametric
resonance (n51 and l 52) for a viscoelastic belt presented here
does not agree with the Zhang and Zu result even if steady stat
dissipation is neglected. When results for this parametric reso
nance are presented, the mathematical error was corrected so th
only the effects of steady state dissipation are compared.

As the excitation frequency approaches a summation of any
two system natural frequencies the trivial solution becomes un
stable and stable nontrivial solutions branch from this point. The
amplitude-phase coordinates undergo a pitchfork bifurcation. As
the frequency increases, the amplitude of the response grows a
expected for a system that stiffens with increasing deformation. A
some point above the summation of the natural frequencies, th
trivial solution again becomes stable and an unstable nontrivia
branch appears. Increasing the excitation frequency still further
for the dissipative system the stable and unstable nontrivia
branches coalesce at a saddle-node bifurcation in amplitude-pha
space. For conservative systems the nontrivial amplitudes con
tinue to grow with increasing excitation frequency, without anni-
hilating each other in a saddle-node bifurcation.

The stability diagrams are presented as projections of the sur
MAY 2005, Vol. 72 Õ 377



faces in theã-m-c parameter space onto them-c plane. The area
between the dark solid and dashed lines corresponds to the re
in which the stable nontrivial solution exists. These regions e
pand for both excitation frequencies above and below the nom
value with increasing excitation amplitude. The regions betwe
the solid dark and light lines is where the trivial solution is u
stable. Again, this region grows with increasing excitation amp
tude. Finally, the regions between the solid light and dashed li
enclose areas in which the unstable nontrivial limit cycles exis

For the first combination parametric resonance (n51 and l
52), significant difference is predicted by the present analys
Figures 1~a! ~the present results! and 1~b! ~Zhang and Zu’s re-
sults! illustrate how the extra dissipation alters the detuning fr
quency at which the two nontrivial branches coalesce and only
trivial solution remains. The curves where these branches ema
from the trivial solution are identical in both analyses; there is
steady state dissipation when the belt is traveling without def
mation. In both cases, this combination resonance region is clo
when the translation speed is zero, as expected. For transla
speeds significantly lower than the critical speed, the differen
are slight. This is expected since the steady state dissipatio
small whenc is small. However, at just 20% of critical speed an
for all values ofã, the detuning at which the unstable and stab
branches coalesce is 8.9% less with steady state dissipation.
difference grows to 44% at half critical speed, and 100% at cr
cal speed, where the present analysis predicts this combina
resonance disappears as it does when no dissipation is presen@2#.
This is not predicted by the Zhang and Zu analysis. The larg
region of nontrivial limit cycles occurs atc50.38 presently and at
c50.65 in prior work. The limit cycle amplitudes for present an

Fig. 1 Stability boundaries of the first combination parametric
resonance „nÄ1, lÄ2… obtained with „a… and without „b… steady
state dissipation with zÄ10 and wÄ400
378 Õ Vol. 72, MAY 2005
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previous~inset! analyses at half critical speed are shown in Fig. 2.
For all excitation amplitudes andc50.5 the maximum amplitude
is predicted to be 25% less in the present analysis. The effect of
the added dissipation is as expected; the regions were nontrivial
solutions exist are smaller when steady state dissipation is
included.

Qualitatively, steady state dissipation has much the same effect
on the first two principal parametric resonance regions as on the
first combination resonance; see Figs. 3–6. Again, the solutions
approach each other as the translation speed goes to zero and both
models predict the resonance regions are largest for a stationary
belt. Both models again predict the collapse of the second primary
resonance whenc50.5. For the first principal resonance, the de-
tuning frequency at which the saddle-node bifurcation occurs is
predicted by the present model to again be 8.9% and 44% lower
for all ã, and c50.2 andc50.5, respectively. These values are
8.8% and 31% for the second principal resonance at speedsc
50.2 andc50.4, respectively. Again, the present model predicts
these resonance regions close when the belt is traveling at its
critical speed. When steady state dissipation is neglected the re-
gions where the trivial solution is unstable closes but the saddle-
node bifurcations do not approachm50 as shown in Figs. 3 and 5.
When v'2v1 , at half the critical speed and for allã the peak
limit cycle amplitude is again 25% lower in the present analysis;
see Fig. 4. Whenv'2v2 , the peak amplitude is 7.1% and 50%
lower in the present analysis for allã and c50.25 ~Fig. 6! and
c50.75, respectively.

The source of the parametric excitation is extremely important
when viscous effects are included in the material model. Zhang
and Zu assumed the tension in the belt varies with a given ampli-
tude and frequency. The physical source of this tension variation
was not discussed. However, in most systems and certainly belt
drives, the source of the tension fluctuation is forced periodic
motion of material points at the boundary. In belt drives, this
motion is transferred from the pulleys and the length of the span
does not change. If this is the case, as noted previously, the exci-
tation frequency and viscoelastic material constant help determine
the excitation amplitude. Assuming the system is being excited in
a summation parametric resonance, the ratio of the excitation am-
plitude, ã, to that given by Zhang and Zu isã/a
5A11(n1 l )2z2p2(12c2)2. As expected, this ratio goes to one
as the translation speed approaches the critical speed where all
natural frequencies go to zero. The ratio is greatest when the belt
is not translating. For a stationary belt, excited in the first princi-
pal parametric resonance and usingz510 ~Zhang and Zu!, the
amplitude ratio is 62.8. Thus, if the dynamic strain amplitude is a

Fig. 2 The amplitude of the nontrivial limit cycles in the first
combination parametric resonance „nÄ1 and lÄ2… for cÄ0.5,
zÄ10, and wÄ400. Inset shows solution neglecting steady state
dissipation.
Transactions of the ASME
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fourth of the static strain, the elastic dynamic tension amplitud
a fourth the elastic static tension but the viscoelastic dyna
tension amplitude is 15.7 times the static tension; the belt is
in compression much of the time. For the belt to remain in tens
at this driving frequency, the ratio of the dynamic to static stra

Fig. 3 Stability boundaries of the first principle parametric
resonance „nÄ lÄ1… obtained with „a… and without „b… steady
state dissipation with zÄ10 and wÄ400

Fig. 4 The amplitude of the nontrivial limit cycles in the first
principle parametric resonance „nÄ lÄ1… for cÄ0.5, zÄ10, and
wÄ400. Inset shows solution neglecting steady state dissipa-
tion.
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must be less than 1.6%; at the first combination and second pr
cipal resonances, this ratio decreases to 1.1% and 0.80%, resp
tively. If the material viscoelastic constant is reduced to 10% o
that used by Zu~z51!, these ratios are 16%, 11%, and 7.9% for
the first three resonance regions, respectively. The viscosity su
stantially alters the amplitude of the parametric excitation.

Fig. 5 Stability boundaries of the second principle parametric
resonance „nÄ lÄ2… obtained with „a… and without „b… steady
state dissipation with zÄ10 and wÄ400

Fig. 6 The amplitude of the nontrivial limit cycles in the sec-
ond principle parametric resonance „nÄ lÄ2… for cÄ0.25,
zÄ10, and wÄ400. Inset shows solution neglecting steady state
dissipation.
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Conclusions
While the effects of viscous material behavior on translat

strings have been studied previously, the way that it was inco
rated in the mathematical model is only correct if the string is
translating. When the string is translating, the material time
rivative in the constitutive relation is not simply the partial tim
derivative; a steady state component, proportional to the tran
tion speed and the axial strain gradient, also appears. This st
state dissipation significantly effects the frequencies at which n
trivial limit cycles exist and also the amplitudes they obtain. T
regions in parameter space in which the trivial solution is unsta
is not affect by steady state dissipation; the strain gradient is
in this trivial state.

The viscoelastic material model also significantly alters the
citation amplitude if the dynamic belt tensioning is caused
physically stretching the belt. In this case, the magnitude of
tension fluctuation depends on the frequency of the excitation
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Modeling of Threshold Strength in
Cylindrical Ceramic Structures
Recently, three-dimensional structured ceramic composites with large threshold streng
(i.e., stress below which there is zero probability of failure) have been fabricated utilizin
an architecture consisting of relatively stress-free, elongated prismatic domains, sep
rated by thin compressive walls. We build upon prior work on laminate architectures, wi
the common feature that these structures are all susceptible to fracture. Typically, the
three-dimensional structures consist of thin shells of mullite that surround alumin
Cracks, originating from large flaws within the ceramic body, are arrested by the su
rounding compressive layers until a specific stress level is attained (i.e., the thresho
strength), resulting in a truncation of the strength distribution in the flaw region. A
preliminary stress intensity solution has shown that this arrest is caused by a reduction
the crack driving force by the residual compression in the compressive walls. This soluti
also predicts that the threshold strength is dependent not only on the magnitude of
residual compression in the walls but also on the dimensions of both phases. A fin
element model is presented that utilizes a penny-shaped crack in the interior of suc
structure or half-penny-shaped crack emanating from the edge of such a structure. O
going analytical and experimental work that is needed to more fully understand this arre
phenomenon and its application towards the development of reliable, damage-tolera
ceramic components are discussed.@DOI: 10.1115/1.1831296#
1 Introduction
The major drawback of ceramics as structural materials is th

brittleness. Brittle materials contain an unknown variety of crack
and flaws that are inadvertently introduced during processing a
surface machining@1,2#. The high brittleness makes ceramic part
extremely prone to impact damage, often resulting in catastrop
failure. A concept which plays a central role in the study of crac
arrest in brittle materials is the threshold strength—that is, a stre
below which the probability of failure vanishes. This phenomeno
increases the damage tolerance of ceramics and will allow en
neers to design reliable ceramic components for structural app
cations. It has been shown by Rao et al.@3# and Hbaieb and Mc-
Meeking @4,5#, that thin compressive layers, within a lamina
ceramic, arrest large cracks, and produce a threshold stren
These laminates have been shown to exhibit threshold strength
accordance with finite element modeling of the crack propagati
process. Typically, the laminar plates are composed of alternat
layers of Al2O3 and a mullite/Al2O3 mixture. Residual compres-
sive stresses in the layers can arise due to differential strain
tween the layers caused by one or more of the following: diffe
ential thermal contraction~or expansion! during cooling ~or
heating!, a change in volume due to a crystallographic phas
transformation, or molar volume change associated with the fo
mation of a reaction product.

Since laminates are simply two-dimensional structures, they a
only effective at arresting a crack inone direction. Three-
dimensional structured ceramic composites have been fabrica
that yield a threshold strength in other dimensions. This is bei
accomplished by assembling fibers and spheres using colloi
processing techniques and coating these geometries with ano
material. The coated fibers and spheres are then consolidate
produce a material with a periodic structure that includes layers
compression that can arrest cracks propagating in all three dim
sions@6#. One type of three-dimensional structure consists of rel
tively stress-free, elongated prismatic domains, separated by t
compressive walls~see Fig. 1!. This is the central idea underlying

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, June 30, 200
final revision, July 9, 2004. Associate Editor: K. M. Liechti.
Copyright © 2Journal of Applied Mechanics
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the present study. To understand the mechanics of fracture in this
architecture, a simple analytic model and several finite element
analyses are carried out to study the threshold strengths for differ-
ent configurations.

Our analysis proceeds in the following way. First, the three-
dimensional ceramic structure is simplified as an infinitely long
cylindrical structure and a crack is modeled as a penny-shaped
crack in the interior. The longitudinal axis of the cylinder is per-
pendicular to the plane of the crack and is assumed to nominally
be in tension. The problem is then extended to a semi-infinite
structure with a half-penny-shaped crack emanating from the edge
of such a structure. Stress intensity factors are calculated for these
two configurations as a crack grows from the tensile section into
the compressive section. The stress intensity factors are used to
determine the threshold stress, that is, the level needed to extend
the crack through the compressive layers to produce catastrophic
failure.

2 Problem Formulation
The physical system that provides the basis for the following

discussion is a three-dimensional architecture consisting of elon-
gated prismatic domains, separated by thin compressive walls, as
shown schematically in Fig. 1.

2.1 Analytic Model for an Idealized Cylindrical
Structure. As an approximation, we assume the three-
dimensional architecture to be an infinitely long cylindrical struc-
ture. The structure consists of concentric cylinders, alternating
between tensile and compressive zones, the innermost being a
tensile zone. As a representative model, Fig. 2 shows three con-
centric cylinders with radiir a , r b , and r c , respectively. The
thickness of the compressive layer is given byt5r b2r a . Assume
a preexisting penny-shaped crack of diameter Fig. 2~a! spans the
diameter of the tensile layer. In the following analyses, we deter-
mine the stress intensity factors for a crack when it extends into
the compressive zone, that is, forr a,a,r b . The stress intensity
factors are used to determine the applied threshold stress,s thr ,
needed to extend the crack through the compressive layers to pro-
duce catastrophic failure.

A stress intensity factorK can be determined by superimposing
the two stress fields: the applied stress field and the residual stress
3;
005 by ASME MAY 2005, Vol. 72 Õ 381



382 Õ
Fig. 1 „a… Schematic and „b… micrograph of a three-dimensional ceramic architecture. As a
material example, the solid core consists of alumina „Al2O3…, while the thinner, compressive
coating-like phase consists of a mixture of mullite and Al 2O3 „micrograph courtesy of M.
Snyder ….
r
field, as depicted in Fig. 3. Each stress field is applied to the sa
penny-shaped crack of diameter 2a and each has its own known
stress intensity factor.

Before we carry out the superposition, let us assume that t
cylindrical structure is infinitely long and subject only to uniform
Vol. 72, MAY 2005
me

he

tension,sa , at the remote boundary. The stress intensity factor fo
this case is readily available and given by Tada@7# as:

Kapplied52saAa

p
F~a/r c!, (1)
Transactions of the ASME
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whereF(a/r c) is a dimensionless correction function given by

F~a/r c!'

120.5
a

r c

10.148S a

r c
D 3

A12
a

r c

. (2)

The correction function depends on geometry of the structure
as Eq.~2! shows, as radial dimension of the cylinder approac
infinity ( r c→`), the correction function approaches unity, that
F(a/r c)→1. For purposes of this study, it is not feasible to use
infinite value forr c and we must accept a finite value, which
reflective of the real three-dimensional structure. For our ge
etries, the magnitude ofF(a/r c) ranges from about 1.01 to abo
1.375. The arbitrariness in the choice ofr c , which sets the back
ground stress, is one disadvantage of the using cylindrical m
to represent the stresses in what really is a periodic structure

We now return our attention to the superposition scheme ou
in Fig. 3. The applied stress issa , the magnitude of the residua
compression issc ~defined to be a positive number! and the re-
sidual tension is denoted ass t . The first stress field on the righ

Fig. 2 Schematic of an infinite cylindrical structure containing
a penny-shaped crack in its interior „tensile … phase
Journal of Applied Mechanics
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hand side of the ‘‘equality’’ is a tensile stress of magnitude (sa
2sc), applied at the remote boundary, to a cracked specimen that
doesnot contain residual stresses~with F'1). The stress inten-
sity factor for this stress is given by the first term on the right side
of Eq. ~3!. The second stress field is a tensile stress of magnitude
(sc1s t), applied only to the crack within the tensile region. Its
stress intensity factor is given by the second term on the right side
of Eq. ~3!. The two superimposed stress fields sum to that shown
on the left-hand side of Fig. 3. The stress intensity factor for the
two superimposed stress fields is thus given by:

K5~sa2sc!
2

p
Apa1

2

Apa
~sc1s t!E

0

r a j

Aa22j2
dj. (3)

The integrand in Eq.~3! is due to a ring load of radiusj which is
integrated with intensitys t1sc up to a radiusr a . Evaluating the
integral and simplifying gives:

K52saAa

p
12s tAa

p
22~sc1s t!Aa

p
A12S r a

a D 2

. (4)

The first term in Eq.~4! is recognized as the stress intensity factor
for a penny-shaped crack in an applied tensile field, while the
remainder of the expression is negative. Thus, the stress intensity
factor initially decreases when the crack extends into the compres-
sive shell of the material, and fracture resistance correspondingly
increases. The analytical result in Eq.~4!, for the stress intensity
factor, is compared with calculated stress intensity factor, in
Section 3.

Using elasticity theory, it can be shown that the magnitude of
the axial tensile stress (0,r ,r a and r b,r ,r c) is given by:

s t5
E8DaDTt~ t12r a!

r c
2

, (5)

and, similarly, the magnitude of the axial compressive stress (r a
,r ,r b) is given by:

sc5
E8DaDT~r c

22t222tr a!

r c
2

, (6)

whereE85E/(12n), E is Young’s modulus,n is Poisson’s ratio,
Da is the difference in thermal expansion between the two mate-
rials, andDT is the temperature relative to a datum at which the
Fig. 3 Stresses in a loaded cylindrical ceramic architecture can be obtained via superposition
MAY 2005, Vol. 72 Õ 383



Fig. 4 Schematic of the semi-infinite cylindrical structure with a half-penny shaped crack
emanating from the free surface
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thermal residual stresses are zero. In Eqs.~5! and ~6!, DaDT is
taken to be a positive number. The derivation of Eqs.~5! and ~6!
is given in Appendix A.

In general, the stress intensity factor in Eq.~4! decreases mono
tonically as the crack grows through the compressive layer
hence, the crack grows stably until it reaches the interface with
next tensile zone as the applied stress is increased. Howev
can be shown that above a critical value of applied stress
functionK(a) reaches a local minimum in the compressive zo
If the crack were to reach this location, it would continue to gr
unstably until reaching the interface with the tensile layer. Fur
discussion of this critical applied stress is given in Appendix B
this paper, we avoid parameter regimes that lead to a minimu
K(a) prior to the crack reaching the tensile zone.

Assuming the threshold stress occurs when the crack
reached the interface with the tensile zone, one can identiK
with Kc anda with r a1t and solve forsa to arrive at:

s thr5
Kc

2
A p

r a1t
1

sct~ t12r a!

t~ t12r a!2r c
2

1scS r c
2

r c
22t~ t12r a!

DA12S 1

11t/r a
D 2

. (7)

By substituting Eq.~6! into ~7! we can write the normalize
threshold stress as:

s thr

E8DaDT
5

Kc

2E8DaDTAr a

A p

11t/r a
2S r a

r c
D 2S t

r a
D S t

r a
12D

1A12S 1

11t/r a
D 2

. (8)

Equations~7! and~8! show that the threshold strength for a cyl
drical composite increases with the fracture toughness of the
layer material, the magnitude of the compressive stress an
thicknesses of the various layers. These expressions are ana
to those worked out for laminate architectures in earlier w
@3–5#, in that they give very similar trends with regard to t
variation ofs thr with crack geometry. Most importantly, they a
low one to design cylindrical ceramic architectures with
knowledge that failure will not occur below this value of stres

This theoretical model ceases to apply when a variety of r
istic effects prevail. For example, elastic mismatch is not
counted for; that is, we assume the effective Young’s modulusE8
is identical in both phases. In addition, we assume the c
384 Õ Vol. 72, MAY 2005
-
and,

the
er, it
the

ne.
ow
her
. In
m in

has
y

n-
thin-

the
ogous
ork
he
l-
he
s.
eal-
ac-

ack

propagates radially on its original plane through the various
phases. While this straight crack propagation has been observed
occur in many experiments, a phenomenon known as bifurcatio
can alternatively occur, where the crack may branch from it
original plane after penetrating into the compressive layer@3#.
This effect has been shown to increase the threshold strength b
yond what is calculated here, but does imply that the physica
mechanisms considered in this section are not universally app
cable. While the finite element method discussed in the next se
tion can be extended to consider cases that involve elastic mod
lus mismatch and bifurcation, we submit that the results presente
in this work still provide invaluable guidance on the design of
three-dimensional architectures that are fracture resistant. In add
tion, the current work provides a level of confidence before ex
tending the FEM model to more complex geometries.

2.2 Cracks Emanating From a Surface. The second case
we consider is a half of a concentric cylindrical structure with a
half-penny-shaped crack emanating from the edge, as shown sch
matically in Fig. 4. The motivation for this geometry is that ce-
ramic composites of this type are typically tested in bending, with
surface cracks initiating from the surface in maximum tension.

For a half-space with a half-penny-shaped crack emanatin
from the edge and subject to tensile loading at the remote boun
ary, the stress intensity factor is well known and is given by Tad
@7# as:

K5
2

p
saApaF~u!, (9)

whereF(u) is given by:

F~u!'1.21120.186Asinu ~10°,u,170°!. (10)

Given that we are using a finite value for the cylindrical diameter
the result by Tada can only be used as an approximation to o
results.

Equations~9! and~10! show the stress intensity factor is depen-
dent on the angleu, measured from the edge of the structure.
However, this dependence is relatively weak. For a crack emana
ing from a free surface, the state of stress varies from plane stra
in the interior of the plate to plane stress at the surface. Henc
using a crack-opening displacement method to calculate the stre
intensity factors can give erroneous results so Eq.~10! is limited
to internal angles. Raju and Newman@8# use a nodal-force
method, which requires no prior assumption of either plane stres
or plane strain, to obtain the stress intensity factors of semiellip
tical surface cracks. Their results seem to suggest that the stre
Transactions of the ASME
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intensity factor varies strongly near the surface, indicating t
need for substantial mesh refinement in this regime. Because
this complication we defer consideration of cracks at the po
where they intersect the surface to future work.

For the case of residual stresses in a semi-infinite cylindric
structure there is no analytical solution available for stress inte
sity factors and we must rely solely on finite element analysis.

3 FEM Models for Stress Intensity Factors
Stress intensity factors are calculated using the commercial

nite element codeANSYS @9#. Recall the two cases considered; tha
is, an infinitely long cylindrical structure with a penny-shape
crack in the interior and a semi-infinite structure with a hal
penny-shaped crack emanating from the edge.

3.1 Full Penny-Shaped Crack. We first consider the struc-
ture of concentric cylinders with an embedded penny-shap
crack, as shown in Fig. 2. Figure 5 shows a typical finite eleme
model with eight wedges. Given the symmetry of the problem
only one-eighth of the body is modeled. The 20-node brick e
ments are used in the analysis. The first row of elements arou
the crack tip is modeled with singular elements, with the midsi
nodes placed at the quarter points, to account for ther 21/2 singu-
larity in stresses and strains at the crack tip. The stress inten
factors are calculated with a displacement extrapolation method
outlined in theANSYS theory manual@9#.

A typical dimension for the Al2O3 tensile cells in the three-
dimensional architecture is 2r a5450mm. For the compressive
layers, a mixture of mullite and Al2O3 , typical dimensions range
from 23 to 90mm @10#. Two configurations are considered here
one in which the thickness of the compressive layer is equal to
diameter of the tensile cell, that is,t52r a , and with 2r a
5200mm; one in which the compressive layer is one tenth th
diameter of the tensile cell, that is,t52r a/10, for a thickness of
tensile layer 2r a5450mm. In the former,t/2r a51, and in the
latter, t/2r a51/10. In both configurations, the elastic constants
the tensile and compressive zones are considered to be ident
The reason we choose two different thickness ratios is that
smaller one is comparable to the experimental dimensions used
Lange et al.@6,10# and the larger one is comparable to ratios us
in finite element studies on laminates@4#.

Figure 6 shows the calculated stress intensity factors for
thickness ratio oft/2r a51. The results are plotted versus norma
ized crack length, as the crack extends from the tensile la
through the compressive layer. The results are shown separa
for the stress intensity factorKapplieddue to the externally applied

Fig. 5 Typical finite element model with singular elements
around the crack tip
Journal of Applied Mechanics
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load, and for the stress intensity factorK residualdue to the residual
stress caused by thermal mismatch. The theoretical results fo
Kapplied and K residual, given by Eq.~4!, are plotted on the same
graph for comparison. As the figure shows, there is good agree
ment between the theoretical and computed results.

In Fig. 7, we show the calculated stress intensity factors for a
thickness ratio oft/2r a51/10. Again, the results are shown sepa-
rately for Kapplied due to the externally applied load, andK residual
due to the material mismatch. The theoretical results forKapplied
andK residualare plotted on the same graph for comparison. As in
the previous case, there is good agreement between the theoreti
and calculated results.

3.2 Half-Penny-Shaped Crack Emanating From the Sur-
face. We next consider the second geometry—half of a cylindri-
cal structure with a half-penny-shaped crack emanating from th
edge, as shown in Fig. 4. The same two configurations are con
sidered as for the full-penny-shaped crack, that is, a configuratio
where the thickness of the compressive layer is equal to the diam
eter of the tensile cell, and a configuration where the compressiv
layer is one tenth the diameter of the tensile cell. The finite ele
ment calculations are carried out in a similar fashion as in the
previous section. Only one-fourth of the body is modeled, given
the symmetry of the problem.

Fig. 6 Comparison of calculated and theoretical stress inten-
sity factors. Tensile and compressive layers have equal thick-
nesses. Thickness of tensile layer is 2 r aÄ200 mm.

Fig. 7 Comparison of calculated and theoretical stress inten-
sity factors. Thickness of compressive layer is one tenth the
diameter of the tensile zone. Diameter of tensile zone is
2r aÄ450 mm.
MAY 2005, Vol. 72 Õ 385



Figure 8 shows the calculated stress intensity factors for
thickness ratio oft/2r a51. Again, the results are shown separat
for Kapplied due to the externally applied load, andK residualdue to
the material mismatch. The results are shown for three value
angleu, 30 deg, 60 deg, and 90 deg. As expected, and sugge
by Eq. ~9!, the stress intensity factor decreases as the angu
increases.

Figure 9 shows the calculated stress intensity factors for
thickness ratio oft/2r a51/10, also for the same three values
angleu, 30 deg, 60 deg, and 90 deg.

Now that the stress intensity factors have been calculated
next step in our analysis is the determination of threshold stren
which we take up in the following section.

4 Discussion of Threshold Strength
As discussed in Sec. 2.1, the stress intensity factor gene

decreases as the crack extends into the compressive layers.
the maximum stress needed to drive the crack through the c
pressive layers occurs when the crack is at the interface betw
the compressive and tensile zones, that is, whena5r a1t5r b . In
the context of the superposition concept introduced in Sec. 2.1
can setK5Kapplied1K residual5Kc ; hence,Kapplied5Kc2K residual,

Fig. 8 Comparison of calculated and theoretical stress inten-
sity factors. Tensile and compressive layers have equal thick-
nesses. Thickness of tensile layer is 2 r aÄ200 mm.

Fig. 9 Comparison of calculated and theoretical stress inten-
sity factors. Thickness of compressive layer is one tenth the
diameter of the tensile zone. Diameter of tensile layer is
2r aÄ450 mm.
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and then solve for the applied stresssa , which appears as a linear
prefactor inKapplied. Thus, the largest stress needed to extend the
crack through the compressive zone is given in a normalized form
as:

s thr

DaDTE8
5

Kc

DaDTE8Ar a

2
K residual~r b!

DaDTE8Ar a

Kapplied~r b!

sappliedAr a

. (11)

If the initial crack size in the tensile layer is less thanr a and the
stress needed to extend it is less thans thr , the crack will be
arrested by the compressive layer. However, if the crack is very
small and extends at a stress greater thans thr , it will extend
through the compressive layer and lead to catastrophic failure
without being arrested. Thus, Eq.~11! is rigorously thought of as
a threshold stress. If the applied stress is less thans thr , the body
should not fail when tensile stress is applied along the fibers. As
previously noted, this enables load-bearing components to be de-
signed with the foreknowledge that failure is unlikely to occur
below that stress.

As expected, Eq.~11! shows that the threshold strength in-
creases with the fracture toughness of the compressive layers,Kc .
The normalized threshold strengths are plotted in Figs. 10 and 11,
against the normalized fracture toughnessKc of the compressive
layer. Values ofKc are chosen between 1 and 5 MPaAm, a range
which is typical of ceramic materials. Values of other material
parameters are taken asE5300 GPa, n50.3, Da52.795
31026 C21 and DT521200°C, for purposes of setting the
ranges of these plot axes. TakingKc53 MPaAm and t/2r a
51/10, typical of the cylindrical structure by Snyder@10#, the
threshold strength we arrive at is;800 MPa. This modestly ex-
ceeds what has been observed in that system, but other effects,
such as edge cracking and crack branching into other propagation
planes~as well as the fact that modulus mismatch is not accounted
for here! are being considered as mechanisms that are coming into
play in the experimental system.

In addition to the effect of intrinsic fracture toughness, the finite
element results reveal the effect of mismatch strainDTDa, albeit
in an indirect way due to the normalization we have chosen to use
in Figs. 10 and 11. Inspection of Eq.~11!, coupled with the fun-
damental result that we expectK residual to vary linearly with
DTDa ~and that theK residual in the numerator of the equation is
actually expected to be negative!, yields the intuitive result that
s thr increases with mismatch strain.

Fig. 10 Threshold strength versus fracture toughness for a
full-penny shaped crack
Transactions of the ASME



The effect of tensile region size 2r a and compressive laye
thicknesst, and the ratiot/2r a , are even less transparent in t
finite element results, simply because we did not perform an
tensive parametric study in this space. Nevertheless, useful in
can be gained from the simple analytical model through Eq.~8!
which shows that the threshold strength decreases with the th
nesses of the various layers. The ratiot/2r a has a modest effect; in
addition the absolute size of the tensile zone,r a , impacts the
threshold stress as well. The latter effect is being exploited
Paranjpye et al.@11# through microelectromechanical system
~MEMS! processing technology to achieve threshold stresse
laminate systems in excess of 1 GPa.

As to be expected, the threshold strength depends on the e
moduli of the tensile and compressive layers. With everything
held fixed, if the tensile layer were more stiff than the compr
sive layer, the magnitude of the residual stress rises and henc
threshold strength increases as is apparent from Eq.~7!. While we
have not performed a systematic study of cases where the
pressive layer elastic properties differ from those in the ten
zones, the good agreement that has been observed in this
between the FEM results and the analytic results provide the
essary confidence necessary to build elastic mismatch into fu
implementations of this FEM model. In addition, more sophis
cated procedures, such as considering a periodic structure b
on a hexagonal compressive layer configuration~depicted in Fig.
1!, and using the J-integral to calculate stress intensity fact
should be explored.

5 Summary
The finite element method was used to predict thresh

strengths in a model system consisting of a cylindrical jacket
der residual compression, surrounded by regions of tensile m
rial, subject to tensile loading aligned with the cylindrical ma
axis. The model system has relevance to ceramic composites
have been fabricated by consolidating fibers of one phase in
other at high temperature, followed by cooling, resulting in
sidual compression in the phase surrounding the original fib
The architecture offers superior mechanical response, in
cracks which originate in the cylindrical zones may be arrested
the surrounding compressive layers, resulting in a truncation
the strength distribution with respect to flaw size and an ass
ated design threshold strength. A simple fracture mecha
model, valid for similar elastic properties is presented, and
finite element results are in good agreement with that analy
Moreover, the finite element model is extended to the case
half-penny crack emanating from a traction-free surface. As

Fig. 11 Threshold strength versus fracture toughness for a
half-penny shaped crack. Results are shown for angle uÄ60°.
Journal of Applied Mechanics
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pected from prior experience with laminate systems, the threshold
strength is shown to depend on the mismatch strain~through the
thermal expansion coefficient mismatch and temperature change!,
the intrinsic toughness of the constituent materials, and the thick-
ness ratio. The results are in modest agreement with experimental
results.
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Appendix A
In this Appendix, we overview the derivation of the background

stress field that drives crack propagation in the cylindrical, axi-
symmetric problem discussed in this paper. Consider the geometry
depicted in Fig. 2, albeit without a crack. The elastic moduli are
taken as identical in all three layers. The coefficient of thermal
expansion in the interior layer~of thicknesst! is taken asab , and
that in the remaining layers is taken asaa . The stress equilibrium
equations, written in cylindrical coordinates and assuming no
body forces, reduce to

]s rr

]r
1

1

r
~s rr 2suu!50

(A1)
]szz

]z
50.

Moreover, compatibility requirements dictate that

]

]r
~r«uu!5« rr . (A2)

Equation~A2! follows from the fact that displacements in theu
direction vanish, and the displacement component in ther direc-
tion may only depend onr. In addition, we insist that«zz remain
constant throughout the structure. Hooke’s Law is written as

« rr 5
1

E
@s rr 2n~suu1szz!#1a iDT

«uu5
1

E
@suu2n~s rr 1szz!#1a iDT, (A3)

«zz5
1

E
@szz2n~suu1s rr !#1a iDT

with the subscript ona taken to coincide with the appropriate
phase. The symmetry of the deformation dictates that all shear
quantities vanish.

Inserting« rr and «uu from Eq. ~A3! into Eq. ~A2!, and elimi-
natingsuu via Eq.~A1!, yields a linear ordinary differential equa-
tion for s rr that leads to a general solution of the form

s rr 5C11C2 /r 2; suu5C12C2 /r 2, (A4)

where the constantsC1 andC2 must be determined separately for
each phase, resulting in six~6! unknowns. We note that Eq.~A4! is
constant with a piecewise constant solution forszz, consistent
with the second part of Eq.~A1!. Additional boundary conditions
are imposed in order to determine the constants:~1! the stress
components must remain finite asr→0; hence,C2 vanishes for
the inner phase;~2! the outer surface of the structure is free of
traction; hence,s rr is taken as zero atr 5r c ; ~3! continuity of«uu
is enforced at bothr 5r a and r 5r b ; and ~4! continuity of s rr is
enforced at bothr 5r a and r 5r b .

There remains a seventh unknown, the constant value of«zz,
which is found through a macroscopic force balance. That is, St.
Venant’s principle is exploited to write
MAY 2005, Vol. 72 Õ 387
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-

d

pr a
2szz~0<r ,r a!1p~r b

22r a
2!szz~r a<r ,r b!

1p~r c
22r b

2!szz~r b<r<r c!50. (A5)

With the unknowns in hand, the third of Eq.~A3! may be used to
write the longitudinal stress in each phase:

szz55
EDT~ab2aa!~r b

22r a
2!

~12n!r c
2

for 0<r ,r a

EDT~ab2aa!~r b
22r a

22r c
2!

~12n!r c
2

for r a<r ,r b

EDT~ab2aa!~r b
22r a

2!

~12n!r c
2

for r b<r<r c

.

(A6)

The solution maps to Eqs.~5! and ~6! by substitutingDa5ab
2aa , r b5r a1t, and noting thatsc[2szz for the sandwiched
~compressive! layer.

Appendix B
When calculating the threshold strength, it is usually assu

that Eq.~4! decreases continuously throughout the regimer a,a
,r b . Taking the first derivative ofK(a) and insisting that it mus
remain negative yields the following restriction:

~sa1s t!aAa22r a
2

~sc1s t!~a21r a
2!

,1. (B1)

We note that the left-hand side of Eq.~B1! increases monoton
cally in a, so the first location for which the derivative ceas
to be negative, at some prescribed level ofsa , would occur at
388 Õ Vol. 72, MAY 2005
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a5r a1t ~i.e., the farthest extent within the compressive zone!.
Solving Eq.~B1! as an identity gives the critical value:

scrit5
~sc1s t!~2r a

212r at1t2!

~r a1t !At212r at
2s t . (B2)

Thus, the stress intensity factor undergoes a minimum within the
compressive zone forsa.scrit , and Eq.~7! becomes invalid for
the threshold strength. By equating Eq.~B2! with Eq. ~7!, a re-
striction on material parameters that guarantees stable crac
growth across the entire compressive zone can be obtained. Mc
Meeking and Hbaieb@5# have derived similar results for the case
of a two-dimensional laminar composite.
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Green’s Function of a Bimaterial
Problem With a Cavity on the
Interface—Part I: Theory
The problem of a point dislocation interacting with an elliptical hole located on a b
terial interface is examined. Analytical solution is obtained by employing the techn
of complex variables and conformal mapping. A rational mapping function is us
map a half-plane with a semielliptical notch onto a unit circle. In the first part of
paper, complex potentials for the bimaterial system with an elliptical hole on the inte
is derived when a point dislocation is present in the upper half-plane without lo
generality. The solution derived can be used as Green’s function to study internal
interacting with an elliptical interfacial cavity.fDOI: 10.1115/1.1876432g
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1 Introduction
Composites are widely employed in present day applicat

Their tailor made properties enable them to be used in v
environments. Interface between dissimilar materials is an e
tial feature of composites. Interfaces are relatively weak comp
to adjoining materials and may debond easily. Debonding o
terfaces leads to the formation of cavities and cracks. Interf
cracks/cavities interacting with subinterfacial cracks is als
common feature in composite materials.

Williams f1g used eigenfunction expansion method to solve
problem of a crack lying along the interface of two bonded
similar elastic materials and derived the stress fields near the
tip. Rice and Sihf2g, Englandf3g, and Erdoganf4g employed
complex variables to obtain analytical solution for the problem
an interfacial crack along two bonded dissimilar elastic h
planes. Analytical solution reveals oscillating stress fields a
of the crack tip and interpenetration of crack faces behind
crack tip but these anomalies were found to be confined to a
region and hence could be neglectedf5g. To overcome the abov
anomalies Comninouf6,7g proposed a model by treating interfa
crack as a continuous distribution of dislocations.

The problems of internal cracks approaching interfaces
been examined using the distributed dislocation method and
ing the resulting singular equations to obtain stress intensity
tors f8,9g. Several problems pertaining to interfacial cracks h
been summarized in Murakami et al.f10g. Recently, Oda et a
f11g used the body force method to study the problem of an i
face crack interacting with an internal crack.

Hasebe et al.f12g and Okumura et al.f13g modeled the inter
facial cavity as an elliptical hole and solved the problem of
bonded bimaterial plane with an elliptical hole at the interface
loaded it parallel to and normal to the interface, respectively. T
employed the rational mapping function approach and stu
stress concentration effects due to interfacial cavities. It shou
noted that crack is a degenerate case of an elliptical hole.

The problem of a point dislocation interacting with an ellipt

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIE
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF A
PLIED MECHANICS. Manuscript received by the Applied Mechanics Divis
August 5, 2003; final revision, November 24, 2003. Associate Editor: Z. Suo
cussion on the paper should be addressed to the Editor, Prof. Robert M. McMe
Journal of Applied Mechanics, Department of Mechanical and Environmental
neering, University of California-Santa Barbara, Santa Barbara, CA 93106-507
will be accepted until four months after final publication in the paper itself in

ASME JOURNAL OF APPLIED MECHANICS.
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hole at the interface of dissimilar materials is not solved yet.
well known that point dislocation solutions can be employe
simulate cracks by means of a distributed dislocation techniqu
this paper, the solution for the problem of a point dislocatio
the upper half-plane interacting with an elliptical hole on the
terface of bonded dissimilar materials is obtained. Mapping
half-plane with a semielliptical notch onto a unit circle is done
means of a rational mapping function and the problem is so
by the complex variable method and a closed form solutio
obtained.

2 Derivation of Solution
The problem under consideration consists of two half-pl

with semielliptical notches bonded along the common boun
as shown in Fig. 1sad. Material 1 occupiesYù0 and material
occupiesYø0. Bonded parts of the interface is denoted byM and
the unbonded parts byLj where j =1,2 denote materials 1 and
respectively. Shear modulus and Poisson’s ratio for materi
and 2 are denoted bym j andn j, respectively. Materials 1 and 2 a
considered separately inz1 and z2 planes as shown in Figs. 1sbd
and 1scd. The z1 plane is obtained by rotating material 1
180 deg about theX-axis while material 2 is undisturbed in thez2
plane. Since the geometry ofzj planes are identical, same mapp
function is used to mapzj planes onto unit circles as shown in F
1scd. S+ and S− denote the regions inside and outside the
circle. Point dislocationsD01=Dx1+ iDY1 and −D01 are located i
material 1 atz01 st1= t01d and at infinityst1=1d, respectively. Dis
locations, stresses and displacements inzj planes are related
those in the originalz-plane as

DX1 = − dx1 DY1 = dy1 XX2 = dx2 DY2 = dy2

U1 = u1 V1 = − v1 U2 = u2 V2 = v2

sX1 = sx1 sY1 = sy1 tXY1 = − txy1

sX2 = sx2 sY2 = sy2 tXY2 = txy2 s1d
A mapping function that maps a half-plane with semielliptic no
onto a unit circle is given by

zj = − ib
Î1 + tj

2

1 − tj
− ia

1 + tj

1 − tj
+ constant. s2d

a,b are the dimensions of ellipse alongxj andyj axes, respectivel

s-
ng,
i-
nd
A rational mapping function can be obtained froms2d as
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zj = vstjd =
E0

1 − tj
+ o

k=1

N
Ek

zk − tj
+ Ec, j = 1,2. s3d

E0, Ek, Ec, andzk are complex constants andN=28 in this analy
sis. The procedure for calculating the constants ins3d is explained
in detail by Hasebe and Inoharaf14g.

The given problem can be split into two parts: problemsad the
solution of point dislocations and a free boundary in a half-p
with a semielliptical notchssee Fig. 1sbdd is solved and, problem
sbd the continuity of stresses and displacements across the b
part of half-planes is satisfied. Accordingly, complex potentials
the upper half-planesmaterial 1d can be written in the mappe
plane as

f1st1d = f1Ast1d + fd1st1d

c1st1d = c1Ast1d + cd1st1d s4d

where the suffix “d1” corresponds to problemsad and suffix “1A”
corresponds to problemsbd.

2.1 Solution for Problem (a). The solution for the problem
of a half-plane with a semielliptical notch subjected to a p
dislocation at t1= t01 and t1=1 sz1=`d has been obtained b
Hasebe et al.f15g. The solution is presented here for the sak
convenience,

fd1st1d = −
D1

2p
logst1 − t01d +

D1

2p
logst1 − 1/t01d

+
D1

2p

vst01d − vs1/t01d
v8st01d

s1/t01d2

t1 − 1/t01

+
D1

2po
k=1

N

3S 1

zk8 − 1
−

1

zk8 − t01
D Bk

t1 − zk
+ o

k=1

N
Ad1kBk

t1 − zk
, s5d

and

cd1st1d = − fd1s1/t1d −
v̄s1/t1d
v8st1d

fd18 st1d, s6d

whereBk;Ek/v8szk8d, zk8=1/zk, andAd1k can be evaluated as e
plained inf15g.

2.2 Solution for Problem (b).Solution to problemsbd entails
satisfying boundary conditions along the bonded and unbo
parts of the interface. Since the elliptical hole is traction f
analytic continuation leads to

c jstjd = − f js1/tjd −
v̄s1/tjd
v8stjd

f j8stjd. s7d

The boundary condition on the traction free elliptical h
becomes

f j
+ssd − f j

−ssd = 0 on Lj s8d

wheres represents the point on the boundary; superscripts1 and
2 denote the limiting values of the functions on the circumfere
when approached from inside and outside the unit ci
respectively.

Since tractions and displacements are continuous acros
bonded part of the interface,

f1
+ssd − f1

−ssd = f2
+s1/s̄d − f2

−s1/s̄d on M , s9d

1

m1
fk1f1

+ssd + f1
−ssdg =

1

m2
fk2f2

+s1/s̄d + f2
−s1/s̄dg on M .

s10d
Writing
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f1st1d + f2s1/t1d = Qst1d, s11d

Eq. s9d can be rewritten as

Q1
+ssd − Q1

−ssd = 0. s12d

General solution of Eq.s12d is an arbitrary rational functionf16g

Qst1d = u1st1d. s13d

Sinceu1
+ssd=u1

−ssd;u1ssd on the boundary,

f2
+s1/s̄d = − f1

−ssd + u1ssd and f2
−s1/s̄d = − f1

+ssd + u1ssd.

s14d

Substituting Eq.s14d into Eq. s10d, the boundary condition onM
can be written as

f1
+ssd + A1f1

−ssd = B1u1ssd, s15d

A1 =
k2m1 + m2

k1m2 + m1
=

1 − bD

1 + bD
, B1 =

m1sk2 + 1d
k1m2 + m1

=
1 − aD

1 + bD

where m1 and m2 denote the shear moduli of material 1 and
respectively;aD andbD are the Dundurs parameters given by

aD =
sk1 + 1dG − sk2 + 1d
sk1 + 1dG + sk2 + 1d

, bD =
sk1 − 1dG − sk2 − 1d
sk1 + 1dG + sk2 + 1d

= G
m2

m1
.

By repeating the above procedure forf2st2d, the following bound
ary condition onM can be formulated

f2
+ssd + A2f2

−ssd = B2u2ssd,
s16d

Fig. 1 Elliptical hole at a bimaterial interface
Transactions of the ASME
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A2 =
k1m2 + m1

k2m1 + m2
=

1 + bD

1 − bD
, B2 =

m2sk1 + 1d
k2m1 + m2

=
1 + aD

1 − bD
.

The problem of obtaining the potentialsf1st1d andf2st2d is thus
reduced to finding solutions to the Riemann–Hilbert Eqs.s8d, s15d,
and s16d.

In the dislocation problem,f1st1d is expressed by Eq.s4d. Sub-
stituting Eq.s4d in Eqs.s8d and s15d yields

f1A
+ ssd − f1A

− ssd = 0 on L1, s17d

f1A
+ ssd + A1f1A

− ssd = B1u1Assd + C1fd1ssd on M , s18d
where

C1 = m2sk1 + 1d/sk1m2 + m1d = s1 + aDd/s1 + bDd

andu1Ast1d=f1Ast1d+f2s1/t1d is a rational function. Similarly,

f2
+ssd − f2

−ssd = 0 onL2 s19d

f2
+ssd + A2f2

−ssd = B2u2Assd + C2fd1s1/s̄d on M s20d
where

C2 = − m2sk1 + 1d/sk2m1 + m2d = − s1 + aDd/s1 − bDd

andu2Ast2d=f2st2d+f1As1/t2d is a rational function. The gener
solution to Eqs.s17d and s18d can be written asf16g
s
al
ut

o

ts

si-
due theorem as

Journal of Applied Mechanics
f1Ast1d =
B1x1st1d

2pi E
M

u1Assdds

x1
+ssdss − t1d

+
C1x1st1d

2pi E
M

fd1ssdds

x1
+ssdss − t1d

+ x1st1dP1st1d, s21d

where P1st1d is a rational function to be determined,x1st1d=st1
−adm1st1−bd1−m1, and m1=0.5+islog A1d /2p. The behavior o
x1st1d is given by

x1
+ssd = − A1x1

−ssd on M ,

x1
+ssd = x1

−ssd on L1.

Similarly, the general solution to Eqs.s19d ands20d can be written
as

f2st2d =
B2x2st2d

2pi E
M

u2Assdds

x2
+ssdss − t2d

+
C2x2st2d

2pi E
M

fd1s1/s̄dds

x2
+ssdss − t2d

+ x2st2dP2st2d, s22d

where

x2st2d = st2 − adm2st2 − bd1−m2

, and m2=0.5+islog A2d /2p. The second term in Eqs.s21d and
s22d is evaluated using the residue theorem as
C1x1st1d
2pi E

M

fd1ssd
x1

+ssdss − t1d
ds =

C1x1st1d
2pis1 + A1dR

M

fd1ssd
x1ssdss − t1d

ds =
C1

2ps1 + A1dFD1H logst1 − 1/t01d − logst1 − t01d

+ x1st1dE
1/t01

t01 ds

x1ssdss − t1dJ + D1
vst01d − vs1/t01d

v8st01d
F1 −

x1st1d
x1s1/t01d

G s1/t01d2

t1 − 1/t01

+ D1o
k=1

N S 1

zk8 − 1
−

1

zk8 − t01
DF1 −

x1st1d
x1szkd

G Bk

t1 − zk
+ 2po

k=1

N
Ad1kBk

t1 − zk
F1 −

x1st1d
x1szkd

GG , s23d

C2x2st2d

2pi
E

M

fd1s1/s̄d

x2
+ssdss − t2d

ds =
C2x2st2d

2pis1 + A2d
R

M

fd1s1/s̄d

x2ssdss − t2d
ds =

C2

2ps1 + A2d
FD1H logst2 − t01d − logst2 − 1/t01d

+ x2st2dE
t01

1/t01 ds

x2ssdss − t2dJ − D1

vst01d − vs1/t01d

v8st01d
F1 −

x2st2d

x2st01d
G 1

t2 − t01

− D1o
k=1

N S 1

zk8 − 1
−

1

zk8 − t01
D

3F1 −
x2st2d

x2szk8d
G Bkzk8

2

t2 − zk8
− 2po

k=1

N
Ad1kBkzk8

2

t2 − zk8
F1 −

x2st2d

x2szk8d
GG . s24d
The contour integrals of Eqs.s23d and s24d are carried out a
outlined in Hasebe et al.f17g. The first derivatives of the integr
terms in Eqs.s23d and s24d are expressed by terms witho
integralsf17g.

The rational functionu1Ast1d can be expressed as a sum
irregular terms inside and outside the unit circle as

u1Ast1d = o
n

a1n

j1n − t1
+ o

n

b1n

h1n − t1
, s25d

where uj1nu.1, uh1nu,1, anda1n andb1n are complex constan
to be determined.

Substitutings25d into s21d the first term is evaluated using re
f

B1x1st1d
2pi E

M

u1Assdds

x1
+ssdss − t1d

=
B1x1st1d

2pis1 + A1dR
M

u1Assdds

x1ssdss − t1d

=
B1

1 + A1
Ho

n
F1 −

x1st1d
x1sj1ndG a1n

j1n − t1

+ o
n
F1 −

x1st1d
x1sh1ndG b1n

h1n − t1
J .

s26d

P1st1d is obtained from the analytical conditions onc1Ast1d. Sub-

stituting Eq.s4d into Eq. s7d,
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c1Ast1d = − f1As1/t1d −
v̄s1/t1d
v8st1d

f1A8 st1d − cd1st1d − fd1s1/t1d

−
v̄s1/t1d
v8st1d

fd18 st1d. s27d

The first term in Eq.s27d can be written from Eq.s21d as

f1As1/t1d = x1s1/t1dP1s1/t1d + terms regular inS+.

The second term in Eq.s27d can expressed as

v̄s1/t1d
v8st1d

f1A8 st1d = − o
k=1

N
A1kBkzk8

2

zk8 − t1
+ terms regular inS+

whereA1k;f1A8 szk8d. From s6d, the last three terms on the rig
hand side of Eq.s27d disappear. Thus,c1Ast1d is written as

c1Ast1d = − x1s1/t1dP1s1/t1d + o
k=1

N
A1kBkzk8

2

zk8 − t1
+ terms regular inS+.

Since c1Ast1d is regular inS+, the irregular part should be ca
celled out. Expanding the first term in Laurent series and equ
terms with pole att1=zk8 to zero, we get

P1st1d = − o
k=1

N
A1kBk

x1szkdszk − t1d
. s28d

Similarly, P2st2d can be obtained as

P2st2d = − o
k=1

N
A2kBk

x2szkdszk − t2d
. s29d

In order to evaluate the functionQ1st1d, the following relations
are used:

x2s1/t1d

x2s1d
=

x1st1d

t1x1s1d
,

x2s1/t1d

x2sj2nd
=

j2n8 x1st1d

t1x1sj2n8 d
,

x2s1/t1d

x2sh2nd
=

h2n8 x1st1d

t1x1sh2n8 d

wherej2n8 ;1/j2n, h2n8 ;1/h2n, A2=1/A1, andm2=m1.
Using Eqs.s21d and s22d

u1Ast1d = f1Ast1d + f2s1/t1d =
B1

1 + A1
Ho

n
F1 −

x1st1d

x1sj1nd
G a1n

j1n − t1

+ o
n
F1 −

x1st1d

x1sh1nd
G b1n

h1n − t1
J −

B2

1 + A2
Ho

n
F1

−
x1st1d

x1sh2n8 d
G b2nh2n8

2

h2n8 − t1
+ o

n
F1 −

x1st1d

x1sj2n8 d
G a2nj2n8

2

j2n8 − t1
J

− o
k=1

N
x1st1dA1kBk

x1szkdszk − t1d
+ o

k=1

N
x1st1dA2kBkzk8

2

x1szk8dszk8 − t1d
. s30d

Since Eqs.s25d and s30d are identical, their poles must be t
same and the coefficients in the two terms, which either inclu
exclude the Plemelj functions, must also be equal at each p
S1

+ andS1
−. Therefore, the coefficients are evaluated as

j1k = h2k8 = zk, a1k = − A1kBk, a2k = − A2kBk,

h1k = j2k8 = zk8, b1k = A2kBkzk8
2, b2k = A1kBkzk8

2.

Thus,

u1Ast1d = − o
k=1

N
A1kBk

zk − t1
+ o

k=1

N
A2kBkzk8

2

zk8 − t1
. s31d
Finally, f1Ast1d is obtained as
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f1Ast1d = −
1

1 + d1
o
k=1

N F1 + d1
x1st1d
x1szkd

G A1kBk

zk − t1
+

1

1 + d1
o
k=1

N

3F1 −
x1st1d
x1szk8d

GA2kBkzk8
2

zk8 − t1
−

d1

2ps1 + d1dFD1H logst1

− 1/t01d − logst1 − t01d + x1st1dE
1/t01

t01 ds

x1ssdss − t1dJ
+ D1

vst01d − vs1/t01d
v8st01d

F1 −
x1st1d

x1s1/t01d
G s1/t01d2

t1 − 1/t01

+ D1o
k=1

N S 1

zk8 − 1
−

1

zk8 − t01
DF1 −

x1st1d
x1szkd

G Bk

t1 − zk

+ 2po
k=1

N
Ad1kBk

t1 − zk
F1 −

x1st1d
x1szkd

GG , s32d

whered1=m2sk1+1d / sm1sk2+1dd=s1+aDd / s1−aDd.
The complex potentials in the final form can be written as

f1st1d = f1Ast1d + fd1st1d, s33d

f2st2d = −
1

1 + d2
o
k=1

N F1 + d2

x2st2d

x2szkd
G A2kBk

zk − t2
+

1

1 + d2
o
k=1

N

3F1 −
x2st2d

x2szk8d
GA1kBkzk8

2

zk8 − t2
+

1

2ps1 + d2d
FD1H logst2 − t01d

− logst2 − 1/t01d + x2st2dE
t01

1/t01 ds

x2ssdss − t2dJ
− D1

vst01d − vst/t01d

v8st01d
F1 −

x2st2d

x2st01d
G 1

t2 − t01

− D1o
k=1

N S 1

zk8 − 1
−

1

zk8 − t01
DF1 −

x2st2d

x2szk8d
G Bkzk8

2

t2 − zk8

− 2po
k=1

N
Ad1kBkzk8

2

t2 − zk8
F1 −

x2st2d

x2szk8d
GG , s34d

where d1=1/d2, and A1k;f1A8 szk8d, A2k;f28szk8d. It should be
noted that the first derivatives off1st1d andf2st2d do not involve
integral terms present in Eqs.s33d ands34d. Thus numerical inte
gration is not necessary to calculateA1k andA2k as well as stres
components. However, numerical integration of the integral t
in Eqs.s33d and s34d is necessary to compute displacement c
ponents which involve both the complex potentials and thei
rivatives. The complex constantsA1k andA2k sk=1,2, . . . ,Nd are
determined by solving the 4N simultaneous linear equations c
responding to the real and imaginary parts ofA1k andA2k obtained
from their definitions. The complex potentialsc jstjd s j =1,2d are
given by Eq.s7d. It should be noted thatf2st2d is regular att2
= t01 since the expression involving logarithmic terms of Eq.s34d
cancel out with the term under the integral sign. Further, the
lution to the problem of a point dislocation in material 2
similarly be obtained by replacing the subscripts “1” and “2
Eqs.s33d and s34d.

Conclusions
The solution of a point dislocation interacting with an ellipt

hole has been derived analytically by applying complex var

method. The key point to note in the derivation of Green’s func-
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tion of the bimaterial problem is to utilize the Green’s funct
fd1szd and cd1szd of the half-plane with a semielliptical notc
The mapping function for a half-plane with a semielliptical no
that is mapped onto a unit circle by means of a rational map
function is used. Therefore, by changing the mapping function
other hole problem can be analyzed, for example, half-plane
a triangular notch solved earlier by Hasebe and Iidaf18g. Any
debonding length on the interface can be taken care of by c
ing variablesa and b in the Plemlj function. The fundamen
solution can be used as Green’s function to simulate crack
means of distributed dislocation technique that forms the se
part of this paper. The Green’s function for two equal but oppo
point forcesPx+ iPy and −sPx+ iPyd acting att1= t01 andt1= t02 in
the mapped plane can be obtained by superposing the solutio
two equal and opposite point dislocations att1= t01 andt1= t02, and

changing D=Dx+ iDy to P=sPx+ iPyd / s1+kd and D̄=Dx− iDy

to −kP̄=−ksPx− iPyd / s1+kd in the expressions for poi
dislocations.
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1 Introduction
Multiple crack interaction studies constitute a major resear

understanding the structural integrity of components under
ing. Many cracked structures show that multiple cracks are a
rather than an exception. Several works on crack interactions
been carried out analytically and numerically to estimate the
verity of cracks and to assess the overall integrity of compon
Works carried out in this direction include cracks of arbitr
lengths in homogeneous media interacting with each other;
edge cracks interacting with internal cracks; internal cracks i
acting with interfacial cracks, etc. The mathematical difficu
while solving crack interaction problems make numerical t
niques inevitable. Several problems of practical interest have
solved numerically and compiled in Murakami et al.f1g.

In this paper the problem of an internal crack interacting
an interfacial cavity/crack is examined. The point dislocation
lution derived earlierf2g is used in conjunction with the distri
uted dislocation technique to simulate the internal crack.
method has been used successfully to study several crack in
tion problems that are not amenable to analytical solutionsf1,3g.
In the simulations, two internal crack orientations and corresp
ing far-field loading directions are consideredssee Fig. 1d sad in-
ternal crack parallel to and loading normal to the interfacesbd
internal crack normal to and loading parallel to the interf
Crack interaction effects will be studied by examining the va
tions in stress intensity factors at the crack tips by varying
distance between the internal crack and the interfacial hole
numerical procedure to obtain stress intensity factors will be
plained in Sec. 2. Stress intensity factors variations for some
of internal crack and loading orientations will be studied in Se

2 Analysis
The solution of the problem involves simulating internal cr

by distributing a point dislocation along the putative crack len
Earlier, the solution to the problem of a point dislocation i
bimaterial plane with an interfacial cavity/crack has been
tained. This solution will be used to simulate the internal cr
We assume that the internal crack exists in material 1. The g
problem can be solved in two stages. In the first stage, trac
along the putative internal crack length induced by far-field lo

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIE
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PLIED MECHANICS. Manuscript received by the Applied Mechanics Divis
August 5, 2003; final revision, November 24, 2003. Associate Editor: Z. Suo
cussion on the paper should be addressed to the Editor, Prof. Robert M. McMe
Journal of Applied Mechanics, Department of Mechanical and Environmental
neering, University of California-Santa Barbara, Santa Barbara, CA 93106-507
will be accepted until four months after final publication in the paper itself in

ASME JOURNAL OF APPLIED MECHANICS.

394 / Vol. 72, MAY 2005 Copyright © 2005
in
d-
le
ve
e-
ts.

le
r-
s
-
en

h
-

is
ac-

d-

.
-
e
he
x-
es
.

k
.

-
.

en
ns
-

ings are obtained. In the second stage, tractions along the in
crack length due to unit point dislocations acting in normal
tangential directions to the internal crack are multiplied by
known dislocation densities and equated to the negative of
tions obtained in the first stage. This sets up the singular equ
for the given problem the solution of which gives the unkno
dislocation densities. Once the unknown densities are kn
stress intensity factors at crack tips can be evaluated.

Dislocation density is defined byf4g,

hjstd =
2m1

1 + k1

d

dt
suj

+std − uj
−stdd, utu , c, s1d

wherec is the semicrack length, andj =1,2 correspond tox andy
displacements, respectively. In the above expressionm1 is shea
modulus andk1 is given by s3−4n1d under plane strain ands3
−n1d / s1+n1d under plane stress conditions in whichn1 is the Pois
son’s ratio of material 1. The bracketed term in Eq.s1d denotes th
jump in displacement across the crack face.

The condition of single valued displacement on the crack
face is given by

E
−c

c

hjstddt = 0. s2d

Singular integral equation can be setup by noting that the str
induced due to given loading should be zero on the putative
site as the internal crack is traction free. Thus, negating the
tions induced due to far-field loading at the crack site by dis
uting the dislocations leads to the following singular inte
equation

NCssd + iTCssd =E
−c

c

hhnstdfsnnst,sd + isntst,sdg + htstdfstnst,sd

+ isttst,sdgjdt s3d

wheres jkst ,sd represents the traction component in thek direction
at point s induced by dislocation densityhjstd at point t in the j
direction. The left-hand side,NCssd andTCssd, denotes negative
the traction induced due to far-field loading at the crack site.
condition of single valued displacement of Eq.s2d can be rewrit
ten as

E
−c

c

hhnstd + ihtstdjdt = 0. s4d

The explicit forms of Eqs.s3d and s4d are difficult to present an
are therefore solved numerically using the Gauss–Chebysh

s-
ng,
i-
nd
tegration method as explained inf4,5g.
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The stress components on the interface near the debondi
D ssee Fig. 10 belowd can be expressed asf6g

sYj
M =

coshsp« jd
Î2pr

ÎKs jdKs jd cossQ0
s jd − « j ln rd + Osr0d,

sXj
M =

coshsp« jd + 2 sinhsp« jd
Î2pr

ÎKs jdKs jd cossQ0
s jd − « j ln rd + Osr0d,

tXYj
M = ±

coshsp« jd
Î2pr

ÎKs jdKs jd sinsQ0
s jd − « j ln rd + Osr0d,

where the signs1 and 2 are for material 1 and 2; respective
Ks jd=KI

s jd+ iK II
s jd sj =1,2 correspond to materials 1 and 2d is the

complex stress intensity factor of the interfacial crack,Q0
s jd is an

argument ofKs jd, r is the distance from the debonded crack tip
the interface, and« j is the imaginary part ofmj srefer tof6g for the
definition of mjd. The condition of stress continuity on t

interface relatesKs1d and Ks2d asKs1d=Ks2d;K f6g. In the above
expressions, coshsp« jdÎKs jdKs jd denotes stress intensity at the d
onded tip similar to stress intensity factor for a homogen
crack. Thus, coshsp« jdÎKs jdKs jd is called stress intensity of de

Fig. 1 Internal crack interacting with interfacial cavity
onding sSIDd in this paper to distinguish it from that of a homo-

Journal of Applied Mechanics
tip

-
s

geneous case. For the homogeneous case,« j =0, and SID revert
to ÎKI

2+KII
2 of a homogeneous crack.

Complex stress intensity factor for the interfacial circular h
edge crack is given by

KD = K1 +E
−c

c

fhnstdK2std + htstdK3stdgdt, s5d

whereK2std andK3std represent complex stress intensity factor
the interfacial hole edge crack induced by the point dislocatio
point t in normal and tangential directions, respectively.K1 de-
notes complex stress intensity factor of the interfacial crack d
far-field loading.K1, K2, andK3 at the debonding crack tipD ssee
Fig. 10 belowd are calculated byf6g

Kj = 2Î2p exps− p«1d

3
uv8sbdsb − adum1F1sbdexpf− im1sp + d/2dg

v8sbdsb − ad
, s j = 1,2,3d.

s6d
The definitions of various terms in Eq.s6d and the procedure
evaluate them are detailed inf6g.

3 Numerical Results
The above procedure will now be applied to solve a few c

interaction problems. Assumingplane stresscondition for all the
cases considered in this paper, two distinct internal crack ori
tions are considered for numerical simulations:sad crack paralle
to the interfacesbd and crack perpendicular to the interface. St
intensity factorssSIFd at the crack tips of an internal crack

Fig. 2 Normalized SIF of an internal crack parallel to the inter-
face and interacting with an interfacial crack „a/c =1, b /c
=0, e/c =2… „loading normal to the interface …: „a… crack tip A „b…
crack tip B; „n1=n2=0.3; FI,II=KI,II /pÎpc…
evaluated and their normalized values are plotted. Normalization

MAY 2005, Vol. 72 / 395
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is done with respect topÎpc, wherep is the remote stress norm
parallel to the interface andc is half-length of the internal crac
The value ofc is taken as unity in all the simulations. Sh
modulus and Poisson’s ratio for materials 1 and 2 are given bm j
and n j s j =1,2d, respectively. Poisson’s ratio ofn1=n2=0.3 is
taken for all the cases considered.G=m2/m1 denotes the elast
mismatch between the two bonded dissimilar half-planes. Al
numerical results obtained from the numerical procedure out
in Sec. 2 are accurate to within 0.1%. This is accomplishe
evaluating the difference between the results obtained from
successive values ofM sGauss pointsd and calculating the erro
percentage. In the present paper three values ofM s8, 16, 32d are
taken for numerical purposes.

The internal crack orientation parallel to the bi-material in
face will be considered first. Figure 1sad shows an elliptical hol
on a bimaterial interface interacting with an internal crackAB
located at a vertical distanceh from the interface in material
sy.0d. The center of the internal crackszcd is offset by e=sc
+ad from the y-axis for all the cases with this crack orientati
Remote loadingsp are applied normal to andgp on material 2
parallel to the interface as shown in Fig. 1sad. g=2s2bD

−aDd / s1−aDd whereaD andbD are the Dundurs parameters. T
solution for the problem of an elliptical hole at the interface
two bonded half planes subjected to far-field loading normal to
interfacef6g will be used to find the left-hand side of Eq.s3d.

The efficiency of the above procedure is verified by solving
problem of an interfacial crack interacting with a parallel inte
crack. This problem can be modeled by taking the valueb of the
elliptical hole zerossee Fig. 1sadd. SIF for this problem have bee

Fig. 3 Normalized SIF of an internal crack parallel to the inter-
face and interacting with an interfacial circular hole „a/c
=1, b /c =1, e/c =2… „loading normal to the interface …: „a… crack
tip A „b… crack tip B; „n1=n2=0.3; FI,II=KI,II /pÎpc…
compiled in Murakami et al.f1g and reworked by Oda et al.f3g
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using a different procedure. Figure 2 shows normalized stre
tensity factors at crack tipsA andB. It can be seen that there i
good agreement between the results of Fig. 2 andf1,3g. Figure 3
shows the normalized SIF of an internal crack interacting w
circular hole on the interface. The values of SIF at crack tipA are
higher in this case compared to the previous case. This c
attributed to the hoop stress on the circular hole that ten
increase the SIF as the crack moves closer to the holesi.e., ash
becomes smalld. However, SIF at crack tipB show little variation
when compared to the previous case. Figure 4 shows norm
SIF of an internal crack interacting with an elliptical hole wh
minor axis is along the interface. Results show similar trend
the case of a circular hole. The hoop stress on the elliptical
surface tends to increase SIF of crack tipA. Figure 5 shows th
normalized SIF of an internal crack interacting with an ellipt
hole whose major axis is along the interface. The magnitud
mode-I SIF is less when compared to previous two casessFigs.
3sad and 4sadd. However, the SIF at crack tipB show little varia
tion for all the interfacial hole shapes considered implying tha
shape of the cavity has little effect on the SIF at crack tipB.

The problem of an internal crack perpendicular to the inter
will now be considered as shown in Fig. 1sbd. Remote loadings o
p on material 1 andmp on material 2 is applied parallel to t
interface wherem=s1+aDd / s1−aDd. The center of the intern
crackszcd is at a distance ofsh+c+bd from the interface. The SI
at both the crack tips of the internal crack will be evaluated
their normalized values will be plotted against the normal
distanceh/c. The solution for the problem of an elliptical hole
the interface of two bonded half-planes subjected to far-field
ing parallel to the interfacef7g will be used to find the left-han

Fig. 4 Normalized SIF of an internal crack parallel to the inter-
face and interacting with an interfacial elliptical hole „a/c
=0.5, b /c =1, e/c =1.5… „loading normal to the interface …: „a…
crack tip A „b… crack tip B; „n1=n2=0.3; FI,II=KI,II /pÎpc…
side of Eq.s3d.
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Figure 6 shows the normalized SIF of an internal crack in
acting with a circular hole. It can be seen from the plot that
SIF at crack tipA nearer to the circular hole increases indefini
as the distance between them becomes small. Figure 7 sho
normalized SIF of an internal crack interacting with an ellipt
hole whose major axis is perpendicular to the interface. Figu
shows the normalized SIF of an internal crack interacting wit
elliptical hole whose major axis is parallel to the interface. Fig
9 shows the normalized SIF of an internal crack interacting w
crack bisecting the bimaterial interfacesa=0d.

Fig. 5 Normalized SIF of an internal crack parallel to the inter-
face and interacting with an interfacial elliptical hole „a/c
=1, b /c =0.5, e/c =2… „loading normal to the interface …: „a…
crack tip A „b… crack tip B; „n1=n2=0.3; FI,II=KI,II /pÎpc…

Fig. 6 Normalized SIF of an internal crack perpendicular to the
interface and interacting with an interfacial circular hole „a/c
=1, b /c =1… „loading parallel to the interface …; „n1=n2

Î
=0.3; FA,B =KA,B /p pc…
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The cases considered above involve varying the vertica
tanceh of the internal crack from the interface and examining
variation in SIF. Cracks may also evolve from cavities under
ternal loading. Cavities are a major source of stress concentr
from which cracks are most likely to emanate. Such cracks
interact with internal cracks leading to their growth and coa
cence. Crack growth due to void growth and coalescence c

Fig. 7 Normalized SIF of an internal crack perpendicular to the
interface and interacting with an interfacial elliptical hole „a/c
=0.5, b /c =1… „loading parallel to the interface …; „n1=n2

=0.3; FA,B =KA,B /pÎpc…

Fig. 8 Normalized SIF of an internal crack perpendicular to the
interface and interacting with an interfacial elliptical hole „a/c
=1, b /c =0.5… „loading parallel to the interface …; „n1=n2

=0.3; FA,B =KA,B /pÎpc…

Fig. 9 Normalized SIF of an internal crack perpendicular to the
interface and interacting with an interfacial crack „a/c =0, b /c
=1… „loading parallel to the interface …; „n1=n2=0.3; FA,B

Î
=KA,B /p pc…
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tutes a major study in the field of ductile fracture. A numbe
studies have been carried out to understand the role of c
emanating from holes of various shapes. A compilation of stu
on hole edge crack problems can be found in Murakami et alf1g.

Hasebe and Chenf8g have studied the problem of a circu
hole edge crack interacting with an internal crack in a hom
neous medium by applying the rational mapping technique.
mura et al.f6g and Hasebe et al.f7g have examined the problem
of an elliptical hole on the interface subjected to far-field lo
acting normal to and parallel to the interface, respectively. T
work will now be extended to study internal crack interacting w
interfacial cavity. The problem of a circular hole edge crack
bimaterial interface interacting with an internal crack will now
examinedsFig. 10d. The center of the internal crackszcd is offset
from the y-axis by e=a+c. SIF at crack tipsA and B of the
internal crack and SID of the debonded tipD of the interfacia
hole edge crack are evaluated to study crack interaction effe

Figure 11 shows the normalized SIDscoshsp«1dÎKDKD /pÎpcd
of a hole edge interface crack with increasing debond leng
can be seen that SID increases with debond length. It is intere
to note the variation of SID, which shows an initial increase
lowed by a flat portions1.4,d/c,1.7d and a final increase asG
becomes large. The flat portion of the curve indicates tha
tendency of increasing SID due to increasing debond leng
hindered by crack shielding due to internal crack. For small va
of G the initial rapid increase in SID is slowed down due to in
nal crack shielding. Figure 12 shows the variation of a norma

Fig. 10 Interfacial hole edge crack interacting with an internal
crack

Fig. 11 Normalized stress intensity of debonding „SID… of an
interfacial hole edge crack „a/c =2, e/c =3, h /c =2; n1=n2

Î Î
=0.3; SID=cosh „p«1… KDKD/p pc…
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SIF of an internal crack with respect to the interfacial deb
length. Mode-I SIF at both the tips of internal crack decrease
increasing debond length indicating crack shielding by the
edge crack. Further, the variation in mode-I SIFsFId at crack tipB
is negligible ford/c,1.5. This shows that interfacial debond
has little effect on tipB of the internal crack untild/c<1.5. As
the debond length increases more and more of the internal cr
shielded further decreasing SIF at tipsA and B of the interna
crack.

4 Conclusions
This paper addresses crack interaction problems betwe

internal crack and interfacial cavity. The solution of a point di
cation interacting with an elliptical cavity has been obtained
lier f2g. By applying the distributed dislocation technique this f
damental solution is used to simulate internal crack. Since
fundamental solution satisfies boundary condition on the int
cial hole, the stress distribution and stress concentration c
calculated easily and exactly on the hole surface. Two orienta
of internal crack with respect to the interface have been co
ered. When the internal crack is parallel tosloading normal tod the
bimaterial interface, it is seen that the SIF of the internal c
increases with decreasing distancesh/cd from the interface. I
particular, SIF at crack tipA is larger for the case of a circu
hole compared to other hole shapes considered. This can be
uted to the hoop stress on the hole surface which tends to inc
the SIF. The SIF at crack tipA decreases as the dimension of
elliptical hole perpendicular to the interface decreases. Whe
internal crack is perpendicular to the interface, it is seen tha
SIF of crack tipA of the internal crack increases indefinitely as

Fig. 12 Normalized SIF of an internal crack interacting with an
interfacial circular hole edge crack „loading normal to the inter-
face …: „a… crack tip A „b… crack tip B „a/c =2, e/c =3, h /c
=2; n1=n2=0.3; FI,II=KI,II /pÎpc…
interfacial hole is approached. An interesting case of an edge
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action
crack from a circular interfacial hole interacting with an inter
crack is also considered. As the debond length increases it
served that more and more of internal crack is shielded by the
edge crack. The SID at the debonding tipD is seen to increas
initially and then remains unchanged for large values ofG before
increasing finally. This indicates crack shielding by the inte
crack on the interfacial hole edge crack for debonding leng
the range 1.4,d/c,1.7. The method presented in this paper
also be used to solve multiple crack problems.

References
f1g Murakami, Y., et al., 1992,Stress Intensity Factors Handbook, Elsevier Sci

ence, New York.
f2g Prasad, P. B. N., Hasebe, N., Wang, X. F., and Shirai, Y., 2003, “Gr
Function of a Bimaterial Problem With a Cavity on the Interface. Part I

Journal of Applied Mechanics
l
b-
le

l
in
n

’s

Theory,” 72, pp. 389–393.
f3g Oda, K., Noda, N., and Arita, S., 2003, “Stress Intensity Factors for Intera

between Interface Crack and Internal Crack and for Kinked Interface Cra
Bonded Semi-Infinite Planes,” Key Eng. Mater.,243–244, pp. 375–380.

f4g Chen, Y. Z., and Hasebe, N., 1992, “An Alternative Fredholm Integral E
tion Approach for Multiple Crack Problem and Multiple Rigid Line Problem
Plane Elasticity,” Eng. Fract. Mech.,43, pp. 257–268.

f5g Erdogan, F., Gupta, G. D., and Cook, T. S., 1973, “Numerical Solutio
Singular Integral Equations,” inMethods of Analysis and Solutions of Cr
Problems, edited by G. C. Sih, Noordhoff, Leyden, Chap. 7, pp. 369–42

f6g Okumura, M., Hasebe, N., and Nakamura, T., 1995, “Bi-material Plane
Elliptic Hole Under Uniform Tension Normal to the Interface,” Int. J. Fra
71, pp. 293–310.

f7g Hasebe, N., Okumura, M., and Nakamura, T., 1992, “Bonded Bi-material
Planes With Semi-elliptical Notch Under Tension Along the Interface
Appl. Mech., 59, pp. 77–83.

f8g Hasebe, N., and Chen, Y. Z., 1996, “Stress Intensity Factors for the Inter

: Between a Hole Edge Crack and a Line Crack,” Int. J. Fract.,77, pp. 351–366.

MAY 2005, Vol. 72 / 399



ysics of
tes the

atoms
, where
re used
defect

strain,
may

tween
of
P. Liu
Department of Mechanical Engineering,

University of Wyoming,
Box 3295,

Laramie, WY 82071

R. V. Kukta
Department of Mechanical Engineering,

State University of New York,
Stony Brook, NY 11794-2300

D. Kouris
Department of Mechanical Engineering,

University of Wyoming,
Box 3295,

Laramie, WY 82071

Strain-Modulated Adatom and
Surface Vacancy Pair Interactions
Adsorbed atoms (adatoms) and vacancies have a significant role to play in the ph
surfaces and the mechanisms of film growth on a substrate. This paper investiga
effect of applied or residual strain on the energetic interaction between pairs of ad
and vacancies. The analysis is based on a continuum-level point-defect model
adatoms and vacancies have strain-dependent properties. Atomistic calculations a
to evaluate the defect properties for Si(111). The result is used as input for the
model in order to investigate the strength and character of the interaction versus
separation distance, and relative orientation of the defects. It is found that strain
cause the defects to align in certain direction and modulate their interaction be
repulsion and attraction, providing a mechanism for controlled building
nanostructures.fDOI: 10.1115/1.1875392g
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1 Introduction
Surface processes such as material deposition onto a sub

surface reconstruction, and self-assembly are subjects of in
investigation due to their application in the development of n
structured materials and devices. Understanding the mecha
that control morphology during film growth might yield new fa
rication techniques and methods for improving the reliability
micro- and nanoscale devices. Film growth occurs by mat
aggregation on various length scales, from clustering of ada
to the coalescence of large islands. Adatom clustering set
stage for subsequent growth and can greatly impact morpholo
development. Hence, the mechanisms that govern clustering
fundamental interest for controlling growth.

Various models have been used to investigate material agg
tion on a surface. Continuum analyses, molecular dynamicssMDd,
and kinetic Monte CarlosKMCd are three widely used exampl
MD models atomic processes by tracking atom motion as
erned by interatomic potentials and classical equations of mo
They have been extensively used to study many processes i
ing diffusion of adatomsse.g., see Kallinteris et al.f1g and
Evangelakis and Papanicolaouf2gd. In KMC, atomic kinetics is
modeled through a series of statistical events. It has been u
study adatom diffusion and growth of patterned nanostructur
Sabiryanov et al.f3g, growth of adatom clusters and islands
Larssonf4g, and self-assembly processes on surfaces by La
et al. f5g. In continuum analysis, surface defects are treate
point sources of strain. Lau and Kohnf6g treat an adatom as
point dilatation sforce dipoled, and Marchenko and Parshinf7g
model an atomic surface step as a point dilatation and a mo
on a half-plane. These models capture the induced displac
field at points sufficiently removed from the defect. The stre
of the point source is usually obtained by matching displacem
fields or defect-defect interaction energies to atomistic predic
se.g., see Shilkrot and Srolovitzf8g, Kouris et al.f9g, and Peralt
et al. f10gd. When evaluating the source strength, care mus
taken to ensure that the atomistic regime is sufficiently larg
that a finite region can be identified where the atomistic and
tinuum models converge without substantial boundaries eff
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OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF A
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This is especially important in the case of surface steps w
fields, unaccounted for by the Marchenko–Parshin model, m
significant at points quite far from the defect, as shown by K
and his co-workersf11,12g. Kukta et al.f13,14g discuss an alte
native method for calculating the source strength from the en
of an isolated defect, as a function of applied strain. This al
one to estimate the point source from an atomistic model wi
relaxing atomic positions to their minimum energy configurat

Defect point sources are typically treated as fixed quant
independent of applied fields or fields induced by other def
This is the assumption made by Lau and Kohnf6g. According to
their model, an adatom on a half-space induces a strain fiel
decays as the inverse cube of distance and the interaction e
between adatoms decays similarly as the inverse cube of the
ration. Neither the induced field nor the interaction energy de
on applied strain. Kukta et al.f13g report that adatom interactio
should generally depend on strain. Otherwise a linear relatio
is obtained between surface stress and adatom coverage,
contradicts experimental measurements by Ibach and
co-workersf15,16g.

In a previous articlef14g, the authors developed a general th
dimensional framework for adatoms with strain-dependent so
fields and discussed the nature of far-field interactions bet
adatoms. The term strain-dependent source field implies th
elastic field induced by a defect depends on the local valu
strain. The present paper extends that work to include su
vacancies and investigates some other issues not previous
dressed, including the near-field behavior. Like adatoms, su
vacancies will generally have strain dependent properties. M
phenomena that occur on surfaces involve mutual interaction
tween adatoms and vacancies. It is known, for example, that
may cause a flat surface to roughen. This phenomenon has
studied extensively in a macroscopic framework where the su
evolves as a smooth continuous functionse.g., see Asaro an
Tiller f17g, Grinfeld f18g, Freund and Jonsdittirf19g, Kukta and
Freund f20g, Shilkrot and Srolovitzf21gd. On the atomic scal
roughening of a flat surface requires the formation of ada
vacancy pairs. For the surface to evolve towards a rough mor
ogy, atoms must move from the surface layer—lea
vacancies—to sites atop the surface—where they become
toms. Subsequently, adatoms must combine to form mound
vacancies must combine to form troughs. This process o
through their mutual interactions. The macroscopic evolutio
the system is determined by complex interactions among
ensembles of defects. It is not the purpose of this paper to
conclusions about evolution on the macroscale, but rather to

-
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-
A
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vide a basic ingredient necessary for linking atomic scale proper-
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ties with the macroscale evolution, namely the strain depend
of defect interactions. It is noted that while the focus is on
toms and vacancies, the analysis also applies to adatom a
cancy clusters and to larger defects like nano- and microm
scale islands. This paper addresses only mechanical intera
It is noted that entropic interactions may be large, particularly
small defects as adatoms and vacancies. Unless tempera
low, one must also account for entropic effects.

The next section reviews the model. Constitutive constant
Si adatoms and surface vacancies on Sis111d are estimated an
their far-field interactions are discussed. It is found that depen
on strain, defect pairs may repel or attract each other and o
themselves in certain directions. It is also observed that the m
accounts for the distinct near- and far-field behavior. In Sec.
near-field interaction is evaluated and the nature of the intera
is compared with the far-field results.

2 Mechanics of an Elastic Point Phase
Many structural elements in materials systems can be trea

point phases. Some examples are adatoms, surface and bu
cancies, interstitial and substitutional atoms, surface cluster
lands, and bulk inclusions. The termelastic point phaserefers to
cases where the elastic field induced by a point phase depen
strain. This section reviews such a model that was developed
wheref13,14g. It is applied to adatoms and vacancies in the
lowing section.

Consider a half-space with energy per unit volumeWs«d where
« denotes strain. A point phase is placed atx=ystd on the surface
It has an energyCs«̄T− «̄*d that depends on the total surface st
«T evaluated at the point phase, minus the strain«̄* that is pro-
duced by the point phase itself. The self-strain«̄* must be omitte
because it is singular at the point phase. Strains« and «* are
considered to be infinitesimal. Bulk stress is defined as

si js«d =
]Ws«d
]«i j

s1d

The field quantitysi j s«d is the total stress, which includes t
contribution of externally applied loads and the self-stresssre-
sidual stressd induced by the point phase. The self-stress of
point phase is evaluated assi j

* =si j s«*d. The total free energy o
the system is written as the sum of the bulk and point p
contributions plus the work done by applied loads, and the e
field is found by minimizing energy with respect to compat
strain fields,« and«* . The following relations are found:

]si j

]xj
−

]si j
*

]xj
= 0 s2d

and

si j ,j
* + diaDab

]dsxd
]xb

= 0 s3d

in the half-space volume and

si jnj = 0 s4d

in addition to

si j
* nj = 0 s5d

on the surface of the half-space. Repeated indices are summdia
is Kronecker’s delta symbol,dsxd is the Dirac delta function, an
nj denotes the outward unit normal at the half-space surface.
indices denote components of a three-dimensional tensor,
greek indices denote components of a two-dimensional su

tensor
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Dabs«̄T − «̄*d =
]Cs«̄T − «̄*d

]«ab

s6d

is the stress of the point phase. Equationss1d–s6d along with re
mote boundary conditions determine the elastic field. It foll
from Eq.s3d that the elastic field induced by the point phase is
of a force dipoleDab applied on the surface. According tos6d and
due to symmetry of the strain,Dab=Dba, which implies that th
dipole has no net moment. If the point phase has an energyC that
is independent of strain, its dipole vanishes and it induce
elastic field. If the energy is linear in strain, the dipole is a c
stant and the induced elastic field is independent of strain. H
ever, in general the dipole will depend on strain and the p
phase is said to be elastic. The displacement field produced
point phase is evaluated from the surface elastic Greens fun
Gij (x−y) as

ui
*sxd = Dab

]Giasx − yd
]xb

. s7d

Energy as a function of strain characterizes the elastic field
point defect and how it changes in the presence of an ap
strain and strains associated with other defects, surface het
neities, etc. Typically the elastic field of a point defect is found
comparing atomic displacements of a fully relaxed atom
simulation with the continuum field produced by a point dipole
an elastic half-spacefe.g., Refs.f9,11,12gg. Comparing displace
ments can be very time consuming, particularly for anisotr
materials where analytical forms for the displacement field ar
generally available. Equations6d provides an alternative. Defe
energyCs«̄0d is calculated as the increase in energy when
defect is introduced on a surface that is uniformly strained b
amount«0 and it is readily evaluated from an atomisticf13g or ab
initio model f14g. With s6d it is possible to estimate the elas
field by calculating the energy from unrelaxed atomic positi
The estimate could provide an initial guess for finding the rel
atomic positions.

Surface defects, such as adatoms and vacancies, are mob
their motion is biased in the presence of a nonuniform strain
They tend to move such that the free energy of the system
creases, which is characterized by an energetic driving ford.
The driving force is evaluated from the variation in total f
energyE with defect positionystd as in f14g:

da = −
dE

dya

= − DbgUS ]«bg

]xa

−
]«bg

*

]xa
DU

x=ystd
s8d

The free energy decreases as a defect moves in the direc
its driving force. If the self-strain of the defect is the only sou
of strain then«i j =«i j

* and the driving force vanishes. This must
true because the energy of a surface point defect on an unbo
half-space is invariant with position. Likewise, the driving fo
vanishes in the case of a uniform applied strain. Nonuni
strains, other than the defect’s self-strain, give rise to a non
driving force. One such example corresponds to the motion
defect biased by the nonuniform strain field induced by ano
This methodology is utilized in the study of interactions betw
adatoms and vacancies on Sis111d that follows.

3 Constitutive Relations for Adatoms and Vacancies
The Sis111d surface is chosen to illustrate the effect of strain

adatoms and vacancies. For simplicity the surface is conside
be unreconstructed. The Sis111d surface is elastically isotropic a
it is therefore possible to approximate the elastic field of a d
using the isotropic elastic Green’s function, further simplify
the analysis. Figure 1sad illustrates the diamond cubic structu
viewed on a cross-section normal to thes111d surface. The tw
shades of circles represent atoms on different planes parallel
page. The structure is composed of an alternating sequen

these two layers. Figure 1sbd depicts a surface vacancy, wherein a
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single atom is removed from the surface, and Figs. 1scd and 1sdd
depict adatoms on the surface. The adatom of Fig. 1sdd would
continue the bulk crystal structure.

Each defect is characterized by energy as a function of s
Defect energy is calculated using Tersoff’s potentialf22g with
unrelaxed atomic positions. Use of the unrelaxed structures s
not qualitatively affect the results. The energy of each syste
Fig. 1 is calculated as a function of a uniform applied strain«0.
Let xI be the position of adatomI in the unstrained configuratio
Strain «0 is imposed by transforming the structure as(I +«0)xI,
whereI is the identity tensor, energy is evaluated and the res
expanded as a Taylor series about zero strain. As the surf
considered to be traction-free, strain«0 is constrained to enforc
the boundary condition. To find the constraint on«0, energyW of
the bulk structure is determined for an arbitrary strain and
stress-strain relation is evaluated froms1d. Considering thee1 di-
rection to be normal to the surface ande2 ande3 directions to be
in the plane of the surface, strains«11

0 , «12
0 , and«13

0 found in terms
of the surface in-plane strains«22

0 , «33
0 , and«23

0 such that the su
face traction vanishes. Defect energies depend only of the su
strain because of this constraint. The energy of each defe
determined by subtracting the energy of Fig. 1sad from those o
Figs. 1sbd–1sdd. For defects on thes111d surface, energy is of th
form

Cs«̄d = C0 + D«aa + F«ab«ab +
1

2
H«aa«bb s9d

and usings6d the defect dipole is

Dabs«̄d = Ddab + 2F«ab + H«ggdab s10d

where a , b=2, 3. For the structures of Figs. 1sbd–1sdd
respectively

C0
b = 6.04 eV, Db = 0.37 eV, Fb = − 12.47 eV,

b

Fig. 1 Schematic view of the diamond cubic structure on a cro
unreconstructed defect-free surface, „b… a surface vacancy, an
H = − 15.47 eV s11d
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C0
c = − 5.36 eV, Dc = − 2.47 eV, Fc = − 14.25 eV,

Hc = 40.87 eV s12d
and

C0
d = − 2.02 eV, Dd = − 0.68 eV, Fd = 3.13 eV,

Hd = − 1.02 eV s13d
According to these estimates, the adatom of Fig. 1scd typically has
lower energy than the one of Fig. 1sdd. It is only in very extrem
cases that the adatom of Fig. 1sdd has the lower energy, as in t
case where biaxial compressions are larger than about 23%,
is too large to be meaningful here. Since the adatom of Fig.sdd
has such a large energy, only the one of Fig. 1scd is considere
further.

4 The Interaction Between Adatoms and Vacancies
Surface defects, like adatoms and vacancies, interact th

the coupling of their induced elastic fields. Analysis of such in
actions between surface defects is important in an effort to u
stand their relative motion on a surface. In this section, the d
induced strain field is determined, based on the model pres
earlier. In addition, the interaction energy and driving force
tween two surface defects is analyzed.

It is worth noting that the terms “surface defect,” “dipol
“adatom,” “vacancy,” and “point phase” can be used intercha
ably in this derivation since the necessary mathematical trea
is identical.

With the displacement field given in Eq.s7d, the strain field
caused by a defect can be written as

«ab
* = 1

2DhxsGah,xb + Gbh,xad s14d

where the defect dipoleDhx depends not only on the appli
strain but also on the strain induced by other defects. To avo

section normal to the „111… surface. Shown is „a… the
o different types of adatoms „c… and „d….
ss
singularity caused by the defect at its location, the self-induced
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strain is excluded in the calculation of the dipolef14g. As a result
when two surface defects are considered and the total su
strain and the applied strain denoted as«i j

T and «i j
R, respectively

the strain due to the defect dipole is represented by

«ab = «ab
T − «ab

* IsId s15d

or

«ab = «ab
R + «ab

* IsII d s16d

where the superscriptA(B) denotes the effect of defect “B”
location “A.” Therefore,«ab

* IsId and «ab
* IsII d represent the induce

strain at defect I due to itself and due to defect II.
In this study, only mechanical interactions between defect

considered without the inclusion of coupling effects from o
surface processes. It is noted that surface reconstructions a
considered but are readily amenable to the analysis. In the co
of the present model, differently reconstructed surfaces res
different constitutive constants for an adatom, which can be e
ated from an atomistic model as discussed earlier. Adatom
erties depend on its species and also on the species and st
of its substrate.

Following Eq.s14d, the induced strain by defect II at defect
expressed as

«ab
* IsII d = 1

2hDsII ddhx + 2FsII df«hx
R + «hx

* II sIdg + HsII df«gg
R + «gg

* II sIdgdhxj

3sGah,xb + Gbh,xadx=xIstd s17d

where the dipole coefficientsDsII d , FsII d, andHsII d are atomic prop
erties associated with defect II. The equations for the ind
strain at defect II due to defect I have the same format as Eqs17d
and can be obtained just by switching the superscript I and
detailed discussion on solving Eq.s17d for two different types o
defects can be found in the Appendix.

For the simple case when the two defects are identical
DsId=DsII d=D , FsId=FsII d=F , HsId=HsII d=H, reciprocity simplifies
s17d to

«ab
* = 1

2fDdhx + 2Fs«hx
R + «hx

* d + Hs«gg
R + «gg

* ddhxgusGah,xb

+ Gbh,xadux=xIstd s18d

Superscripts for the induced strain are omitted for simplicity.
thermore, if the two defects are far apart, the induced strai
very small compared to the applied strain, since the induced
decays with the inverse cubic of the distance. As a result, Eqs18d
yields a simple long-range solution for the strain

«ab
* s0d = 1

2fDdhx + 2F«hx
R + H«gg

R dhxgusGah,xb + Gbh,xadux=xIstd

s19d

This long-range solution can be used for a far-field analysis o
defect interaction.

With no simplifying assumptions associated with the dista
between the two defects, the general solution of the induced
can be obtained in terms of the long-range solution as

«ab
* =

1

v
f«ab

* s0d + Qabhx«hx
* s0dg s20d

where parametersv and Qabhx depend on the dipole propert
and Green function and are provided in the Appendix. In term
the long-range solution, the dipole can be expressed as

Dab = Ddab + 2FH«ab
R +

1

v
f«ab

* s0d + Qabhx«hx
* s0dgJ

+ HH«gg
R +

1

v
f«gg

* s0d + Qgghx«hx
* s0dgJdab s21d

The energy change of a defect with respect to its position pro

the driving force associated with its motion on the surface. Und
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a homogeneously applied external strain, the driving force a
fect I is given by

da
sId = − u 1

2Dbg
sIdDhx

sII dsGbh,xga + Ggh,xbadux=xIstd s22d

where dipolesDbg
sId and Dhx

sII d of defect I and II can be calculat
from s21d when the two defects are of the same type. It is im
tant to point out that Eq.s22d is valid for general cases where
physical and atomic properties of the two defects differ,
DsIdÞDsII d. The Appendix includes a discussion on how to ob
the general solution for two defects in such cases.

5 Results and Discussion
Many surface processes occur due to the motion of defect

their continuing relocation. The interaction among defects pla
key role in determining their relative movement and final equ
rium positions. In order to investigate how defect interaction
fects motion, we have utilized the driving force derived in pr
ous sections for the cases of Si adatoms and vacancies. Fi
illustrates the magnitude of the driving force at the location o
vacancy, due to its interaction with an adatom and under far
uniaxial strain. It is a polar plot that presents the driving fo
dependence on the relative angle between the line connectin
tom and vacancy and the coordinate axes. The distance be
the two defects is constant and equal to three lattice spaces.
applied strain is small, there is only repulsion between th
adatom and vacancyfFig. 2sadg. As the applied strain increas
attraction can develop. Figure 2sbd illustrates clearly the divisio
in attractive and repulsive regions for uniaxial strain«zz=0.02.
Depending on their initial angular position, the two defects
either attract or repel each other.

A schematic of the predicted motion between the adatom
the vacancy is shown in Fig. 3. Initially the adatom and the
cancy are oriented so that they repel each other. The angular
ment will drive the adatom and vacancy into the attraction re
where they will start to approach each other to shorten their

Fig. 2 The strain effect on the driving force: „a… Si on Si,
uniaxial strain «zz=0.005, r =3a0, always repulsion, and „b… Si
on Si, uniaxial strain «zz=0.02, r =3a0
erration. The stable equilibrium orientation isu=0 along theY axis.
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To observe how the magnitude of strain influences defect i
action, a detailed investigation has been undertaken for the c
uniaxial strain. The notation and geometry are illustrated in Fi
The orientation driving force and radial driving force have b
used to determine stability and to identify attraction or repul
regions. Figure 5 illustrates the interaction between two vacan
Solid lines denote stable orientations, dashed lines unstable
librium orientations, while shaded regions denote attraction
unshaded regions denote repulsion. It was found that if com
sion is applied, the two vacancies are stable along the dire
perpendicular to the applied strain. This result is independe
the magnitude of the applied compression. If a tensile stra
applied, a region of stable orientation exists that depends o
magnitude of the applied strain. It was also observed tha
attraction region increases with increasing strain.

Fig. 3 The interaction between Si adatom and vacancy under
large uniaxial strain

Fig. 4 Configuration to illustrate defect orientation and driving
forces
Fig. 5 Vacancy-vacancy interaction
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Figure 6 illustrates the interaction between adatoms. The s
orientation for Si adatom interaction is quite different from
obtained from the interaction of vacancies. The direction per
dicular to the applied strain corresponds to stable orientatio
der small tensile loading.

The results of the adatom-vacancy interaction are presen
Fig. 7. They indicate that the stable orientation between ad
and vacancy is quite similar to that between two adatoms.
important to note that adatoms and vacancies always attrac
other under compression strain. Even when a small tensile
is applied, their attraction region still dominates. This sugg
that adatoms have the tendency to fill nearby vacancies in or
complete a perfect lattice structure. Even though the illustra
in Figs. 5–7 are based on far-field analysis under uniaxial loa
the numerical calculations of the near-filed under various o
plied strains have produced very similar results.

For large separation distances, the effect of direct defect
action is small compared to the effect of the applied strain
ignoring this interaction when deriving the dipole propertie
far-field analysis can be easily obtained. For purposes of com
son, a near-field analysis has been performed. The calculati
cluded defect-induced fields and defect interaction, for a varie
applied strains and separation distances. Results of the com
son between near and far-field are illustrated in Fig. 8, for d
ent applied strains with a separation of two lattice spaces.
clear that even for very small separations the differences
small. When the separation goes beyond five lattice spaces
the quantitative differences between far and near-field be
negligible. This confirms the fact that, in these problems, the
field approximation can capture the nature of defect intera
qualitatively as well as quantitatively, as long as the defect
not located essentially next to each other. Nevertheless, one

Fig. 6 Adatom-adatom interaction
Fig. 7 Adatom-vacancy interaction
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to keep in mind that other effects like electronic interaction
have a substantial influence on the driving force of the interac

In addition to the model described earlier, atomic simulat
were performed in order to investigate how surface defects be
under the effect of applied strain. Figure 9 illustrates the motio
two Cu adatoms on a frees111d surface of a Cu substrate. In th
simulation, an EAM molecular dynamics methodology has b
implemented, utilizing the Johnson atomic potentialf23,24g. All
the modeling parameters used for the simulation originated
Johnson’s semi-empirical resultsf23g. To implement the strai
boundary condition, the Parrinello–Rahmanf25,26g algorithm was
used, with the volume of the modeled cell allowed to change
time. It can be found that the motion of the two adatoms per
them to align, in accordance with the influence of the app
strain. The simulation had been run long enough to confirm
the alignment corresponds to a stable orientation. This resul
in agreement with the prediction by the continuum analysis.

Figure 10 illustrates how the two clusters of Cu adatoms be
on as001d surface under applied strain. The simulation has sh
that the applied strain did “help” the two clusters congrega
form a bigger cluster. This result further clarifies the possibilit
manipulating the assembly process of nanostructure through
trolling the external effects such as the applied strain. The
tinuum analysis of the interaction among clusters of surface
fects is currently under investigation in our group.

6 Concluding Remarks
The purpose of the study presented in this manuscript

quantitatively characterize the elastic interaction between su
defects in the presence of a mechanical field. It is a fully th
dimensional analysis that has emerged from the discrete ad
model developed earlier by the authors. The interaction bet

Fig. 8 Comparison of far- and n
adatoms and vacancies has been examined for Sis111d, as a func-
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enFig. 9 Molecular dynamics simulation of adatoms’ alignment

under applied strain
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tion of applied strain, angular orientation, and separation dist
The far- and near-field behaviors have been compared su
fully. Results indicate that in most cases, the differences ar
significant, at least when only elastic effects are considered.

According to the near-field evaluation, defect interaction is
fluenced by a number of factors including the applied strain, s
ration, relative orientation between defects and defect prope
Increasing applied strain can either strengthen or weaken th
teraction; it depends on how the initial orientation of the
defects with respect to the applied strain. The study also sug
that the interaction decays rapidly with the separation dist
between the defects. An important conclusion emanating from
analysis is that the nature of the interaction can be change
increasing strain, e.g., increased strain can switch the charac
adatom-vacancy interaction from repulsion to attraction for

Fig. 10 Molecular dynamics simulation illustrating the growth
of a cluster
examined Sis111d. Even though the level of strain for this change

the
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is high for Si, it is clear that such a general result will q
possibly apply to other systems, not yet examined, for far lo
levels of strain. The phenomenon is not only due to the adato
vacancy properties but also depends on the elastic propert
the substrate material.

The strong strain dependence of the defect interaction sho
this investigation is important in that it could provide an inexp
sive mechanism for controlling surface growth. Consequently
application of appropriate strain levels can lead to the contr
formation of atomic clusters of a larger scale such as qua
wires and dots as well as other desired surface structures
possible applications, particularly in the electronics industry
of major significance, given the typical methods currently u
like the expensive lithography and the typically uncontrolled
organization of certain nanostructures.

This work is being extended in order to examine the beha
of surface defects of larger size. In principle, the analysis of la
defect clusters will involve additional mathematical complex
but should not dramatically alter the physics of the problem
far, the results provided by atomic simulations agree well with
continuum analysis. We expect that the study of larger scale
face defects using both approaches will provide additional lig
the question of how the applied strain affects the assembly pr
of growing nanostructures on surfaces.
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Appendix
Equations17d provides the strain evaluated at the site of

defect, induced by the other. For the most general case whe
two defects are different, as in an adatom versus a vacanc
unknowns need to be determined for a surface since each
has three components. The equation for solving the induced
takes the following general form:

F I3 UsId

UsII d I3
GF«* II sId

«* IsII d G = FcII

cI G sA1d

where I3 is the 333 identity matrix,UsId and UsII d are matrice
related to the dipole properties of defect I and defect II and
Green functions.«* II sId is the induced strain at the site of defec
due to defect I and«* IsII d is the induced strain at the site of def
I due to defect II; each contains three surface components.CII and
CI are constant vectors determined by the dipole propertie
Green functions evaluated at the defect sites.

With the surface represented by theY-Z plane, the matricesUsId

andUsII d can be expressed through the isotropic dipole prope

H andF as follows:
Usk1d = Hsk1d*3 Gyy,yy + Gyz,yz Gyy,yy + Gyz,yz 0

Gzz,zz+ Gyz,yz Gzz,zz+ Gyz,yz 0
1
2sGyy,yz+ Gzz,yz+ Gyz,yy + Gyz,zzd

1
2sGyy,yz+ Gzz,yz+ Gyz,yy + Gyz,zzd 0

4*
x=xk2std

+ Fsk1d

3*3 2Gyy,yy 2Gyz,yz 2sGyy,yz+ Gyz,yyd
2Gyz,yz 2Gzz,zz 2sGzz,yz+ Gyz,zzd

Gyy,yz+ Gyz,yy Gzz,yz+ Gyz,zz Gyy,zz+ 2Gyz,yz+ Gzz,yy
4*

x=xk2std

sA2d
uced
The superscriptk1 andk2 vary from I to II in order to identify the
different properties of the two defects. All the derivatives of
Green function are evaluated at the defect site where ind
Transactions of the ASME
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strain is calculated. The three components of the constant v
are given by

c1
sk1d = fDsk1d + Hsk1d«aa

R gusGyy,yy + Gyz,yzdux=xk2std + 2Fsk1d

3f«yy
R uGyy,yyux=xk2std + «zz

RuGyz,yzux=xk2std + «yz
R sGyy,yz

+ Gyz,yydux=xk2std sA3ad

c2
sk1d = fDsk1d + Hsk1d«aa

R gusGzz,zz+ Gyz,yzdux=xk2std + 2Fsk1d

3f«yy
R uGyz,yzux=xk2std + «zz

RuGzz,zzux=xk2std + «yz
R usGzz,yz

+ Gyz,zzdux=xk2stdg sA3bd

c3
sk1d = 1

2fDsk1d + Hsk1d«aa
R gsGyy,yz+ Gyz,yy + Gyz,zz+ Gzz,yzdx=xk2std

+ Fsk1df«yy
R sGyz,yz+ Gyz,yydux=xk2std + «zz

RsGyz,zz+ Gzz,yzdx=xk2std

+ «yz
R sGyy,zz+ 2Gyz,yz+ Gzz,yydx=xk2std sA3cd

The numerical results following the solution of Eq.sA1d for two
different types of defects were discussed in Sec. 3. If the
defects are of the same type and have exactly the same
properties, it can be assumed that they will induce the same
on each other. The reciprocity will simplify the 636 Eq. sA1d to
the following 333 equation

fI3 + Ugf«g = fcg sA4d

where the matrixU has the same format as insA2d and the con
stant vectorfcg as insA3d. The solution of this equation has be
obtained in terms of the long-range solution«ab

* s0d, namely

«ab
* =

1

v
f«ab

* s0d + Qabdg«dg
* s0dg sA5d

The parametersv andQabdg are determined by atomic propert
and the Green function. Using the following notation:

q11 = HusGyy,yy + Gyz,yzdux=xk2std + u2FGyy,yyux=xk2std sA6ad

q12 = HsGyy,yy + Gyz,zydx=xk2std + u2FGyz,yzux=xk2std sA6bd

q13 = 2FusGyy,zy+ Gyz,yydux=xk2std sA6cd

q21 = HusGzz,zz+ Gyz,yzdux=xk2std + u2FGyz,yzux=xk2std sA6dd

q22 = HusGyz,yz+ Gzz,zzdux=xk2std + u2FGzz,zzux=xk2std sA6ed

q23 = 2FusGyz,zz+ Gzz,yzdux=xk2std sA6fd

q31 =
1

2
fHsGyy,yz+ Gyz,yy + Gyz,zz+ Gzz,yzdux=xk2std + 2FusGyy,yz

+ Gyz,yydux=xk2std sA6gd

q32 =
1

2
fHusGyy,yz+ Gyz,yy + Gyz,zz+ Gzz,yzdux=xk2std + 2FusGyz,zz

+ Gzz,yzdux=xk2stdg sA6hd

q33 = FusGyy,zz+ 2Gyz,yz+ Gzz,yydux=xk2std sA6id

the parametersv andQabdg are given by

v = 1 −q11 − q22 − q33 − q12q21 + q11q22 − q13q31 − q23q32 + q11q33

+ q22q33 + q13q22q31 − q12q23q31 − q13q21q32 + q11q23q32
+ q12q21q33 − q11q22q33 sA7d
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Qyyyy= − sq22 + q33 + q23q32 − q22q33d sA8ad

Qyyzz= q12 + q13q32 − q12q33 sA8bd

Qyyyz= q13 + q12q23 − q13q22 sA8cd

Qzzyy= q21 + q23q31 − q21q33 sA8dd

Qzzyz= q23 + q13q21 − q11q23 sA8ed

Qyzyz= − sq11 + q22 + q12q21 − q11q22d sA8fd
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A Comparison of the Structural
Response of Clamped and Simply
Supported Sandwich Beams With
Aluminium Faces and a Metal
Foam Core
Plastic collapse modes for clamped sandwich beams have been investigated exp
tally and theoretically for the case of aluminium face sheets and a metal foam core
initial collapse mechanisms have been identified and explored with the aid of a co
mechanism map. It is shown that the effect of clamped boundary conditions is to d
deformation mechanism towards plastic stretching of the face sheets. Conseque
ultimate strength and level of energy absorption of the sandwich beam are set by t
sheet ductility. Limit load analyses have been performed and simple analytical m
have been developed in order to predict the postyield response of the sandwich
these predictions are validated by both experiments and finite elements simulatio
shown experimentally that the ductility of aluminium face sheets is enhanced wh
faces are bonded to a metal foam core. Finally, minimum weight configuration
clamped aluminium sandwich beams are obtained using the analytical formulas for
wich strength, and the optimal designs are compared with those for sandwich beam
composite faces and a polymer foam core.fDOI: 10.1115/1.1875432g
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1 Introduction
A large amount of research has been conducted recently o

mechanical performance of sandwich structures, stimulated b
development of stiff and strong, lightweight core materialsf1–3g.
For example, Chen et al.f4g and Bart-Smith et al.f5g have ex
plored the quasi-static behavior of simply supported alumin
sandwich beams in three-point bending. The competing col
modes of core shear, face yield, and indentation were obse
and the sensitivity of the collapse strength to geometry an
material properties was determined. However, there has been
prior attention paid to the effect of the support condition upon
collapse mechanism. Sandwich panels are often clamped to
and strong support frameworkse.g., a ship hulld, and this can b
represented in the laboratory by a fully clamped end conditio

In the present study, the response of sandwich beams com
ing aluminium face sheets and an aluminium alloy foam co
explored for both simply supported and fully clamped boun
conditions. Potential modes of initial collapse are identified,
simple analytical models are stated. A mechanism map for i
collapse is generated from these formulas in order to relat
governing collapse mechanism of clamped beams to their g
etry and material properties. Three sandwich geometries a
lected from the collapse map, with each one lying in a diffe
regime. Sandwich specimens with these geometries are ma
tured and tested with both simply supported and clamped
conditions. The operative collapse mechanisms and measure
versus deflection curves are compared with both analytical pr

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIE
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF A
PLIED MECHANICS. Manuscript received by the Applied Mechanics Divis
March 5, 2004; final revision, September 18, 2004. Editor: R. M. McMeeking.
cussion on the paper should be addressed to the Editor, Professor Robert
Meeking, Journal of Applied Mechanics, Department of Mechanical and Env
mental Engineering, University of California—Santa Barbara, Santa Barbara
93106-5070, and will be accepted until four months after final publication in

paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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tions and finite element simulations. The analytical formulas
initial collapse are then used to determine minimum weigh
signs for clamped sandwich beams as a function of an appro
structural load index. These minimum weight configurations
compared with minimum weight designs for clamped sand
beams with composite face sheets and polymer foam cores
study concludes with a short experimental study on the degr
which the foam core stabilizes the faces against necking.

2 Analytical Models for the Collapse Response
We begin by summarizing analytical formulas for the ela

stiffness, initial collapse load, and postyield behavior of sand
beams, assuming that both face sheets and core can be con
as elastic—perfectly plastic materials, and the beams are
simply supported or fully clamped. The analytical formulas
used to construct collapse mechanism maps, and to enab
design of specimen geometries so that a variety of failure m
are activated.

Consider a sandwich beam of length, and uniform widthb,
comprising two identical face-sheets of thicknesst, bonded to
metal foam core of thicknessc, as shown in Fig. 1. A fla
bottomed punch of widtha is used to load the beam transvers
at midspan by a forceF and corresponding deflectionu. The oute
supports react with two vertical forcesF /2 in the simply sup
ported case plus bending momentsM and in-plane horizont
forcesP in the clamped case. When the beam is simply supp
its length exceeds the span, by an overhangH at each end.

A suffix f-denotes the face sheet, while the suffixc denotes th
core; we introduce the symbolsEf , s f , n f , r f, andEc, sc, nc, rc
to denote the Young’s modulus, yield strength, Poisson ratio
density of the faces and core, respectively. It is useful to no
mensionalize the geometrical and material parameters acco

-
c-

-
A
e

to the following definitions:
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c̄ =
c

,
; t̄ =

t

c
; ā =

a

,
; ū =

u

,
; s̄ =

sc

s f
; r̄ =

rc

r f
s1d

Furthermore, we define the following nondimensional indices
the loadF, energy absorptionW, and massM as:

F̄ =
F

b,s f
; W̄=

W

b,2s f
; M̄ =

M

b,2r f
= s2t̄ + r̄dc̄ s2d

2.1 Elastic Regime.Elastic theory for sandwich beams
well establishedf6g, and the transverse deflectionu at midspan o
the beam is

u =
F,3

48EIeq
+

F,

4AGeq
s3d

in the simply supported case, and

u =
F,3

384EIeq
+

F,

4AGeq
s4d

in the fully clamped case. The equivalent flexural and shear r
ties are given by

EIeq=
Efbtd2

2
+

Efbt3

6
+

Ecbc3

12
<

Efbtd2

2
s5d

AGeq=
bd2

c
Gc < bcGc

whereGc is the shear modulus of the core andd=c+ t. The flex-
ural and shear terms have comparable magnitudes for the
wich beams considered later, and so it is necessary to in
both.

2.2 Mechanisms of Initial Collapse.Consider the respon
of an elastic-ideally plastic sandwich beam, with an end cond
of either fully clamped or simply supported. As the applied loa
increased a limit load is attained, corresponding to initial pla
collapse. For the case of a clamped beam, membrane effec
come significant with continued deformation beyond initial
lapse, and a subsequent hardening behavior is observed.

The initial limit load for initial plastic collapse is calculated
a number of trial collapse mechanisms using the upper b
theory of plasticity. The face sheets and core are taken to be
ideally plastic with uniaxial strengths f for the faces andsc for
the core. Ashby et al.f1g have identified the competing collap
modes for sandwich beams with metallic face sheets and co
face yield, core shear, and indentation. We calculate collaps
loads for each of these mechanisms, for both simply supp
and clamped boundary conditions, and since the transverse d
tions are small, we neglect membrane effects.

In the current study only plastic collapse mechanisms are
sidered. Alternative failure modes are expected when the

Fig. 1 Geometries of simply supported and clamped sandwich
beams transversely loaded by a flat punch
sheets or core are made from elastic-brittle solids such as ceram
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or ceramic-fiber composites.

Face yield. Consider the plastic collapse of a simply suppo
sandwich beam, with the collapse mechanism given by rot
about plastic hinges adjacent to the central punch, as sketc
Fig. 2sad. The plastic bending moment for the beam is given

Mp = dtbs f +
c2

4
bsc s6d

A straightforward work calculation gives the plastic limit lo
FFYS for face yield of the simply supported beam as

FFYS =
4btsc + td

, − a
s f +

bc2

, − a
sc s7d

which can be re-expressed in nondimensional form as

F̄FYS =
FFYS

b,s f
=

c̄2

1 − ā
f4t̄s1 + t̄d + s̄g s8d

The same result can be obtained by considering equilibrium
yield, via the lower bound theorem, but this is not detailed h
Consequently, this formula is exact within the context of ri
ideally plastic beam theory.

A closely related result follows for the clamped sandwich be
Now, however, four plastic hinges exist, two at the punch and
at each support. The collapse load is twice that for the si
supported beam, and is given in nondimensional form as

F̄FYC =
FFYC

b,s f
=

2c̄2

1 − ā
f4t̄s1 + t̄d + s̄g s9d

for face yield of the clamped beam.

Core shear. The transverse shear force on a sandwich bea
carried mainly by the core, and plastic collapse by core shea
result. Consider first the case of a simply supported sand
beam with an overhangH beyond the outer rollers, as shown
Fig. 1. Two competing collapse mechanisms can be ident
Mode A entails plastic shear of the core and rotation about p
hinges in the face sheets at the central punch, see Fig. 3sad, note
that the sandwich beam shears beyond the outer supports.
natively, in mode B, the sandwich beam does not shear beyon
outer supports but this necessitates the formation of addi
plastic hinges in the face sheets at the outer supports, se
3sbd. Simple work calculations give the collapse loads for mo
A and B, respectively, as

FA = 2
bt2

s f + 2bctcS1 +
H D s10d

Fig. 2 Initial collapse by face yielding of sandwich beams „a…
simply supported case and „b… built-in case
ics , − a , − a
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FB = 4
bt2

, − a
s f + 2bctc s11d

A comparison of these formulas confirms that mode A is m
likely to occur at short overhangs; Chen et al.f4g have found th
characteristic overhangHt associated with transition from mode
to mode B

Ht =
t2s f

2ctc
s12d

in which the shear strength of the coretc can be taken astc
<2sc/3.

For the case of clamped beams the only possible col
mechanism is mode B, with the associated collapse load giv
Eq. s11d. In the present study we consider simply supported be
with an overhang lengthH exceeding the transition valueHt, so
that the collapse mechanism is again mode B. The initial coll
load is insensitive to the boundary condition, and is given by
nondimensional form ofs11d, as

F̄CS=
FB

b,s f
= 4c̄S c̄t̄2

1 − ā
+

s̄

3
D s13d

Indentation. An alternative collapse mode is plastic inden
tion of the upper face sheet beneath the central punch, as sk
in Fig. 4. Again, a simple analytical formula can be obtained
the plastic collapse load using an upper bound approach
Ashby et al.f1g and Bart-Smith et al.f5g. The mode involve
plastic crushing of the core over a length ofs2l+ad and the for
mation of four plastic hinges in the upper face sheet. The sp
l between the hinges is obtained by minimizing the upper b
collapse load. For both the simply supported and clamped be
the nondimensional indentation load is

F̄IN =
FIN

b,s f
= 2t̄c̄Îs̄ + ās̄; l = tÎs f

sc
s14d

Fig. 3 Two alternative modes of initial collapse by core shear

Fig. 4 Initial collapse of sandwich beams by indentation of the

upper face sheet
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2.3 Mechanism Maps for Initial Collapse.The observed in
tial collapse mechanism for a sandwich beam is the one asso
with the lowest collapse load for a given geometry and mat
properties. The active modes can be shown graphically by plo

a nondimensional measure of the upper bound collapse loF̄
=F / sb,s fd on a diagram with the nondimensional axesc̄ and t̄,
for selected values ofs̄ andā. This method follows that pioneer
by Gibson and Ashbyf7g for polymeric foam cores and al
minium alloy face sheets.

A collapse mechanism map, for both simply supported
clamped beams, is given in Fig. 5, for the choices̄=0.034 and
a=0.1, and the map is representative of the materials used i
study. It is assumed that the overhangH for the simply supporte
case exceeds the transition valueHt so that core shear mechani
is mode B. The regimes of dominance for each collapse m
nism are marked, and the three data points marked on the
give the three structural geometries tested and analyzed lat

Note that the maps for simply supported and fully clam
coincide along the indentation—core shear boundary, since
the face yield collapse load changes when we switch from
simply supported to the clamped boundary condition. The re
of face yielding is significantly larger for the simply suppor
beam than for the fully clamped beam.

2.4 Finite Deflection of Clamped Sandwich Beams.It is
shown experimentally and theoretically later that simply
ported beams undergo continued plastic collapse at nearly
stant load; eventually, the transverse deflection becomes
ciently large that the structure fails by fracture of the face sh
or core. In contrast, clamped beams undergo membrane stre
of the face sheets beyond initial yield, and this gives rise
hardening macroscopic response. We now analyze the pos
response of clamped sandwich beams.

Initial plastic collapse of clamped sandwich beams occur
face yield, core shear, or indentation at small transverse d
tions. Subsequent transverse deflection, however, involves t
stretching of the faces and core. The stress distribution withi
beam evolves from that associated with the initial collapse lo
that of pure membrane action, with the membrane solu
achieved when the deflection is about equal to the thickness
beamHS=C+2t. Thereafter, the beam deforms in a memb
mode, and yields axially until the face sheets tear when the
plastic strain attains the material ductility. Equilibrium consi
ations give an expression for the load versus deflection res

Fig. 5 Initial collapse mechanism map for simply supported
and clamped sandwich beams in three-point bending. s̄
=0.034 and ā=0.1. Test geometries are marked on the map.
in the membrane phase as

Transactions of the ASME
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Fsud =
8tbs f

, − a
u s15d

assuming that the deflectionu is small compared with the span,,
and that the net axial force in the faces is much greater than t
the core.

It is difficult to obtain a general failure criterion for the bea
since the plastic strain distribution within the sandwich struc
depends upon both the initial collapse mechanism and the
brane stretching phase of deformation. Here, we state a s
failure criterion based on an estimate of the strain in the
sheets due to stretching of the beam, and neglect the plastic
due to bending. For an assumed ductility«F of the face shee
material, the deflectionuF at failure is given by

uF = ,Î1
2s1 − ād«F s16d

2.5 Summary of Clamped Beam Response.The load versu
deflection response of clamped beams may be subdivided
three phases, as sketched in Fig. 6

s1d Elastic bending. The beam deflects elastically until the
plied load attains the initial collapse loadFC associate
with the operative collapse mechanism. The loadFC is
reached at an elastic deflectionuC as dictated by Eq.s4d.

s2d Plateau phase. Once initial collapse has been attained,
assumed that the load remains constant under incre
transverse deflection up to a transverse deflectionuT, at
which the load predicted bys15d equals the initial collaps
load.

s3d Membrane phase. The beam stretches in the manner o
plastic string and the load versus deflection respon
given by Eq.s15d. The sandwich beam deflects until th
is a sudden loss of load carrying capacity due to face s
tearing when the deflection attains the valueuF.

The energy absorptionW is the area under the load versus
flection curve of the sandwich beam. Upon neglecting the el
contribution to energy absorption, the nondimensional mea

W̄=W/b,2s f for a clamped beam, is taken as

W̄= F̄cūT +
4t̄c̄

1 − ā
sūF

2 − ūT
2d s17d

where

ūT =
uT ; ūF =

uF s18d

Fig. 6 Stages of collapse of simply supported and clamped
sandwich beams
, ,
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3 Materials Characterization and Test Technique
Three structural geometries have been selected within the

ure map of Fig. 5, with each geometry lying in a different reg
of the map. The sandwich beamssof width about 50 mmd were
manufactured by bonding aluminium face sheets to alumi
alloy foam cores, and were subsequently tested in three-
bending. A commercially pure fully annealed aluminium sh
was used to manufacture the faces, whereas the foam core
closed-cell aluminium-alloy foam, with trade-name Alporas1; its
relative densitysdensity of the foam divided by the density of
cell wall materiald was r̂=11%, and the average cell size wa
mm. Annealed aluminium was used to ensure that the cla
specimens did not fail in the transition phase, in order to obs
the membrane regime.

The aluminium face sheets were degreased and abrade
were then adhered to the foam core using Redux 322 epox
hesive on a nylon carrier mesh. The sandwich beams wer
cured at 180 °C for 1 h, and bonding was facilitated by impo
a dead load with a nominal contact pressure of 0.01 MPa
shear strength of the cured Redux 322 adhesive was taken to
MPa, from Hexcel’s data sheets: this strength is about one or
magnitude higher than that of the Alporas foam, and so no a
sive failure was observed.

3.1 Face Sheet Material.The mechanical properties of t
annealed aluminium face sheets material were measured a
lows. Tensile specimens of dog-bone geometry were cut from
aluminium face sheets. The tensile tests were performed in a
hydraulic test machine at a strain rate of 10-4/s; the axial s
was measured using both strain gauges and a laser extenso
while the transverse strain was measured with a strain gaug

The measured true stress versus true strain response is g
Fig. 7. The Young’s modulus isEf =70 GPa, and the Poisson ra
is n f =0.33. The annealed aluminium has a 0.2% offset y
strength of 30 MPa, an ultimate tensile strength of 85 MPa an
elongation to failure of about 40%.

3.2 Core Material. The tensile, compressive, and shear s
versus strain response has been already reported by Chen
f4g. In brief, the Young’s modulus of the Alporas foam isEc
=1.06 GPa, and the compressive and tensile yield strengthsc
=2.1 MPa, with a tensile ductility of 1.1%.

3.3 Test Method for Sandwich Beams.The sandwich beam

1European supplier, Karl Bula, Innovation Services, Ch-5200 Brugg, Herre

Fig. 7 Tensile response of the annealed aluminium face
sheets
7F, Switzerland.
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and
were loaded in three point bending using a fully clamped rig
a simply supported rig, as sketched in Fig. 8. Selected spec
were instrumented in order to confirm the mechanism of colla
Laser extensometers were used to measure the deflection a
change in height of beam directly under the indenter, and 1V
resistance strain gauges of length 2 mm were placed at mi
on the bottom face sheet. A clip gauge was used to measu
relative sliding displacement of the face sheets, and thereb
average shear strain in the core.

The sandwich beams were loaded at a constant spe
0.3 mm/s by flat indenters of width 0srollerd to 18 mm. Fixed
rollers of diameter 19 mm were used in the simply supported
while a stiff steel rig, bolted to an underlying I-beam, was use
the fully clamped tests to restrain the specimens against en
placement and rotation.

4 Effect of Boundary Conditions on Collapse Re
sponse

In order to investigate the effect of boundary conditions on
response of sandwich beams, three geometries of specimen
been manufactured and tested in the simply supported
clamped conditions. The geometries are summarised in Ta
For each geometry, we compare the measured load versus
tion response of the clamped and simply supported beams.

4.1 Face Yield Specimens.Consider first the measured c
lapse response of beams undergoing face yield, see Fig. 9sad. The
two beams initially collapse at different load levels; as predi
by Eqs. s8d and s9d, the collapse load for the clamped beam
about twice that for the simply supported beam. After initial
lapse, the simply supported beam deflects at almost constan
it fails by tearing of the bottom face at midspan when the te
plastic strain has attained the material ductility. The clam
beam first undergoes face yield; then, at deflections exceedin
thickness of the sandwich beam, the deformation mode swi
to plastic stretching of the faces and core. This stretching pha
characterized by a steeply rising linear load versus deflectio

Fig. 8 The loading configurations, with boundary conditions
used in the finite element calculations

Table 1 Geometry of sandwich beam specimens

No. tsmmd csmmd lsmmd asmmd

1 sFYd 0.8 3 200 0srollerd
2 sCSd 0.8 4 70 18
3 sINd 0.8 15 100 3.5
412 / Vol. 72, MAY 2005
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sponse. Both the simply supported and clamped tests we
rested prior to tensile tearing of the face sheets. Figure 9sad in-
cludes photographs of two duplicate specimens tested
different boundary conditions. The extent of deflection of th
duplicate specimens is labeled on the collapse responses. T
different modes of collapse at large deflections are evident.

4.2 Core Shear Specimens.Figure 9sbd gives results for th
sandwich beams initially collapsing by core shear. Again, the
were not taken to final failure and again photographs are sho
two duplicate specimens. The degree of deflection of these d
cate specimens is labeled on the load versus deflection cur
aid their interpretation.

The simply supported beam was given a very large overha
order to inhibit collapse by core shear mode A. With this cho
the initial collapse mechanismsand therefore the initial collap
loadd is identical for the clamped and simply supported cases
measured responses confirm this prediction, see Fig. 9sbd. Now
consider the collapse responses beyond initial yield. The loa
ried by the simply supported beam increases slightly to a
value at a large transverse deflection of 8 mm. The peak i
load versus deflection curve is due to shear fracture of the
core.

In contrast, the clamped beam undergoes axial stretching
faces beyond initial collapse and the load steeply rises abov
initial collapse strength, as suggested by Eq.s15d. After a transi
tion phase, of up tou<HS, the load rises almost linearly wi
deflection; this supports the assertion of the analytical mode
the specimen is in a pure membrane state.

Visual observations during the tests on the clamped and s
supported beams revealed that inclined shear cracks deve
within the core once the core had sheared by a few percent
is consistent with the fact that the Alporas foam has a shear
tility of 2%, see Chen et al.f4g.

4.3 Indentation Specimens.The load versus deflection r
sponses of the indentation geometry are given in Fig. 9scd, to-
gether with photographs of the as-tested specimens. It is
from the images that the specimens are squat in shape an
lapsed by indentation. Visual observations during each test
firmed that initial collapse was by indentation beneath the ce
punch. The initial collapse load of the clamped beam is app
mately 20% greater than that of the simply supported beam,
the analytical predictions for the rigid, ideally plastic case giv
identical yield load for both grip conditions. A possible expla
tion is that the bending moment at midspan for the clamped
is only half that for the simply supported case, at any given
Therefore, the higher bending moments in the simply supp
beam give rise to higher compressive stresses within the
face sheet, and this facilitates the indentation mechanism.

Now consider the finite collapse response of the beams s
quent to the initial collapse. For the simply supported speci
the separation of the faces diminishes with increasing trans
deflection, and so the plastic collapse momentsand consequent
the applied loadd drops. Finally, the bottom face tears at midsp

In the clamped beam test the continued activation of the in
tation mechanism is inhibited by the development of memb
tension within the faces. At sufficiently large transverse de
tions the stress state again approaches the pure membrane

Figure 9scd includes photographs of the as-tested specim
Although the total transverse deflection is very similar in the
specimens, the degree of core crushing in the clamped be
much less than that observed in the simply supported beam
is consistent with the fact that tensile membrane stresses w
the indented face of the fully clamped specimen have stabiliz
against indentation.

5 Numerical Simulation of Beams Response
The three-point bending response of simply supported
clamped sandwich beams has been modelled with the commercial

Transactions of the ASME
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finite elements codeABAQUS in order to compare it with analytic
predictions and experiments. Due to symmetry, only half
length of the sandwich structure has been modeled. Eight-n
two-dimensional rectangular elements, with full integration, h
been used to discretize the sandwich core and the alum
skins. Typically, each face sheet has three elements in the
ness direction and 200 elements along the semi-span, whi
core is twenty elements deep by 200 elements along the
span.

Fig. 9 Measured load vs deflection response and photograp
Initial collapse is by „a… face yield, „b… core shear, and „c
Loading by the frictionless flat punch is modeled by prescribin

Journal of Applied Mechanics
e
ed
e
m
k-

the
i-

a uniform vertical displacement to the appropriate boundary n
of the upper face sheet, as sketched in Fig. 8. In the simply
ported case, contact between the beam and the rollers is mo
by the contact surfaces provided byABAQUS. In the clamped cas
both the vertical and horizontal displacements of nodes alon
ends of the beam are constrained to vanish. This boundary c
tion is somewhat stiffer than the actual clamped condition us
the experimental investigation, see Fig. 8. A preliminary m
sensitivity study has been performed to ensure an accurate

of simply supported and clamped sandwich beams.
dentation
hs
… in
gsentation of the sandwich specimen.
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In the finite element model, the aluminium skins are mod
by the J2 flow theory of plasticity, and the foam is described
the metal foam constitutive model of Deshpande and Fleckf8g, as
implemented inABAQUS by Chen f9g. In this model the yield
function F is assumed to be

F = ŝ − Y = 0 s19d

whereY is the uniaxial yield strength andŝ is the effective stres
defined by

ŝ2 =
1

1 + sa/3d2sse
2 + a2sm

2 d s20d

wherea defines the aspect ratio of the elliptical yield surfac
the Mises stressse and mean stresssm space. For the casea=0,
the effective stressŝ reduces tose and theJ2 flow theory is
recovered. For simplicity, isotropic hardening is assumed, i.e
yield surface grows in a geometrically self-similar manner w
strain. To model the postyield behavior, an effective plastic s

rate «̇̂, the work rate conjugate toŝ, is introduced as

«̇̂2 = f1 + sa/3d2gs«̇e
2 + «̇m

2 /a2d

«̇e
2 = s2/3d«̇i j

p«̇i j
p, «̇m = «̇ii

p s21d

where«̇i j
p is the plastic strain rate,i , j =1,2,3, and the conventio

of summation over repeated indices applies. With the assum
of normality, the plastic strain rate is given by

«̇i j
p = «̇̂

]F

]si j
=

«̇̂

1 + sa/3d2S3

2

sij

ŝ
+

a2

3
di j

sm

ŝ
D s22d

wheresij =si j −smdi j is the deviatoric stress,di j is the Kronecke
delta, and the effective strain rate is connected to the effe
stress rate by

«̇̂ =
ṡ̂

Hsŝd
s23d

Here,Hsŝd is the tangent of the uniaxial true stress versus l
rithmic plastic strain curve at stress levels=ŝ. The constitutive
models for both the aluminium faces and the foam core
calibrated against measured uniaxial data.

6 Comparison of Experiments and Predictions
It is instructive to compare the analytical predictions of

elastic-plastic collapse response with detailed finite ele
analysis for the three clamped beam geometries as detai
Table 1 and shown in Fig. 5. A similar comparison has alre
been presented by Chen et al.f4g for simply supported aluminium
sandwich beams, where excellent agreement is demonstrate

Figure 10 shows the measured and predicted load versus d
tion response for a specimen initially collapsing by face yi
core shear, and indentation, respectively. Each plot include
analytical predictions of the elastic stiffness, the initial colla
load and the large-deflection membrane solution. The pred
transition point between the end of initial plastic collapse and
start of the membrane phase occurs at a deflection equal
height of the beam, and this transition point is marked in
figures.

It is clear from Figs. 10sad and 10sbd that, for the cases of fac
yield and core shear, there is a good agreement between th
lytical predictions, the numerical model and the measured
sponse. In particular, the prediction of the membrane phase
rately captures the measured response atu.HS. In contrast, bot
the finite element predictions and analytical formulas under
mate the measured initial collapse load for the specimen co
ing by indentation, see Fig. 10scd It is argued that this is due to t
fact that the predictions neglect the presence of a strength

boundary layer within the metal foam. This phenomenon has be
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observed previously for simply supported beams by Chen
f4g, and has been analyzed in detail by Chen and Fleckf10g. They
have discussed boundary layers for sandwich layers subjec
simple shear and shown experimentally and theoretically tha
strength is enhanced when the thickness of the core is comp
to the cell size. A similar elevation is expected when the widt
the indenter is comparable to the cell size, as in the present
The source of the boundary layer is the fact that the foam
walls are adhered to the face sheets and behave as encaster
For the indentation geometry the membrane solution is reco
when the transverse deflectionu is comparable to the heightHS of
the sandwich beam; the predicted large deflection solution

Fig. 10 Comparison of measured and predicted collapse re-
sponses for sandwich beams collapsing by „a… face yield, „b…
core shear, and „c… indentation
enagain in reasonable agreement with the measured response.

Transactions of the ASME



on
foa
ace
y 1

wi
tio
om
n T

o
a

ide
se

-

ve
el
lop
mu
g.
d

.

terms

re. A
with
oice
se
non-

-

ent

for

as
r the
pen-

e

n of
lized

gth
Pa

-

s

de
Additional Tests. Additional tests have been performed
clamped and simply supported specimens, using Alporas
core and four different grades of aluminium alloy for the f
sheets sthe alloys are labeled in Table 2 as allo
=BS HH/S1C, alloy 2=BS HE30TF, alloy 3=BS HH/S1C, and
alloy 4=commercially pure, fully annealed aluminiumd. The ge-
ometry and strength of the faces have been varied over a
range in order to explore the accuracy of the analytical predic
of initial collapse strength. A summary of the specimen ge
etries and the associated face sheet properties is presented i
2. The predicted mode of collapse is in agreement with the
served mode. In Fig. 11 the predicted initial collapse loads
compared with the corresponding measured values. It is ev
that the analytical predictions are adequate for design purpo

7 Minimum Mass Design of Clamped Sandwich Struc
tures

A common requirement is to optimize the design to achie
minimum mass for a given structural stiffness, strength, or lev
energy absorption. Here we make use of the formulas deve
in Sec. 2 in order to design clamped sandwich beams of mini
mass for a given initial collapse strength in three point bendin
complementary optimisation task has already been performe
simply supported aluminium sandwich beams by Chen et alf4g.

Table 2 Geometry, face sheet strength, and observed mechanism o
5 simply supported, CL 5 clamped, FY 5 face yield, CS 5 core

Spec. No. tsmmd csmmd lsmmd asmmd bsmmd Face

1 0.5 7 240 19 56
2 0.5 7 240 19 56
3 2 10 160 12.6 49
4 2 10 160 12.6 49
5 0.5 40 160 12.6 50
6 0.5 40 160 12.6 50
7 3 19 220 19 57
8 2 10 160 12.6 49
9 0.5 7 100 8 50
10 0.5 40 160 12.6 50
11 0.5 42 220 19 57
12 3 19 220 19 57
13 0.5 42 220 19 57

Fig. 11 Comparison of measure and analytical prediction of

initial collapse strength for the specimens listed in Table 2
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The first step is to construct a collapse mechanism map in
of the nondimensional geometrical parametersc̄=c/, and t̄= t /c,
for a given a set of material properties of face sheets and co
typical map is given in Fig. 12 for a clamped sandwich beam
aluminium alloy faces and an Alporas foam core, with the ch
s̄=sc/s f =0.034,ā=a/,=0.1, r̄=0.11. The dominant collap
modes are shown, as in Fig. 5, along with contours of

dimensional collapse loadF̄=F /b,s f and massM̄ =M /b,2r f. The

geometry which minimisesM̄ at any fixedF̄ is obtained by scan

ning along the contour ofF̄ to locate the point where the gradi

¹M̄ is locally parallel to¹F̄. Upon repeating this procedure

increasing values ofF̄ a minimum mass trajectory is located,
shown in Fig. 12. Algebraic calculations, not reported here fo
sake of brevity, give explicit analytical expressions for the de

dence on the minimum mass indexM̄min as a function of th

required structural strengthF̄.

The definitionss2d for F̄ and M̄ involve the strengths f and
densityr f of the face sheets. To allow for a direct compariso
the performance of various material combinations, the norma

valuesF̄N of F̄ andM̄N of M̄ are introduced, by using the stren
ss and densityrs of a medium strength steel, taken as 400 M
and 8000 kg/m3, respectively;

F̄N =
s f

ss
F̄; M̄N =

r f

rs
M̄ s24d

The normalized minimum mass designM̄min
N is plotted as a func

tion of the structural load indexF̄N in Fig. 13. The figure include

itial collapse for an additional set of experiments „key: SS
ear, IN 5 indentation …

eet alloy sYsMPad Support conditions Observed collapse mo

1 110 SS FY
1 110 CL FY
2 287 SS CS
2 287 CL CS
3 90 SS IN
3 90 CL IN
1 120 CL CS
2 287 CL CS
3 90 CL CS
3 90 SS IN
4 70 SS FY
1 120 SS CS
4 70 CL FY

Fig. 12 Collapse mechanism map with contours of the nondi-
mensional strength and mass index „s̄=0.034, ā=0.1, r̄=0.11….
f in
sh

sh
The minimum mass trajectory is included.
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the minimum weight design plot for a clamped beam with gl
vinylester composite faces and H100 Divinycell foam core, ta
from a parallel studyf11g. The metallic sandwich performance
similar to that of the composite construction, and additional
efit would accrue from the use of heat-treated aluminium a
face sheets.

8 Effect of Foam Core Upon Plane Strain Necking o
Face Sheets

The present experimental study made use of annealed
minium alloy face sheets. These possessed adequate strain
ening capacity to maintain stability and not undergo necking
ing the beam bending tests. Preliminary experimentssnot reported
hered using high strength aluminium alloy revealed that the p
load of clamped beams is set by sheet necking of the faces

It is anticipated that the presence of a foam core delay
onset of tensile necking of the face sheets in the membrane
of the response. Sheet metal necking involves a local reduct
thickness of the sheet, and a foam core provides resistance
instability. This phenomenon has been explored experimenta
follows. Dog-bone shaped tensile specimens were made fr
sandwich plate with faces comprising a BS HH/S1C grad
commercially pure, cold rolled aluminium of thicknesst
=0.9 mm, and Alporas form core of relative density 11%
thickness in the range 3–25 mm. The dog-bone specimens
gauge length of 70 mm and a width of 25 mm; testing of
sandwich specimens was performed both along the rolling d
tion of the faces and transverse to the rolling direction.

The choice of material for the face sheets of the sand
specimens was dictated by the requirement for the faces t
dergo tensile necking at a low ductilitysof the order of 1%d prior
to tensile rupture of the foam core. The measured tensile duc
of the faces was«F=0.82% in the rolling direction and«F
=1.12% in the transverse direction; for the two orientations
0.2% offset yield strength equals 100 and 120 MPa, respect

Longitudinal sections of the necked face sheet are show
Fig. 14sad sno foam core presentd and in Fig. 14sbd sfoam core
presentd. A typical load versus nominal strain curve for the sa
wich specimenscore thicknessc=25 mmd is given in Fig. 14scd,
for the case of loading transverse to the roll direction of the fa
The figure includes a simple rule-of-mixtures estimate for the
sile response of the sandwich plate, based on the assumptio
the axial strain is uniform across the section. It is evident tha
prediction is accurate up to an axial strain of about 0.8%; be

Fig. 13 Normalized minimum mass vs structural load index for
a clamped sandwich beam of metallic construction and of com-
posite construction „key: FM 5 face microbuckling, FY 5 face
yield, CS 5 core shear, IN 5 indentation …
this strain, unsupported face sheets undergo tensile necking wh
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the sandwich specimen remains stable up to a strain of 1
This supports the hypothesis that the foam core stabilises the
against tensile necking.

The magnitude of the delay in necking is dependent upon
of face sheet thickness to core thicknesst /c, as shown by the rat
of ductility of sandwich«sw to that of the faces«fs, see Fig. 15. I
is evident from the figure that this ratio increases with decrea
face sheet thickness and with decreasing ductility of the
sheet. The effect can be large: the measured ductility of the
wich specimen can be almost doubled by the presence o
foam.

9 Concluding Remarks
This study has focused on the effect of boundary condition

the flexural response of sandwich beams comprizing alumi
faces and an aluminium foam core. For both simply supporte

Fig. 14 Scanning electron micrographs of the tensile necks in
„a… aluminium alloy face sheet with no foam support, and „b…
aluminium alloy face sheet as part of a sandwich plate. „c… Mea-
sured tensile load vs strain response for a sandwich dog-bone
specimen. The predicted response by an upper bound, rule-of-
mixtures calculation is included.

Fig. 15 Sensitivity of tensile ductility of dog-bone sandwich

ilespecimens to the ratio of face sheet to core thickness
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clamped beams, initial collapse is by core shear, face yield,
face indentation. Simple limit load calculations and more deta
finite element calculations capture the collapse response e
for the case of face sheet indentation; the measured inden
strength is significantly higher than that predicted and it is ar
that this is due to the presence of a strengthened boundary
within the foam adjacent to the face sheets, along the lines
cussed by Chen and Fleckf10g. In all clamped beam tests, init
collapse was followed by a stable regime of increasing load
transverse deflection. This regime of membrane stretching b
when the transverse deflection is comparable with the depth
beam, and ends with tearing of the face sheets. The tensile
tility of the faces is found to be increased by the presence o
foam core—this beneficial effect is due to the stabilization off
by the core to the onset of sheet necking of the faces.

The dominant modes of initial collapse are summarized
collapse mechanism map, with axes given in terms of the g
etry of the beam. The map is useful in the optimizing beam
ometry for minimum mass, for any given value of structural l
index.
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A Note on the Limit Definition of
Concentrated Loads
Based on Sternberg and Eubanks’ limit definition of concentrated loads, an imp
definition is proposed. The polar-symmetry example is given to show that the ne
nition is more reasionable. Sternberg and Eubanks’ attractive counter-exam
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1 Introduction

The classical uniqueness theorem does not hold
concentrated-load pointsssingularitiesd. To assure the unique s
lution to a concentrated-load problem, each concentrated lo
often replaced with a sequence of distributed loadings ove
load region surrounding the load point, and the solution to
original problem is reached by considering the limit solution
the modified problem. Sternberg and Eubanksf1g gave their cel
ebrated limit definition which was analogous to Kelvin’s defi
tion through a limit process of the solution associated with a
centrated force applied at an internal point of a medium occup
the entire space. Sternberg and Rosenthaif2g gave an infinite ag
gregate of distinct “solutions” corresponding to the half-space
sphere under normal concentrated loads, each of which pos
Kelvin’s three conditions, but not their new forth condition. T
limit definition of concentrated surface loads was obtained by
teltaub and Sternbergf3g. Their work shows that the tradition
concept of concentrated loads is not sufficient, and if the a
tional property is neglected, the solution to such a problem
not be unique.

In contrast to the Sternberg and Eubanks limit definition
improved version with their additional property being relaxe
proposed in this paper, and the amended expression is
simple. We also give a counter-example that satisfies the re
property but fails to agree with the foregoing limit definition
show that the new definition is more reasonable.

By the way, we argue about the polar symmetry coun
example which was used by Sternberg and Eubanks to prov
the fourth condition should not be neglectedf1g, and get the exa
solution of the displacement which is different from theirs
should be noted that this counter-example itself supports
final conclusion.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIE
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF A
PLIED MECHANICS. Manuscript received by the Applied Mechanics Divis
April 18, 2004; final revision; September 27, 2004. Associate Editor: Z. Suo.
cussion on the paper should be addressed to the Editor, Prof. Robert M. McMe
Journal of Applied Mechanics, Department of Mechanical and Environmental
neering, University of California - Santa Barbara, Santa Barbara, CA 93106-
and will be accepted until four months after final publication in the paper itself i
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2 Sternberg and Eubanks’ Limit Definition and the
Improved One

2.1 Definition 1 (Sternberg and Eubanks’s Limit Defini-
tion [1,3–5]). A concentrated loadF applied at the pointr0 in the
entire spaceE3 can be replaced with a sequence of body-f
fields fnsr −r0d with the properties:

sad fnsr − r0d P C2sE3d,

sbd fnsr − r0d = 0 for r ¹ S1/nsr0d,

EE E
E3

fnsr − r0ddtr → F asn → `

sdd E E E
E3

ufnsr − r0dudtr remains bounded asn → `

wherer is the position vector of an arbitrary point from the orig
C2sE3d denotes an aggregate of twice continuous different
functions in three-dimensional Euclidean space, andS1/nsr0d de-
notes a sphere region with its centerr0 and radius 1/n.

2.2 Definition 2 (the Improved limit definition). The con
centrated loadF applied at the pointr0 in the entire spaceE3 can
be replaced with a sequence of body-force fieldsfnsr −r0d with
propertiessad, sbd, scd, and amended propertysd8d

sd8d
1

nEE E
E3

ufnsr − r0dudtr → 0 asn → `

where symbols have the same meaning as before.
Compared with the first definition, the requirements of the

ond is relaxed obviously.
Theorem 1:The displacement under the action of the sequ

of body-force fieldsfnsr −r0d with properties defined by Definitio
2 tends to the Kelvin solution asn→`.

Proof: The displacement under the action of the sequenc
body-force fieldsfnsr −r0d is

unsrd = Pnsrd −
1

4s1 − nd
¹ fP0nsrd + r ·Pnsrdg s1d

and the Kelvin solution is

uFsrd = Psrd −
1

4s1 − nd
¹ fP0srd + r ·Psrdg s2d

-
ng,
i-
0,
e

where

by ASME Transactions of the ASME
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Pnsrd =
1

4pm
EE E

V

fnsj − r0d
R

dtj s3ad

P0nsrd = −
1

4pm
EE E

V

j · fnsj − r0d
R

dtj s3bd

Psrd =
1

4pm

F

R0
, P0srd = −

1

4pm

r0 ·F

R0
s3cd

with

R = r − j, R0 = r − r0

where m and n are the shear modulus and Poisson’s ra
respectively.

From the geometry relation of variables in Eq.s3d sFig. 1d, we
get

uR− R0u ø uj − r0u ø
1

n
, Rù UR0 −

1

n
U

where r is in the entire spaceE3, but not in the sphere regio
S1/nsr0d.

From f1,5g and with some manipulation, we get

uPnsrd − Psrdu ø
1

4pmRUE E E
S1/n

fnsj − r0ddtj − FU
+

1

4pmUE E E
S1/n

fnsj − r0dS 1

R
−

1

R0
DdtjU

ø
1

4pmR0
UE E E

S1/n

fnsj − r0ddtj − FU
+

1

4pm
EE E

S1/n

ufnsj − r0du
uR− R0u

RR0
dtj

ø
1

4pmR0
UE E E

S1/n

fnsj − r0ddtj − FU
+

1

4pm
EE E

S1/n

ufnsj − r0dudtj

1

nR0sR0 − 1/nd

Before the final inequality is obtained, the geometry relation
been used. Whenn.2/R0, we have

uPnsrd − Psrdu ø
1

4pmR0
UE E E

S1/n

fnsj − r0ddtj − FU
+

1

4pm
EE E

S1/n

2ufnsj − r0du
nR0

2 dtj

By the hypothesisscd, the first term at the right side of the abo
inequality tends to zero; by the hypothesissd8d, the second term
tends to zero too, asn→`.

With the same method, it is easy to proveP0nsrd→P0srd, as

Fig. 1 Geometry of the loading region
n→`. We can also prove that the first-order derivatives ofPnsrd

Journal of Applied Mechanics
,

s

and P0nsrd are convergent to their corresponding derivative
Psrd andP0srd, respectively. Then, Theorem 1 is proved.

3 Counter-Example and Analysis
In this part, we give an example that satisfies the relaxed

erty but fails to agree with Definition 1 to show that the rela
result is effective. This example also supported that Theorem
false if the hypothesissd8d is omitted.

Let the sequence of body-force fieldfnsrd be defined by

fnsrd = r0fnsrd, r P S1/nsOd

fnsrd = 0, r ¹ S1/nsOd s4d

where,

fnsrd = −
336

5
s1 − ndn9−aSr −

1

n
D3S6r2 +

3

n
r +

1

n2D
wherer0 is the unit vector of the position vectorr, point O is the
origin of coordinates, and 0øa,1. By direct computing the fir
and second derivative offnsrd, we get

fnS1

n
D = f n8S1

n
D = f n9S1

n
D = 0 s5d

whencefnsrd satisfies the first propertysad and sbd. For the pola
symmetry offnsrd aboutO, the integral of the load sequence

EE E
E3

fnsrddtr = 0 s6d

so thatF =0. From Eq.s2d, the Kelvin solution is

uFsrd = 0 s7d

In order to calculateunsrd, denotingP to be an arbitrary poin
out of the sphere regionS1/nsOd, and its position vector isr
=rsPd with the unit vector denoted byr0; let i be an arbitrary un
vector perpendicular tor0 and j equal tor03 i be another bas
vector. So, the orthogonal coordinate systemhi , j ,r0j with the
load-point origin is established.Q is an arbitrary point in th
sphere regionS1/nsOd, and its position vector isj=jsQd with the
unit vector denoted byj0. Then

R= ur − ju = Îr2 + j2 − 2rj cosu

j0 = i sinu cosw + j sinu sinw + r0cosu s8d

whereu andw are sphere coordinates of pointQ. Substituting o
Eq. s8d into Eq. s3ad we have

Pnsrd =
1

4pm
EE E

E3

fnsjd
R

dtj =
− 336s1 − ndn9−a

10m

3E
0

1
n

j2Sj −
1

n
D3S6j2 +

3

n
j +

1

n2D
3E

0

p
r0sinu cosu

Îr2 + j2 − 2rj cosu
dudj

= −
2s1 − nd
3mna ¹ S1

r
D s9d

According to the potential theoryf6g, Eq. s3bd can be simplified

and we get
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d

p0nsrd = −
1

4pm
EE E

E3

j · fnsjd
R

dtj

=
1

4pmr EE E
S1/n

jfnsjddtj

= −
2s1 − nd

m

1

r

1

na s10d

Substituting Eqs.s9d ands10d into Eq. s1d, the displacement fie
is

unsrd = −
1 − 2n

3m

1

na ¹ S1

r
D s11d

On the other hand, the absolute integral offnsrd can be calcu
lated directly, and yield

EE E
E3

ufnsrdudtr = 16ps1 − ndn1−a s12d

By Eqs.s11d and s12d, the displacement field and the abso
integral of the load sequence depend on the value ofa, as n
→`. So two cases are discussed in the following part.

Case I: 0,a,1
By Eq. s11d, we have

unsrd = 0, asn → ` s13d

This result shows that the displacement fieldunsrd tends to the
Kelvin solution asn→`. It means that the body-force seque
processes full four properties what the amended limit defin
requires. Indeed,

lim
n→`

1

nEE E
E3

ufnsrdudtr = 0 s14d

However, this conclusion that the displacement fieldunsrd tends
to the Kelvin solution, asn→`, cannot be deduced by Definiti
1, because the body-force sequence violates their fourth hy
esissdd. Indeed, as 0,a,1, we get

EE E
E3

ufnsrdudtr → `, n → ` s15d

Comparison with the distinct different results derived by
different definitions in solving the same problem, we can conc
that Sternberg and Eubanks’ limit definition is too strong, and
amended propertysd8d instead of the propertysdd is effective.

Case II: a=0
By Eq. s11d, we have

unsrd = −
1 − 2n

3m
¹ S1

r
D s16d

According to Eqs.s7d and s16d, this result of the displaceme
field does not tend to the Kelvin solution, asn→`. In fact, the
sequence of the body-force fieldfnsrd processes the first thr
properties, but violates the fourth onesd8d. Indeed,

lim
n→`

1

nEE E
E3

ufnsrdudtr = 16ps1 − nd s17d

So, if the propertysd8d is neglected, Theorem 1 is false. In
bookf5g, M. Z. Wang gives another example with a different fo
to support this view. The example is defined by

fnsrd = i fnsrd, r P S1/nsOd

fnsrd = 0, r ¹ S1/nsOd s18d
where
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n

th-

e
e

fnsrd = Cn11Sr −
1

n
D3S30r3 −

6

n
r2 −

3

n2r −
1

n3D
with

C = − 1980s1 − ndm

wherei is unit vector with constant direction. So, this sequenc
the body-force field has a constant direction that is different
Sternberg and Eubanks’ counter-examplef1g. And this exampl
supports that propertysd8d should not be neglected, too.

Next, we will reconsider Sternberg and Eubanks’ coun
example. Whena=0, the foregoing counter-example defined
Eq. s4d will be simplified to Sternberg and Eubanks’ coun
example defined by Eqs.s4.8d, s4.9d, ands4.10d in the articlef1g.
Substitutea=0 into Eqs.s9d and s11d, we get

− 1

8ps1 − nd E E E
E3

fnsjd
R

dtj =
1

3
¹ S1

r
D

usrd = −
1 − 2n

3m
¹ S1

r
D s19d

However, the corresponding expressions in the articlef1g are

VnsPd ;
− 1

8ps1 − nd E E E
E3

fnsjd
R

dtj

=
− 1

8ps1 − ndr EE E
S1/n

fnsjddtj = 0 s20ad

usrd = ¹ S1

r
D s20bd

The above Eq.s20ad is obtained from Eqs.s4.4bd, s4.13bd, s4.15bd
in f1g directly; and Eq.s20bd is the formulas4.17d in f1g.

Comparison with Eqs.s19d and s20d, the two solution to th
same problem are contrary; and we think the later is wrong. B
on f1g, the first equation in Eq.s20d is obtained through potent
theory, forVnsPd being equivalent to a Newtonian potential a
point of free space of mass distributions over the sphere, w
densities have polar symmetry about the centerO, and the valu
of such a potential atP equal to the value of the potential asso
ated with a single particle atO, whose mass is equal to the to
mass of the distributionf1g. In fact, the above deduction is rig
only when the densities are scalar fieldsf6g or vector fields with
constant directionstensor fields are not considered hered. To our
problem, the density of mass distributionfnsjd is a vector, and it
direction varies with the position of pointQ, thus this deductio
cannot be used in this integral, i.e., the expression Eq.s20ad can-
not be derived by potential theory. So, the latter formula of
displacement field Eq.s20bd which is related to the former cann
be obtained, too. However, it is worth mentioning that this at
tive counter-example itself is very good to support their final
clusion that the fourth requirement should not be omitted.

4 Conclusion and Discussion
Sternberg and Eubanks’ limit definition is monumental. T

clarified the confusion about the concept of concentrated l
But their conditionsdd is too strong. The new limit definition
concentrated loads with the fourth condition being relaxed
assure the limit solution to the modified problem convergent t
Kelvin solution. Our counter-example shows that the impro
version is more reasonable than the previous one. By establ
an appropriate coordinate, and computing the integral directl
get the exact displacement field of the attractive polar symm
counter-example. Moreover, the limit definition of concentr
surface loads given by Turteltaub and Sternbergf3g can be relaxe

in the same way.
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A Unified Formalism of
Two-Dimensional Anisotropic
Elasticity, Piezoelectricity and
Unsymmetric Laminated Plates
A unified formalism is presented for theoretical analysis of plane anisotropic elasticity
and piezoelectricity, unsymmetric anisotropic plates, and other two-dimensional problems
of continua with linear constitutive relations. Complex variables are used to reduce the
governing differential equations to algebraic equations. The constitutive relation then
yields an eigenrelation, which is easily solved explicitly for the material eigenvalues and
eigenvectors. The latter have polynomial expressions in terms of the eigenvalues. When
the eigenvectors are combined after multiplication by arbitrary analytic functions con-
taining the corresponding eigenvalues, one obtains the two-dimensional general solution.
Important results, including the orthogonality of the eigenvectors, the expressions of the
pseudometrics and the intrinsic tensors, are established here for nondegenerate materials,
including the case of all distinct eigenvalues. Green’s functions of the infinite domain, and
of the semi-infinite domain with interior or edge singularities, are determined explicitly
for the most general types of point loads and discontinuities (dislocations).
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-

,

e

1 Introduction
It is shown in this paper that, in the plane equilibrium problem

of anisotropic elasticity and piezoelectricity, laminated pla
theory with or without bending-stretching coupling, and oth
two-dimensional theories of continua, the differential equatio
governing the kinematical and kinetic variables~and additional
variables characterizing the electric and other states! often show
analogous mathematical forms, implying that the stress, str
electric field, electric displacement and other physical variab
appear as two-vectors and three-vectors of the gradient type o
solenoidal type. The gradient vectors possess a scalar pote
whereas the solenoidal vectors have a skew potential. An eig
solution x consisting of all potential functions of the physica
fields is expressed as an analytic function of a complex varia
x1my multiplied by a~constant! eigenvectorj. When the linear
constitutive equation of the material is used to relate the deri
tives of the potentials, one obtains an algebraic eigenrelation
may be solved easily for the eigenvaluem and the eigenvectorj.
The two-dimensional general solution of the material is obtain
by combining the eigensolutions associated with all eigenvalu

This unified formalism includes, as special cases, the Le
nitskii and Stroh formalisms of anisotropic elasticity@1–5#, the
extended Lekhnitskii and Stroh formalisms of piezoelectric
@3,6–8#, and anisotropic laminated plate theory in different fo
malisms including those of Becker@9#, Lu and Mahrenholtz@10#,
Cheng and Reddy@11#, Chen and Shen@12#, Hwu @13# and Yin
@14–17#. In all such particular theories, the complex-variable fo
malism leads to an algebraic eigenrelation

M ~m!h50, (1.1)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, May 18, 200
final revision, July 18, 2004. Associate Editor: Z. Suo. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Univer
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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whereh is areduced eigenvectorwhose elements form a subset of
the eigenvectorj, and M ~m! is a symmetric matrix whose ele-
ments are polynomial functions. For example, in 2-D anisotropic
elasticity, M ~m! is a 232 matrix whose elements are the well
known polynomialsl 4(m), 2 l 3(m) and l 2(m) in Lekhnitskii’s
theory. The material eigenvalues are determined by the character
istic equation

Det@M ~m!#50. (1.2)

If this equation has only simple roots, then thereducedeigenvec-
tor h for each root is obtained easily from Eq.~1.1!, and the
eigenvectorj, unique except for an arbitrary scalar factor, follows
from a simple relation. Even if the characteristic equation has
multiple roots, Eq.~1.1! may still give a full set of independent
eigenvectors, provided that such rootsm0 are double roots and the
rank of the matrixM (m0) is lower than its dimension by two
~such cases are called semi-simple!. With rare exceptions@18#,
most of the studies in the vast literature on anisotropic elasticity,
and almost all works on piezoelectricity and anisotropic plates, are
concerned only with this relatively simple case ofnondegenerate
materials.

There are, however, abundant cases of degenerate materials
including all isotropic materials in elasticity, all symmetric quasi-
isotropic laminates, and unsymmetric laminates composed of dis-
similar isotropic layers, for which the general solution contains
higher-order eigensolutions that cannot be obtained from Eq.
~1.1!, and must be obtained from more complicated eigenrelations
for multiple eigenvalues. For such materials and laminates, the
complete results for the general solution and for Green’s functions
of simple domains are obtained in the author’s recent papers on
anisotropic elasticity@4,5,19#, anisotropic laminated plates@14–
17# and piezoelectricity@7,8#.

These results of nondegenerate and degenerate materials of th
various physical theories follow from the common mathematical
features of the governing differential equations, and from the lin-
ear constitutive matrix relating the primary and secondary vari-
ables. The theories generally involve various types of physical
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coupling, for example, electro-mechanical coupling in piezoel
tricity and bending-stretching coupling in unsymmetric laminat
plates.

In the unified formalism developed in this paper, the govern
differential equations are first reduced to algebraic equations c
taining the eigenvalues, eigenvectors, and the constitutive ma
The potentials and skew-potentials of the unknown physical v
ables are separated into conjugate groups of primary and sec
ary variables. The secondary variables are then eliminated, to
sult in an eigenrelation governing a reduced set of the prim
variables, which has the form of Eq.~1.1!. The equation yields all
eigenvalues, and all zeroth-order eigenvectors. Many impor
results, including orthogonality of eigenvectors, projection ope
tors and intrinsic tensors, may be obtained in a conte
independent manner, regardless of the specifics of the theory,
as the number of variables and their physical meanings.

The importance of the unified formalism is that it allows th
material eigenvalues and eigensolutions, the general solution
intrinsic tensors, Green’s functions and the solutions of the bou
ary value problems of various domains to be found in a comm
form for a diverse range of theories, including the three examp
mentioned above. Thus, in the nondegenerate case, the ge
solutionx of the potentials and skew potentials is expressed i
unified way as

x52 Re@Z'^ f 1~x1m1y!, . . . ,f N~x1mNy!&#, (1.3)

where $m1 , . . . ,mN% is the complete set of eigenvalues wit
positive imaginary parts,̂f 1 , . . . ,f N& is a diagonal matrix con-
taining theN arbitrary analytic functionsf 1 , . . . ,f N , andZ' is a
2N3N matrix whosekth column is the eigenvector associate
with mk . The general form of Green’s function in the infinit
domain is given for all three theories by the common express

x5~1/p!Re@Z'^2 i log@x1m1y#, . . . ,

2 i log@x1mNy#&Z'
21#x0 , (1.4)

where the elements of the constant vectorx0 are the concentrated
point forces, dislocations, or point charges imposed at the ori
Other important results of the different theories are also given
unified expressions in a context-independent manner.

Furthermore, a solution of the boundary value problem fo
certain domain in one theory may be converted directly to a c
responding solution for the same domain in another mathem
cally equivalent theory. Such a correspondence of solutions ex
for example, between 2-D anisotropic elasticity having in-pla
and anti-plane coupling and 2-D piezoelectricity having no su
coupling. The anti-plane shear stresses and shear strains o
first theory are replaced by the electric displacement vector
the electric field vector, respectively. Another example is given
anisotropic laminates without bending-stretching coupling. F
such mid-plane symmetric laminates, stretching solutions may
converted into bending solutions, and vice versa, but the role
kinematical and kinetic variables must be interchanged@15#. In a
more general context, if a singularity solution or an analytic
solution of a boundary value problem is found in one theory
may suggest the corresponding solutions in other theories wi
different set and number of variables through the mathemat
analogy of the unified formalism. For example, it is found in Se
7 of this paper that Green’s function of the semi-infinite region
a nondegenerate material with free, fixed or mixed boundary c
ditions has the general expression of Eq.~7.8! for different theo-
ries. Besides the material eigenvalues and eigenvectors, the
pression involves a constant matrixT, which is defined by Eq.
~7.7b! in terms of the boundary condition matrixK and the eigen-
vectors. Thus, all expressions of Green’s function for the h
space previously obtained in the various particular theories
elasticity or anisotropic laminates are mathematically identic
provided that the physical variables and constitutive matrices
chosen strictly in the manner described in this paper~this requires,
in particular, that one must use the Lekhnitskii formalsim inste
Journal of Applied Mechanics
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of the Eshelby-Stroh formalism in anisotropic elasticity, and mus
use the extended Lekhnitskii formalism in other theories!. This
common mathematical form of Green’s function is automaticall
extended to a general expression valid for a wide range of theor
involving more general linear coupling effects of mechanica
electromagnetic, and other physical types.

Only nondegenerate materials are considered in this paper. T
many classes of degenerate materials involve more complica
relations and results, and the complexity increases rapidly with t
number of variables. Thus, the complete analysis for nondegen
ate and degenerate piezoelectricity@7,8# is significantly lengthier
than the complete analysis for anisotropic elasticity@4,5# or un-
symmetric laminated plates@14,15#. No complete solution can be
given for all degenerate cases in a theory unless the complete
of eigenvalues and their multiplicities are explicitly found. How-
ever, many important analytical results including the derivativ
rule, orthogonality and the structure of eigenspaces, pseudom
rics, projection operators and intrinsic tensors@8,15,19# may be
established in a unified way independent of the particular theorie

2 Reduction of the Governing Equations to a Single
Eigenrelation

S-Vectors and G-Vectors. We consider two-dimensional
equilibrium problems of a continuum, in which all physical vari-
ables that directly participate in the linear constitutive relatio
~stress, strain, electric field, electric displacement, curvatures a
bending and twisting moments in thin plates, etc.! are functions of
two rectangular coordinatesx and y only. These variables may
belong to one of the following four categories~in which S stands
for ‘‘solenoidal,’’ implying that the two-dimensional vector or ten-
sor has a vanishing divergence; a 2-G vector is the gradient o
scalar function ofx and y, and a 3-G vector has its components
given by the symmetric part of the gradient of a two-dimensiona
vector!:

1. 3-S vector. Examples are
$sx ,sy ,txy%

T5$F ,yy ,F ,xx ,2F ,xy%
T, where F(x,y) is

Airy’s stress function in plane elasticity,
$ky ,kx ,2kxy%

T5$w,yy ,w,xx ,2w,xy%
T, where w(x,y) is

the normal displacement of a thin plate.
2. 2-S vector. Examples are

$txz ,tyz%
T5$c ,y ,2c ,x%

T, where c(x,y) is the skew-
potential of anti-plane shearing stresses,
$Dx ,Dy%

T5$u ,y ,2u ,x%
T, where u(x,y) is the skew-

potential of the electric displacement;
$Bx ,By%

T, two-dimensional magnetic flux density vector.
3. 3-G vector. Examples are

$«x ,«y ,gxy%
T5$u,x ,v ,y ,u,y1v ,x%

T, where u(x,y) and
v(x,y) are the displacement components,
$M y ,Mx ,22Mxy%

T5$C1,x ,C2,y ,C1,y1C2,x%
T, where

C1(x,y) and C2(x,y) are the moment potentials in plate
problems.

4. 2-G vector. Examples are
$gxz ,gyz%

T5$w,x ,w,y%
T, wherew(x,y) is the out-of-plane

displacement in 2-D elasticity,
$Ex ,Ey%

T5$2f ,x ,2f ,y%
T, wheref(x,y) is the potential

of the electric field,
$Hx ,Hy%

T, two-dimensional magnetic intensity vector in the
absence of free current.

The vectors that belong to a particular category all satisfy gover
ing differential equations with identical mathematical forms
though their physical meanings may be entirely different. Thu
the equations

sx,x1txy,y50, (2.1a)

txy,x1sy,y50 (2.1b)
MAY 2005, Vol. 72 Õ 423



are also satisfied when the two dimensional stress compone
sx , sy andtxy are replaced by the curvaturesky , kx and2kxy ,
respectively, of the plate bending problem. The equilibrium equ
tion of the antiplane shearing stresses,

txz,x1tyz,y50, (2.2)

is mathematically identical toDx,x1Dy,y50 for the electric dis-
placement vector, and to a similar equation for the magnetic fl
density vectorBxi1Byj . The compatibility equation of the in-
plane strains,

«x,yy1«y,xx2gxy,xy50, (2.3)

corresponds to the moment equilibrium equations of plate
M y,yy1Mx,xx2(22Mxy) ,xy50, whereas the compatibility of the
out-of-plane shear strains

gyz,x2gxz,y50 (2.4)

is formally identical to the equationEy,x2Ex,y50 for the electric
field. Such differential equations that define the mathematic
character of a particular two-vector or three-vector of the S or
type will be called the ‘‘inherent equations,’’ in contrast to the
material-dependent constitutive equations. In equilibrium pro
lems, the inherent equations refer to the invariant spatial or b
ance relations that connect a dimensionally homogeneous se
physical variables independent of the specific material proper
The constitutive equations are the relations among the differe
sets of field variables based on measurable material response
transformation rules~invariance under rotation, etc.! that govern
the constitutive equations belong to one of the two categories:~i!
those that are derivable from the inherent transformation rules
the participating vectors or tensors, and therefore valid regardl
of the material type, and~ii ! symmetry relations that are valid only
for special types of material defined by groups of symmetric tran
formation ~orthotropy, isotropy, etc.!.

In systems with an energy function, a 3-S vector always appe
in the constitutive equation together with the conjugate 3-G ve
tor. Similarly, 2-S and 2-G vectors also appear together in con
gate pairs. When a G-vector such as$«x ,«y ,gxy%

T is kinematical,
the conjugate S-vector$sx ,sy ,txy%

T is kinetic. For the plate
problem the roles are reversed: the 3-G vector$M y ,Mx ,
22Mxy%

T is kinetic, whereas the conjugate 3-S vecto
$w,yy ,w,xx ,2w,xy%

T is kinematical.

Constitutive Equations for Two-Dimensional Problems. In
the literature of the various subjects, different constitutive equ
tions involving the G-vectors and S-vectors have been wide
used. The S-vectors may be expressed as linear functions of
G-vectors through a matrix of constitutive constantsC ~the stiff-
ness matrix in elasticity!. Conversely, the G-vectors are expresse
in terms of the S-vectors using the inverse matrixC21. Mixed
formulations have also been developed where a combination
S-vectors and G-vectors is related to their conjugate G-vecto
and S-vectors. Each formulation may have particular advanta
compared to other formulations in certain special types of pro
lems. But the adoption of a particular form of constitutive relatio
in the literature is often a matter of convention, and is not alwa
based on compelling mathematical reason.

However, if one undertakes fundamental studies aiming at t
general representation of the solutions of diverse classes of ma
rials, Green’s functions of various domains subjected to poi
loads and dislocations, as well as a thorough characterization
the mathematical structure of the solution space, then a suita
choice of the formalism dictated by the structure of the inhere
equations may have decisive advantage over other choices
pointed out in recent works on two-dimensional elasticity, unsym
metric laminated plates, and piezoelectricity by this autho
@4,5,7,8,14–17#.

In these theories of two-dimensional continuum, all 3-G an
2-G vectors are expressed through a symmetric constitutive ma
424 Õ Vol. 72, MAY 2005
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@ṽ# in terms of the conjugate 3-S and 2-S vectors. The latter are
called the primary variables, and their components are joined to
form an S-vector of dimension 3m12n. The conjugate 3-G and
2-G vectors are called the secondary variables, and their compo-
nents are joined in the corresponding manner to form a G-vector
of dimension 3m12n.

The ith 3-S vector and theith 3-G vector have the following
expressions, respectively,

s~ i !5$F ,yy
~ i ! ,F ,xx

~ i ! ,2F ,xy
~ i ! %T, (2.5a)

g~ i !5$U ,x
~ i ! ,V,y

~ i ! ,U ,y
~ i !1V,x

~ i !%T, ~ i 51, . . . ,m! (2.5b)

where F ( i ), U ( i ) and V( i ) are scalar functions ofx and y. The
expressions of thejth 2-S vector and thejth 2-G vector are, re-
spectively,

t~ j !5$c ,y
~ j ! ,2c ,x

~ j !%T, (2.6a)

h~ j !5$W,x
~ j ! ,W,y

~ j !%T ~ j 51, . . . ,n!, (2.6b)

wherec ( j ) andW( j ) are also scalar functions ofx andy. Let

s[$s~1!T, . . . ,s~m!T,t~1!T, . . . ,t~n!T%T, (2.7a)

g[$g~1!T, . . . ,g~m!T,h~1!T, . . . ,h~n!T%T. (2.7b)

Then the following linear constitutive equation is postulated in
terms of a symmetric, positive-definite matrix@ṽ# which may
represent fully anisotropic, coupled response:

g5@ṽ#s, (2.8)

Consider the following two vectors composed of the anti-
derivatives of the primary variables and the secondary variables,
respectively:

$x1 , . . . ,x2m1n%
T

5$F ,y
~1! ,2F ,x

~1! , . . . ,F ,y
~m! ,2F ,x

~m! ,c~1!, . . . ,c~n!%T,

(2.9a)

$x2m1n11 , . . . ,x4m12n%
T

5$U ~1!,V~1!, . . . ,U ~m!,V~m!,W~1!, . . . ,W~m!%T.

(2.9b)

Notice that the first 2m elements of~2.9a! and ~2.9b! occur in
pairs, whose derivatives yield the components of~2.5a! and
~2.5b!, respectively. The derivatives of the lastn elements of
~2.9a! and~2.9b! yield the 2-S and 2-G vectors, respectively. Join-
ing Eqs. ~2.9a! and ~2.9b!, one obtains a vector functionx of
dimension 4m12n:

x[$x1 , . . . ,x2m1n ,x2m1n11 , . . . ,x4m12n%
T. (2.10)

Eigenrelation. We seek solutionsx of the following form

x5 f ~z,m!j, z[x1my, (2.11)

wherej is a complex constant vector, andf is a complex scalar
function in which the complex parameterm may occur both im-
plicitly through z5x1my and explicitly as the second argument.
Since 2F ,yx

( i ) 52j (2i 21) f ,z52F ,xy
( i ) 5j (2i )m f ,z , the first m odd-

numbered components ofj may be expressed in terms of the first
m even-numbered components, i.e.,

j~2i 21!52mj~2i ! ~ i 51, . . . ,m!. (2.12)

Substitution of the spatial derivatives of~2.9a! and ~2.9b! into
Eqs.~2.5! and ~2.6! gives

s~ i !5s0j~2i ! f ,z , (2.13a)

t~ j !5t0j~2m1 j ! f ,z , (2.13b)

g~ i !5g0H j~2m1n12i 21!

j~2m1n12i ! J f ,z , (2.13c)
Transactions of the ASME



ve
h~ j !5h0j~4m1n1 j ! f ,z , (2.13d)

where

s0 [$2m2,21,m%T, (2.14a)

t0 [$m,21%T, (2.14b)

h0 [$1,m%T, (2.14c)

g0[F 1 0

0 m

m 1
G . (2.14d)

Substituting Eqs.~2.13! and ~2.14! into ~2.7a! and ~2.7b!, one
obtains

s5 f ,zC~m!h, (2.15a)

g5 f ,zQ~m!jL (2.15b)

where

h[$j2 ,j4 , . . . ,j2m ,j2m11 , . . . ,j2m1n%
T, (2.16a)

jL [$j2m1n11 , . . . ,j4m12n%
T, (2.16b)

i.e., jL is the lower half ofj, whereash is obtained by deleting
the firstm odd elements from the upper half ofj. HencejL andh
have the dimensions 2m1n and m1n, respectively.C~m! is a
block-diagonal matrix formed bym identical blocks of 331 ma-
trix s0 and n identical blocks of 231 matrix t0 , and Q~m! is a
block-diagonal matrix formed bym identical blocks of 332 ma-
trix g0 andn identical blocks of 231 matrix h0 . That is,

C~3m12n!3~m1n! [^^s0&m ,^t0&n&, (2.17a)

Q~3m12n!3~2m1n! [^^g0&m ,^h0&n&, (2.17b)

where the notation̂ s0&m stands for the block diagonal matrix
containingm identical diagonal blocks of the submatrixs0 , and
^F1 , . . . ,FN& indicates a block-diagonal matrix composed ofN
diagonal blocksF1 , . . . ,FN . The subscripts ofQ andC indicate
the dimensions of the two matrices.

Sincet0 is orthogonal toh0 , ands0 is orthogonal to both col-
umns ofg0 , it follows that each column ofC is orthogonal to all
columns ofQ. Consequently,

CTQ50, QTC50. (2.18)

Substituting Eqs.~2.15a! and ~2.15b! into ~2.7!, one obtains

Q~m!jL5@ṽ#C~m!h. (2.19)

Premultiplication of~2.19! by Q(m)T@ṽ#21 and C(m)T yield,
respectively@after using Eq.~2.18!#,

Q~m!T@ṽ#21Q~m!jL50, (2.20)

M ~m!h50, (2.21)

where

M ~m![C~m!T@ṽ#C~m! (2.22)

is a symmetric matrix because@ṽ# is symmetric.M ~m! is of cen-
tral importance in the present theory, and it will be called th
eigenmatrix. SinceM ~m! is a function, it is different from, but
related to, theconstantmatrix of the same name usually found in
the Stroh theory of plane elasticity. The relation betweenM ~m!
and the constitutive matrix@ṽ# may be clarified by writing

g~ i !5( 1<p<m Cips~p!1( 1<q<n Eiqt~q! ~ i 51, . . . ,m!,

(2.23a)

h~ j !5( 1<p<m Ejp
T s~p!1( 1<q<n Djqt~q! ~ j 51, . . . ,n!.

(2.23b)
Journal of Applied Mechanics
e

Then

@ṽ#[F @ṽ11# @ṽ12#

@ṽ12#
T @ṽ22#

G , (2.24)

where @ṽ11# is a 3m33m matrix with m2 submatricesCip (1
< i ,p<m), @ṽ22# is a 2n32n matrix with n2 submatrices
Djq (1< j ,q<m), and @ṽ12# is a 3m32n matrix with mn
submatricesEiq . The eigenmatrixM ~m! is separated into four
submatrices

M ~m![FM @4#~m! M @3#~m!

M @3#~m! M @2#~m!
G , (2.25)

whereM @4#(m) is an m3m submatrix whose element in theith
row andpth column is

Mip
@4#~m!5$2m2,21,m%Cip$2m2,21,m%T ~1< i ,p<m!.

(2.26a)

M @2#(m) is ann3n submatrix with the elements

M jq
@2#~m!5$m,21%Djq$m,21%T ~1< j ,q<n!, (2.26b)

and M @3#(m) has the dimensionm3n and has elements of the
form

Miq
@3#~m!5$2m2,21,m%Eiq$m,21%T ~1< i<m,1<q<n!.

(2.26c)

Notice that the elements ofM @4#, M @3# andM @2# are polynomials
in m of degrees 4, 3 and 2, respectively, and these elements ha
forms identical to the polynomialsl 4(m), l 3(m) and l 2(m), re-
spectively, in Lekhnitskii’s work in plane anisotropic elasticity.

3 Eigenvalues and Eigensolutions
Equation~2.19! has a nontrivial solution forh if and only if m

is a root of the characteristic equation

d~m![uM ~m!u50. (3.1)

It is clear from Eqs.~2.26a!–~2.26c! that d~m! is a polynomial of
degree 4m12n. Let J1(m) be the block-diagonal matrix of di-
mension (2m1n)3(m1n), formed by m identical diagonal
blocks of the matrix2t0 followed by the blockIn :

J1~m!5^^2t0&m ,In&. (3.2)

Let f0 denote the 233 matrix having the first and second rows
$1,0,0% and $2m,0,1%, and letJ0(m) denote the following block
diagonal matrix of dimension (2m1n)3(3m12n):

J0 [^^f0&m ,^@1,0#&n& (3.3)

Then it is easily verified that

J0~m!Q~m!5I2m1n . (3.4)

Define

J2~m![J0~m!@ṽ#C~m!, (3.5a)

J~m![ H J1~m!

J2~ṁ !J (3.5b)

Premultiplying Eq.~3.5a! by Q~m!, one obtains, after some alge-
braic manipulation,

Q~m!J2~m!5@ṽ#C~m!1K0 , (3.6)

where K0 is a (3m12n)3(m1n) matrix obtained from the
eigenmatrixM ~m! by inserting zero row vectors in the row posi-
tions 3j 22,3j ( j 51, . . . ,m) and 3m12k21(k51, . . . ,n).
Hence, ifh is a solution of Eq.~2.21!, thenK0h50, so that Eq.
~3.6! yields

Q~m!J2~m!h5@ṽ#C~m!h. (3.7)
MAY 2005, Vol. 72 Õ 425
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Premultiplying Eq.~2.19! by J0(m), and using the last equatio
and Eqs.~3.4! and~3.5a!, one has the following expression for th
lower half of the vectorj:

jL5J3~m!@ṽ#C~m!h5J2~m!h. (3.8a)

On the other hand, Eqs.~2.12! and~3.2! give the upper half ofj:

jU [$j1 , . . . ,j2m1n%
T5J1~j!h. (3.8b)

The last two equations may be combined into one single exp
sion, according to~3.5b!:

j5J~mk!h. (3.9)

If mk is a root of the characteristic equation~3.1!, then Eq.
~2.18! with m5mk has a nontrivial solutionh. The components of
the vectorj5J(mk)h satisfy Eq.~2.15!. Then, with the vector
function x and its components defined by Eqs.~2.9!–~2.11!, their
spatial derivatives~2.5! and ~2.6! satisfy the constitutive relation
~2.8!. The inherent equations governing the 3-S, 2-S, 3-G or 2
vectors are automatically satisfied by virtue of the definitions
these vectors in terms of the potentialsF ( i ), c ( j ), U ( i ), V( i ) and
W( j ). Consequently, Eq.~2.11! yields the potentials of a two-
dimensional field satisfying all field equations. We shall refer
the constant vectorj and the vector-valued functionx, respec-
tively, as azeroth-order eigenvectorand azeroth-order eigenso-
lution associated with the eigenvaluemk .

The eigenvalues occur in complex conjugate pairs because
characteristic equation has real coefficients. Hence there arem
1n pairs of complex conjugate eigenvalues. Furthermore,j̄̄,
the complex conjugate ofj, is an eigenvector associated with th
conjugate eigenvaluem̄0 . Then, according to Eq.~2.11!, for
any complex analytic functionf (x1m0y,m0), the following
expression

x1x̄52 Re@ f ~x1m0y,m0!j# (3.10)

yields real-valued potentials for Eqs.~3.8a! and ~3.8b!, whose
spatial derivatives, as given by Eqs.~2.5! and ~2.6!, satisfy the
constitutive relation and all inherent equations including equil
rium, compatibility, div(Dxi1Dyj )50 andcurl (Exi1Eyj )50.

Proof of the Complexity of Eigenvalues. We now show that,
if the material has a positive-definite energy density, then the
genvalues cannot be real. For suppose that Eq.~3.1! has a real root
m0 . ThenM (m0) is a real, singular matrix and Eq.~2.18!, with
M ~m! replaced byM (m0), must have a nontrivial real solutionh
~if h is a complex solution, then both the real and imaginary pa
of h are also solutions! which yields a real eigenvectorj
5J(m0)h becauseJ(m0) is also a real matrix. The choicef [x
1m0y gives f ,z[1 and the real eigensolutionx5(x1m0y)j. For
this eigensolution, Eqs.~2.15! and ~2.16! imply that the energy
density vanishes:

~1/2!sTg5~1/2!hTCTQ$j2m1n11 , . . . ,j4m12n%
T50

for a nontrivial states with

sTs5hTCTCh5~m0
41m0

211!~j2
21j4

21 . . . 1j2m
2 !

1~m0
211!~j2m11

2 1 . . . 1j2m1n
2 !.0.

The contradiction proves the statement.
In the following, we assume that the energy density function

positive definite. Then there can be no real eigenvalues. We
$m%' denote the set of 2m1n eigenvalues with positive imagi-
nary parts~not necessarily all distinct!, and let$m̄%' denote the
complex conjugate set. The two sets are joined to form the c
plete set of 4m12n eigenvalues$m%.

In this paper, we restrict the attention to the case whereall
eigenvalues are distinct. In this case, each eigenvalue has
~zeroth-order! eigenvector, and it will be shown that the 4m
12n eigenvectors form a linearly independent set to span
(4m12n)-dimensional vector space. Then the correspond
426 Õ Vol. 72, MAY 2005
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eigensolutions give the two-dimensional general solution of t
material. In the contrary case where the characteristic equation
repeated roots, the number of independent zeroth-order eigen
tors associated with a repeated root may or may not be equa
the multiplicity of the root, so that higher-order eigensolution
may be required to make up for the deficiency. Such cases
called degenerate of orderd if the number of higher-order eigen-
solutions needed to supplement the zeroth-order eigensolution
d. In a degenerate case, the solution space has a more genera
complicated type of mathematical structure. The various degen
ate cases, including the important case of isotropic materials, m
be treated in a manner similar to@19,7,14# for the various subjects
of plane anisotropic elasticity, piezoelectricity and laminated a
isotropic plates.

4 General Solution of the Field Equations

Orthogonality of Eigenvectors. Equations~3.2!, ~3.3! and
~3.5a! imply the relation

J1~m* !TJ2~m!5~m* 2m!21$C~m* !T2C~m!T%@ṽ#C~m!.
(4.1)

Due to the symmetry of@ṽ#, one has

J1~m* !TJ2~m!1J2~m* !TJ1~m!

5~m* 2m!21$C~m* !T@ṽ#C~m* !2C~m!T@ṽ#C~m* !

1C~m* !T@ṽ#C~m!2C~m!T@ṽ#C~m!%

5~m* 2m!21$M ~m* !2M ~m!%. (4.2)

If m andm* are distinct eigenvalues, withh andh8 as the corre-
sponding solutions of Eq.~2.21!, then, by virtue of Eqs.~3.8a! and
~3.8b!, the eigenvectorsj5J~m!h andj85J(m* )h8 satisfy

vj8,jb[j8TII j5h8T$J1~m* !TJ2~m!1J2~m* !TJ1~m!%h50,
(4.3)

where

II 5F0~2m1n!3~2m1n! I2m1n

I2m1n 0~2m1n!3~2m1n!
G , (4.4)

and the subscripts of the zero matrices indicate their row a
column dimensions. Clearly

II II 5I4m12n .

Hence any two zeroth-order eigenvectorsj andj8 associated with
distinct eigenvalues are orthogonal in the sense of Eq.~4.3!. In
particular,j is orthogonal to its complex conjugate vector:

vj,j̄b5jTII j̄50. (4.5)

In the following,vj8, jbÄvj, j8b will be called the binary product
of the two vectorsj and j8. Orthogonality of eigenvectors is
always defined in the sense of the binary product.

Complete Set of Eigenvectors and Eigensolutions.The bi-
nary product as defined for two vectors by the first equality of E
~4.3! may be extended to two matrices of the same row dimens
4m12n, regardless of their column dimensions. Equation~4.2!
becomes

~m* 2m!vJ~m* !,J~m!b5M ~m* !2M ~m!, (4.6)

Differentiation with respect tom gives

~m* 2m!vJ~m* !,J8~m!b2vJ~m* !,J~m!b52M 8~m!.
(4.7)

Settingm*5m, the last equation becomes

vJ~m!,J~m!b5M 8~m!. (4.8)

The matrixM ~m! and its adjoint matrixW~m! satisfy the poly-
nomial identity
Transactions of the ASME
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M ~m!W~m!5W~m!M ~m!5d~m!Im1n . (4.9)

Differentiation yields

M 8~m!W~m!1M ~m!W8~m!5d8~m!Im1n . (4.10)

If all eigenvaluesmk are simple roots of the characteristic equ
tion, then each matrixM (mk) is of rankm1n21. Equation~4.9!
becomes

M ~mk!W~mk!50. (4.11)

Since the symmetric matrixM (mk) has m1n21 independent
columns, and~4.11! implies that each column ofW(mk) has van-
ishing scalar products with all columns ofM (mk), it follows that
W(mk) has only one independent column, i.e., all columns
W(mk) are proportional. Then it is clear thatW(mk) must have at
least one nonvanishing diagonal elementWk [rj

TW(mk)rj at the
jth diagonal position. Hencehk [W(mk)rj is a nontrivial vector,
whererj is the jth column ofIm1n . Furthermore,

W~mk!5W~mk!rjrj
TW~mk!/Wk , (4.12)

Equation~4.11! ensures that the nontrivial vectorhk [W(mk)rj
is a solution of Eq.~2.18! with m5mk . This yields an eigenvecto
and an eigensolution for each eigenvaluemk in $m%' :

jk5J~mk!W~mk!rj , (4.13a)

xk5 f k~x1mky,mk!J~mk!W~mk!rj . (4.13b)

Since the eigenvalues are distinct, all eigenvectors may be
tained this way. Let

Z'5@j1 , . . . ,j2m1n#, (4.14a)

Z5@Z' ,Z̄'#. (4.14b)

The matrixZ contains the complete set of eigenvectors, cho
according to Eq.~4.13a! and arranged in the order of the corr
spondingmk in $m%. Z is called thebase matrix. The eigenvalues
and the base matrix together determine the two-dimensional
eral solution of the material:

x5Z^^ f 1~x1m1y,m1!, . . . ,f 2m1n~x1m2m1ny,m2m1n!&,#&c

5Re@2Z'^ f 1~x1m1y,m1!, . . . ,

f 2m1n~x1m2m1ny,m2m1n!&c'#, (4.15a)

c5 H c'

c̄'
J . (4.15b)

Here c' is an arbitrary complex constant vector of dimensi
2m1n. For any matrixs, ^s,#& denotes the block diagonal ma
trix composed of two complex conjugate diagonal blockss and
s̄. The constant vectorc in Eq. ~4.15a! is redundant since it can
be absorbed into the arbitrary analytic functionsf k . However, in
many important problems, the functionsf k differ from one an-
other only by constant multiplicative factors. Then it is conveni
to use the same function form, and combine all multiplicat
factors into an undeterminepd constant vectorc.

It will be shown in the next section that the base matrixZ is
nonsingular, i.e., the eigenvectors inZ are linearly independent
Hence Eq.~4.15! may be rewritten as

x5Zi f iZ21b, (4.16)

where

i f i[^i f i' ,#&, (4.17a)

i f i' [^ f 1~x1m1y,m1!, . . . ,f 2m1n~x1m2m1ny,m2m1n!&,
(4.17b)

and b[Zc is a real constant vector in view of Eqs.~4.14b! and
~4.15b!. HenceZi f iZ21 is a real-valued function.

With the potentials of the general solution given by E
~4.15a! and~4.15b!, the physical variables of the general soluti
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are obtained by taking spatial derivatives. LetxU andxL denote,
respectively, the upper and lower halves ofx. Then

]xxU5$F ,xy
~1! ,2F ,xx

~1! , . . . ,F ,xy
~m! ,2F ,xx

~m! ,c ,x
~1! , . . . ,c ,x

~n!%T

5@ I2m1n ,0~2m1n%3~2m1n%#Zi f ,ziZ21b, (4.18a)

]yxU5$F ,yy
~1! ,2F ,xy

~1! , . . . ,F ,yy
~m! ,2F ,xy

~m! ,c ,y
~1! , . . . ,c ,y

~n!%T

5@ I2m1n ,0~2m1n%3~2m1n%#Zim f ,ziZ21b, (4.18b)

]xxL5$U ,x
~1! ,V,x

~1! , . . . ,U ,x
~m! ,V,x

~m! ,W,x
~1! , . . . ,W,x

~m!%T

5@0~2m1n%3~2m1n% ,I2m1n#Zi f i ,zZ
21b, (4.19a)

]yxL5$U ,y
~1! ,V,y

~1! , . . . ,U ,y
~m! ,V,y

~m! ,W,y
~1! , . . . ,W,y

~m!%T

5@0~2m1n%3~2m1n% ,I2m1n#Zim f ,ziZ21b, (4.19b)

where f ,z denotes the derivative off (x1my,m) with respect to
the first argumentz5x1my, evaluated atm5mk . As the compo-
nents of two-dimensional tensors or vectors, all variables give
Eqs.~4.18a! and~4.18b! have direct physical meanings. Howev
the variablesV,x

(k) and U ,y
(k) in ~4.19a! and ~4.19b! are not tenso

components unless they are combined.
Taking the binary product ofjk with itself, and using Eqs.~4.8!

and ~4.10!, one has

vjk ,jkb5rj
TW~mk!vJ~mk!,J~mk!bW~mk!rj5rj

TWM8Wrj

5rj
TW$d8Im1n2MW 8%rj5d8rj

TWrj5d8~mk!WkÞ0.

(4.20)

Here d8(mk) does not vanish becausemk is a simple root of
d~m!50, and Wk has been defined as a nonvanishing diago
element ofW(mk).

Equations~4.3!, ~4.14! and~4.18! imply that the binary produc
of Z' with itself is a diagonal matrix of the following form:

V' [vZ' ,Z'b5^d8~m1!W1 , . . . ,d8~m2m1n!W2m1n&.
(4.21)

Furthermore, the binary product ofZ' with Z̄' yields the null
matrix in view of Eq.~4.5!. Hence

V[vZ,Zb5ZTIIZ 5^^d8~m1!W1 , . . . ,d8~m2m1n!W2m1n&,#&

5^V' ,#&. (4.22)

Since (Det@ II #)25Det@ I4m12n#51, the last equation implies th

~Det@Z# !25P1<k<2m1nud8~mk!Wku2Þ0. (4.23)

Hence the base matrixZ is nonsingular. Its 4m12n columns
form a complete set ofindependentvectors in the complex vecto
space of dimension 4m12n.

5 Intrinsic Tensors and Transformation Rules
Equations~4.12! and~4.13a! yield the following symmetric ma

trix with the real and imaginary partsFk andGk :

$d8~mk!Wk%
21jkjk

T5J~mk!W~mk!J~mk!
T/d8~mk![Fk1 iGk ,

(5.1)

From Eqs.~4.3!, ~4.14! and ~5.1! one obtains

~Fk1 iGk!II jj50 if kÞ j ; ~Fk1 iGk!II jk5jk , (5.2)

so that (Fk1 iGk)II is the projection operator into the on
dimensional subspace of the eigenvectorjk . The complex conju-
gate of Eq.~5.1! implies that (Fk2 iGk)II is the projection opera
tor into the one-dimensional subspace ofj̄k . This yields the
decomposition of the identity transformation into orthogonal p
jections:
MAY 2005, Vol. 72 Õ 427
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I4m12n5( 1<k<2m1n ~Fk1 iGk!II 1( 1<k<2m1n ~Fk2 iGk!II .

(5.3)

Hence

2( 1<k<2m1n Fk5II , (5.4)

and

G[2( 1#k<2m1n Gk . (5.5)

is a real symmetric matrix. Then

Z^V'
21,V̄'

21&ZT5II , (5.6a)

Z^2 i V'
21,i V̄'

21&ZT5G. (5.6b)

Furthermore, the following matrices are the projection operat
into the multi-dimensional subspaces spanned, respectively, by
eigenvectors inZ' and Z̄' :

1/2~ II 1 i G!II 5( 1<k<2m1n ~Fk1 iGk!II , (5.7a)

1/2~ II 2 i G!II 5( 1<k<2m1n ~Fk2 iGk!II . (5.7b)

Hence one has the following equalities and their complex con
gates

1/2~ II 1 i G!IIZ '5Z' , 1/2~ II 1 i G!IIZ̄ '50.

Clearly,

GIIZ '52 iZ' , GIIZ̄ '5 i Z̄' . (5.8)

Hence the matrixGII has2 i and1 i as eigenvalues of multiplic-
ity 2m1n, and the corresponding eigenvectors are the column
Z' and Z̄' , respectively, i.e.,

GIIZ 5Z^2 i I2m1n ,i I2m1n&, (5.9)

which also follows directly from Eq.~5.6b!. Postmultiplying Eq.
~5.9! by ^V'

21,2V̄'
21&ZT, and using~5.6a! and ~5.6b!, one ob-

tains i GII G5Z^2 i V'
21,2 i V̄'

21&ZT52 i II , i.e.,

GII GII 52I4m12n . (5.10)

The real symmetric matrixG has special importance in crac
problems and in the fundamental solutions~Green’s functions! of
various regions. IfG and the base matrixZ are each separated int
four submatrices of dimension (2m1n)3(2m1n)

G[F2L ST

S HG , (5.11a)

Z5F B B̄

A Ā
G , (5.11b)

then L and H are symmetric butS is generally not. Equation
~5.10! yields

HL 2SS5LH 2STST5I2m1n , (5.12)

LS52~LS!T, SH52~SH!T. (5.13)

This implies thatLS and SH are skew-symmetric. Equation
~4.20! and ~5.11b! give

V'5ATB1BTA, (5.14a)

ATB̄1BTĀ50. (5.14b)

From Eqs.~5.6a! and ~5.6b! follow
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L52iBV'
21BT, (5.15a)

H522iAV'
21AT, (5.15b)

S52 i ~2AV'
21BT2I2m1n!, (5.15c)

and Eq.~5.8! gives

LA 5~ST1 i I2m1n!B, (5.16a)

HB52~S1 i I2m1n!A. (5.16b)

In 2-D elasticity, wherem5n51, L , H andS are 333 matrices
called Barnett-Lothe tensors, although one of the tensors appeare
earlier in Stroh’s work@2#. If G is found, then any one of the four
submatrices ofZ determines the other three, and hence alsoZ.

There are two ways to obtainG explicitly. One is using Eqs.
~5.1! and ~5.5!. This yields II 1 i G as the spectral sum of the
contributions from all eigenmodes:

II 1 i G5( 1<k<2m1n 2J~mk!W~mk!J~mk!
T/d8~mk!.

(5.17)

The other way is using Eq.~5.6b! in terms of the base matrixZ
and

V'
215^1/$d8~m1!W1%, . . . ,1/$d8~m2m1n!W2m1n%&.

(5.18)

Equation~5.17! is an intrinsic expression independent of the arbi-
trary scalar multiplicative factors contained in the eigenvectors.
Equations~5.6! and ~5.18! are easier to use, and, althoughV'

21

andZ' both depend on the choice of eigenvectors,G does not.
An analytical expression ofZ21 is often needed in the exact

expressions of Green’s functions and in the solutions of multi-
material wedge problems@20#. With V'

21 given by Eq.~5.18!, the
following expressions are obtained from Eqs.~5.6a!, ~5.6b! and
~5.9!:

Z215^V'
21,V̄'

21&ZTII 5^ i V'
21,2 i V̄'

21&ZTII GII . (5.19)

Rotational Transformation. We define the matrices associ-
ated with two-dimensional rotation

Q2 [F cosu sinu

2 sinu cosu
G , Q4m12n [^Q2&2m1n (5.20)

Under a coordinate transformation$x* ,y* %T5Q2$x,y%T, the
eigenvectors and the base matrixZ change in the following man-
ner:

j* 5Q4m12nj, (5.21a)

Z* 5Q4m12nZ. (5.21b)

The binary product is invariant under the rotation transformation,

vjj* ,jk* b5vjj ,jkb (5.22)

and it follows thatV'5vZ' , Z'̄ b is rotation invariant. Equations
~4.12! implies that

Fk* 5Q4m12nFkQ4m12n
T , Gk* 5Q4m12nGkQ4m12n

T .
(5.23)

This tensorial transformation rule must also be satisfied byG.

Affine Transformation. Consider a nonsingular linear trans-
formation, t : Z'→(Z')* 5Z't, in the (2m1n)-dimensional
space spanned by the column vectors ofZ' , and the conjugate
transformationt̄ : Z̄'→(Z̄')* 5Z̄'t̄. One hasZ*5Z^t,t̄& and
Z* 215^t21,t̄21&Z21. Equation~5.9! yields

G5Z^2 i I ,i I &Z21II →
G* 5Z* ^2 i I ,i I &Z* 21II 5Z^t,t̄&^2 i I ,i I &^t21,t̄21&Z21II 5G,
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i.e., the real symmetric tensorG is invariant under an arbitrary
affine transformation of the base vectors that preserves the c
plex conjugate relation. This implies, in particular, thatG can be
determined from any set of independent eigenvectors, and
practice of normalizing eigenvectors~usually performed in the
Stroh formalism of anisotropic elasticity! is superfluous.

6 Green’s Function of an Infinite Domain
„Fundamental Singularity Solution…

Consider a solutionx of the infinite two-dimensional domain
that satisfies the requirements:

~i! s andg vanish at infinity;
~ii ! x has a constant discontinuityx0 across the negativex-axis,

i.e., in polar coordinates,

@x#[rdx5x~r ,p!2x~r ,2p!5x0 , (6.1)

where the integral is along a closed path encircling the origin
the counterclockwise sense. We let

x5~2p!21G`x0 . (6.2)

Then the matrix function (2p)21G` of dimension (4m
12n)3(4m12n) is called Green’s function of the infinite do
main with a singularity at the origin, and the constant vectorx0 is
called the strength of singularity. By setting

f ~z,m!5~2p i !21 log@z#, (6.3)

Eq. ~4.16! gives the functionx of Eq. ~6.2!. Hence

G`5Zi2 i log@x1my#iZ21, (6.4)

On the upper and lower sides of the negative real axis, the f
tion 2 i log@z# has the values2 i (log@r#1ip) and 2 i (log@r#
2ip), respectively, since Im@m#.0. Consequently, both2 i log@z#
and its complex conjugate have the same constant jump 2p across
the negative real axis. Hence Green’s function (2p)21G` has a
constant discontinuityI4m12n across any branch cut emanatin
from the origin.

The 3-S vectorss( i )5$F ,yy
( i ) ,F ,xx

( i ) ,2F ,xy
( i ) %T contained in the

x,x5$F ,xy
~1! ,2F ,xx

~1! , . . . ,F ,xy
~m! ,2F ,xx

~m! ,c ,x
~1! , . . . ,

5~2pr !21GII x05~2pr !21GII rdx.

Thus, the intrinsic matrixG has the physical significance as th
influence matrix relating the various types of discontinuities at
singularity ~concentrated forces, discontinuities of displacem
and inclination, etc.! to the response along the positivex-axis of
the physical variablesF ,xy

( i ) , 2F ,xx
( i ) , c ,x

( j ) , U ,x
( i ) , V,x

( i ) and W,x
( j )

~multiplied by 2pr ).
If Eq. ~6.7! and the corresponding expression ofx,y are recast

in polar coordinates, then the variables corresponding to Eq.~6.7!
in polar coordinates are the components of the vector (2pr )21

3Q4m12nGII x0 , which is related to the right-hand side of E
~6.7! by a rotation transformation only~see Eq.~5.2! of @21# for
plane anisotropic elasticity and Eq.~6.16! of @16# for anisotropic
plate theory!. This shows that, for Green’s functions of the infini
domain in anisotropic elasticity and laminates, the membr
forcesNu , Nru , the circumferential bending momentM u , and the
radial components of strain and curvature,« r andw,rr all have the
simple cosu and sinu dependence, and their values on any rad
line are related to the corresponding values on the positivex-axis
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multi-dimensional vectors may be kinetic~stress field in plane
elasticity! and may also be kinematical~e.g., curvatures in the
plate bending problem!. In the first case, discontinuities ofF ,y

( i )

and of 2F ,x
( i ) correspond, respectively, to concentrated forces in

the x- and y-directions. In the second case, the discontinuities
correspond to dislocations in the inclinations of the deformed
plate surface. All such discontinuities, as well as the others ass
ciated with the 2-S vectors, appear as the first 2m1n elements of
x05rdx. For the 3-G vectorsg( i )5$U ,x

( i ) ,V,y
( i ) ,U ,y

( i )1V,x
( i )%T, dis-

continuities inU ( i ) and V( i ) imply dislocations in the displace-
ments of plane elasticity, or in the moment potentials of the plat
bending problem, etc. For the 2-G vectorh( j )5$W,x

( j ) ,W,y
( j )%T, a

discontinuity inW( j ) corresponds to a dislocation in the antiplane
displacement. All such discontinuities appear as the last 2m1n
elements ofx0 . The first 2m1n columns of Green’s function
(2p)21G` are the response functions of the infinite plane to the
first group of elements ofx0 , i.e., discontinuities inF ,y

( i ) , 2F ,x
( i )

andc ( i ), whereas the last 2m1n columns of (2p)21G` are the
response functions to discontinuities inU ( i ), V( i ) andW( j ).

Since log@z#5log@r#1log@cosu1m sinu#, Eq. ~6.4! may be re-
written by using~5.9!:

G`5 log@r #GII 1GII i log@cosu1m sinu#iZ21. (6.5)

Thus, in polar coordinates,G` is separated into functions ofr and
u.

Combining Eqs.~4.18! and ~4.19!, for the functionx of Eqs.
~6.2! and ~6.4!, one has

2px,x5Z^^2 i /~x1m1y!, . . . ,2 i /~x1m2m1ny!&,#&Z21x0 ,

(6.6a)

2px,y5Z^^2 im1 /~x1m1y!, . . . ,2 im2m1n /~x

1m2m1ny!&,#&Z21x0 . (6.6b)

On the positivex-axis, Eq.~6.6a! reduces to the following simple
expression by virtue of Eq.~5.9!:

c ,x
~n! ,U ,x

~1! ,V,x
~1! , . . . ,U ,x

~m! ,V,x
~m! ,W,x

~1! , . . . ,W,x
~m!%T

(6.7)
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by the rotation transformation. However, other variables including
Nr , Mr , Mru , «u , 2« ru and the curvature components with theu
and r -u subscripts have much more complicated angular depen
dence involving trigonometric functions with complex arguments

7 Green’s Function of the Semi-Infinite Region With
Interior or Edge Singularities

Consider the problem of the half planey>0, with a singularity
of strengthx0 at an interior point (x,y)5(0,h), and with 2m
1n homogeneous boundary conditions ony50:

Kx50, (7.1a)

K[@K1 ,I2m1n 2K1#, (7.1b)

whereK1 is a diagonalmatrix of dimension 2m1n whose diag-
onal elements are either 0 or 1. Examples ofK1 for various fixed,
free and mixed boundary conditions of anisotropic plates with
bending-stretching coupling are shown in@17#.
MAY 2005, Vol. 72 Õ 429



By shifting the singularity from the origin to the point (0,h),
Green’s function of the infinite domain becomes (2p)21G(0,h) ,
where

G~0,h!5Z^^2 log@x1m1y2m1h#, . . . ,2 i log@x1m2m1n~y

2h!&,#&Z21. (7.2)

Although Eq.~7.2! has the required singularity at (0,h), KG (0,h)
does not vanish ony50. One must combine~7.2! with an appro-
priate nonsingular solution so that the combinationG satisfies
KG uy5050 . Clearly,

K ~Guy50!Z52( i log@x2m jh#KZ ^Dj ,0~2m1n!3~2m1n!&

1( i log@x2m̄ jh#KZ ^0~2m1n!3~2m1n! ,Dj&5

2( i log@x2m jh#@KZ'Dj ,0~2m1n!3~2m1n!#

1( i log@x2m̄ jh#@0~2m1n!3~2m1n! ,KZ̄'Dj #,

(7.3)

where the summations extend over 1< j <2m1n, andDj denotes
the diagonal matrix of dimension 2m1n with all elements vanish
except thejth diagonal element 1.

Consider the following nonsingular matrix functionsGj ( j
51, . . . ,2m1n) and their boundary values:

Gj [Z^^2 i log@x1m1y2m̄ jh#, . . . ,2 i log@x1m2m1ny

2m̄ jh#&,#&^Cj ,C̄j&IIZ
21, (7.4)

K ~Gj uy50!Z5KZ ^2 i log@x2m̄ jh#I2m1n ,#&^Cj ,C̄j&II 5 i log@x

2m jh#@KZ̄'C̄j ,0~2m1n!3~2m1n!#2 i log@x2m̄ jh#

3@0~2m1n!3~2m1n! ,KZ'Cj #, (7.5)

whereCj ( j 51, . . . ,2m1n) are constant matrices of dimensio
(2m1n)3(2m1n) to be determined from the bounda
condition

K S G~0,h!1( Gj D uy5050. (7.6)

Substituting Eqs.~7.2! and~7.4! into the last equation, one obtain

Cj5TDj ~ j 51, . . . ,2m1n!, (7.7a)

T[~KZ'!21KZ̄' , (7.7b)

andGreen’s function for the half plane y>0 with a singularity at
(0,h) is given by(2p)21G, where

G5Z^^2 i log@x1m1y2m1h#, . . . ,2 i log@x1m2m1n~y2h!#&,

#&Z211( 1< j <2m1n Z^^2 i log@x1m1y2m̄ jh#, . . . ,

2 i log@x1m2m1ny2m̄ jh#&,#&^TDj ,T̄Dj&IIZ
21. (7.8)

This solution is valid only for the nondegenerate case, includ
the case when all eigenvalues are distinct. Settingh50 in Eq.
~7.8!, one obtains Green’s function for the half plane subjected
an edge singularity at the origin.

We recall that the analytic functionsf k(x1mky,mk) in the gen-
eral solution of Eq.~4.15! may depend onmk implicitly through
the complex variablex1mky and explicitly through the secon
argument. An example of the general dependence is given by
first line of Eq.~7.8!.
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8 Particular Cases and Concluding Remarks
A unified formalism is developed for general types of coupled

two-dimensional problems in linear theories of continua with a
positive-definite energy density function. The formalism encom-
passes anisotropic thin plate theory with arbitrary bending-
stretching coupling, two-dimensional anisotropic elasticity and pi-
ezoelectricity, anisotropic piezoelectric plates, and other theories.
In these two-dimensional theories of continua, the physical vari-
ables appear in groups of 3-S vectors and 2-S vectors, and their
conjugate 3-G and 2-G vectors. By expressing the 3-G and 2-G
vectors as functions of the conjugate 3-S and 2-S vectors~ar-
ranged in the same order! through the constitutive matrix@ṽ#, one
obtains an eigenrelation of Eq.~2.19!. This relation leads imme-
diately to Eq.~2.21!, M ~m!h50, and Eqs.~3.2!, ~3.5! and~3.9! for
the eigenvectors of the materials. If all material eigenvalues are
distinct, as is assumed in the present paper, then a complete set of
eigenvectors may be obtained in this simple manner, and as-
sembled as the column vectors of the base matrixZ. The general
solution of the theory is then given by Eq.~4.15! in terms of a set
of arbitrary analytic functions, each containing a distinct eigen-
valuemk . The physical variables of stress, strain, plate curvatures
and bending and twisting moments, electric field, electric dis-
placement, etc., are obtained from thex- andy-derivatives of the
general solutionx for the potentials. In principle, all solutions of
2-D boundary-value problems for any domain may be obtained by
determining the appropriate set of analytic functionsf k(x
1mky,mk) using various mathematical methods including power
and Laurent series, analytic continuation, the mapping method in
complex planes, boundary integral equations and boundary ele-
ment methods, etc. A number of these powerful analytical tools
have been meticulously developed in isotropic elasticity and sys-
tematically applied to a wide range of problems by Muskhelish-
ivili and others@22#. They have been extended to anisotropic me-
dia with the use of multiple complex variables. The adoption of
such methods to the multi-variable coupled continua in the present
formalism is straightforward, though the relatively large size of
the problem would certainly require all analytical derivations be
performed by symbolic algebra.

When applied to the simple case of two-dimensional aniso-
tropic elasticity, the unified formalism reduces to Lekhnitskii’s
formalism, not to the Eshelby-Stroh formalism in terms of the
stiffness constants. The constitutive matrix@ṽ# reduces exactly to
the 535 anisotropic compliance matrix@b i j # in the Lekhnitskii
theory. The in-plane stresses and the anti-plane shearing stresses
form 3-S and 2-S vectors, respectively, and their conjugate 3-G
and 2-G vectors are$u,x ,v ,y ,u,y1v ,x%

T and $w,x ,w,y%
T. The el-

ements of the 232 eigenmatrixM ~m! are the three well-known
polynomialsl 4(m), 2 l 3(m) and l 2(m). The complete derivation
of the Eshelby-Stroh formalism may also be given based on the
eigenrelation~2.19!, as shown by Yin@5#. However, instead of
using Eq.~2.21! with a 232 matrix M ~m!, the Eshelby-Stroh for-
malism uses Eq.~2.20! involving the stiffness matrix. The dimen-
sion of the eigenmatrixQ(m)T@ṽ#21Q(m) is 333 rather than
232. As a result, analytical expression of the eigenvectors be-
come too complicated to be given explicitly. The complexity of
the stiffness-based formulation relative to the compliance-based
formulation was pointed out by Stroh@2#. Moreover, the analytical
difficulty of the Stroh formalism is drastically aggravated in the
degenerate cases requiring the determination of higher-order
eigenvectors@19#.

For the anisotropic plate theory with bending-extension cou-
pling, one has two 3-S vectors,$F ,yy ,F ,xx ,2F ,xy%

T and
$w,yy ,w,xx ,2w,xy%

T, and the conjugate 3-G vectors,
$u,x ,v ,y ,u,y1v ,x%

T and $M y ,Mx ,22Mxy%
T5$C1,x ,C2,y ,C1,y

1C2,x%
T, whereC1(x,y) and C2(x,y) are the moment poten-

tials. It is a mixed formulation, in contrast to the purely displace-
ment formulation of the conventional laminated plate theory in
terms of the three stiffness matricesA, B and D. Notice that, in
Transactions of the ASME
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the present formulation, the orders of the moment variables an
the curvature variables are different from those in the conv
tional laminated pate theory, andMxy andw,xy have been replaced
by 22Mxy and 2w,xy , respectively. The resulting eigenrelatio
also involves a 232 eigenmatrixM ~m! but all its elements are
quartic functions. The general solutions ofall types of nondegen-
erate and degenerateanisotropic plates have been determined e
plicitly @14,15#, and so are Green’s functions for the infinite plat
a semi-infinite plate with various types of boundary conditio
including but not limited to fixed, free and simple supports, and
infinite plate with an elliptical hole or inclusion@14,16,17#. These
explicit results for the degenerate cases would be very difficult
obtain, and could be obtained only in unduly cumbersome expr
sions, if the conventional displacement formulation is used. T
displacement formulation for unsymmetric laminates@9–11#
yields an eigenmatrix of dimension 333.

In two-dimensional piezoelectricity, the electric displaceme
and the electric field are 2-S and 2-G vectors that participate in
constitutive relation in addition to the stresses and strains. T
results in an eigenmatrixM ~m! with the dimension 333, contain-
ing elements that are polynomial functions inm of degrees vary-
ing from 2 to 4. There are 14 distinct types of nondegenerate
degenerate piezoelectric materials, each with a different repre
tation of the general solution. The results are given explicitly
Yin @7,8#.

The unified formalism of the present theory determines t
eigenvectors and the general solution of two-dimensional pr
lems by eliminating the firstm odd-numbered components of th
eigenvectorj on the basis of the relationF ,xy

( i ) 5F ,yx
( i ) . This elimi-

nation cannot be implemented in the Stroh formalism of pla
elasticity, nor can it be done in the conventional displacem
formulation of the laminated plate theory based on the stiffne
matricesA, B, andD. Thus, the present theory yields a systema
procedure for choosing the primary and secondary variables
the constitutive matrix that lead to the eigenvectors and the g
eral solution in the simplest manner. This choice of variab
yields results and expressions that have the same standard
for the different theories of two-dimensional continua, so that a
solution of one set of field equations~and the accompanying
boundary conditions! generates a corresponding solution of a
other set of field equations with a similar mathematical structu
Without the unified formalism, the exact formal analogy amo
the various theories remains obscure, due to the improper ch
of the variables and the constitutive matrices~e.g., stiffness-based
Stroh formalism in plane elasticity andA, B andD matrices in the
conventional laminated plate theory!.

Notice that in Green’s functions of the infinite plane and th
half plane, the analytic functionsf (x1mky,mk) occur as the ele-
ments of a diagonal matrix premultiplied byZ and postmultiplied
by eitherZ21 or ^TDj ,T̄Dj&IIZ

21. The functional form off k is
the same for allk, and it is dependent on the shape of the regi
and the boundary conditions, but not on the constitutive mat
and the number of three-vectors and two-vectors in the theo
Thus, when the function form off k has been determined for
Green’s function of plane anisotropic elasticity, one readily o
tains corresponding Green’s function for the anisotropic pla
theory, for two-dimensional problems of piezoelectricity, and ev
for piezoelectric laminated plates without the need to repeat
analysis for the different theories. One simply uses the same fu
tion form f k in Eq. ~6.4! or ~7.8!, depending on the domain, while
using the base matrixZ specific to the material, and a matrixT of
Eq. ~7.7b! which characterizes the material and the boundary c
ditions. In this way, the unified formalism allows the fundamen
singularity solutions and the analytical solutions of bounda
value problems to be achieved in a single analysis regardles
the dimension of the problem, the number and physical roles
the variables, as well as the constitutive matrix.
Journal of Applied Mechanics
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In contrast to the relatively simple results of the present cas
with all distinct eigenvalues, the various degenerate cases are an
lytically more complicated. The main complication arises from
intrinsic coupling of any high-order eigenmode with all lower-
order eigenmodes that share a common eigenvalue. The situati
may be compared to the intrinsic coupling of the three fracture
modes in interface fracture problems, which affects the solution
and yields qualitatively different results from the uncoupled case
Isotropic elastic materials gives one important example of the de
generate case. Their general solution and Green’s functions for th
various domains cannot be obtained from the analytical solution
of the nondegenerate case by mere substitution of the isotrop
elastic constants for the anisotropic ones. Complete analyses
the various degenerate cases and the resulting general solution a
Green’s function have been developed in recent papers for th
separate subjects of plane elasticity, piezoelectricity and aniso
tropic plates @4,5,7,8,16,17,19#. The unified formalism of the
present work may be extended to various degenerate cases acco
ing to the derivative rule, which has been established for the vari
ous special theories in@7,16,19#.

References
@1# Lekhnitskii, S. G., 1963,Theory of Elasticity of an Anisotropic Body, Holden-

Day, San Francisco.
@2# Stroh, A. N., 1958, ‘‘Dislocations and Cracks in Anisotropic Elasticity,’’ Phi-

los. Mag.,3, pp. 625–646.
@3# Ting, T. C. T., 1996,Anisotropic Elasticity: Theory and Application, Oxford

University Press, New York.
@4# Yin, W.-L., 2000, ‘‘Deconstructing Plane Anisotropic Elasticity, Part I: The

Latent Structure of Lekhnitskii’s Formalism,’’ Int. J. Solids Struct.,37, pp.
5257–5276.

@5# Yin, W.-L., 2000, ‘‘Deconstructing Plane Anisotropic Elasticity, Part II: Stroh’s
Formalism Sans Frills,’’ Int. J. Solids Struct.,37, pp. 5277–5296.

@6# Sosa, H., 1991, ‘‘Plane Problems in Piezoelectric Media With Defects,’’ Int. J.
Solids Struct.,28, pp. 491–505.

@7# Yin, W.-L., 2005, ‘‘Two-Dimensional Piezoelectricity, Part I: Eigensolutions of
Nondegenerate and Degenerate Materials,’’ Int. J. Solids Struct.,42, pp. 2645–
2668.

@8# Yin, W.-L., 2005, ‘‘Two-Dimensional Piezoelectricity, Part II: General Solu-
tion, Green’s Function and Interface Cracks,’’ Int. J. Solids Struct.,42, pp.
2669–2687.

@9# Becker, W., 1991, ‘‘A Complex Potential Method for Plate Problems With
Bending Extension Coupling,’’ Arch. Appl. Mech.,61, pp. 318–326.

@10# Lu, P., and Mahrenholtz, O., 1994, ‘‘Extension of the Stroh Formalism to the
Analysis of Bending of Anisotropic Elastic Plates,’’ J. Mech. Phys. Solids,42,
pp. 1725–1741.

@11# Cheng, Z.-Q., and Reddy, J. N., 2002, ‘‘Octet Formalism for Kirchhoff Aniso-
tropic Plates,’’ Proc. R. Soc. London, Ser. A,458, pp. 1499–1517.

@12# Chen, P., and Shen, Z., 2001, ‘‘Extension of Lekhnitskii’s Complex Potential
Approach to Unsymmetric Composite Laminates,’’ Mech. Res. Commun.,28,
pp. 423–428.

@13# Hwu, C., 2003, ‘‘Stroh-Like Formalism for the Coupled Stretching-Bending
Analysis of Composite Laminates,’’ Int. J. Solids Struct.,40, pp. 3681–3705.

@14# Yin, W.-L., 2003, ‘‘General Solutions of Laminated Anisotropic Plates,’’
ASME J. Appl. Mech.,70, pp. 496–504.

@15# Yin, W.-L., 2003, ‘‘Structure and Properties of the Solution Space of General
Anisotropic Laminates,’’ Int. J. Solids Struct.,40, pp. 1825–1852.

@16# Yin, W.-L., 2005, ‘‘Green’s Function of Anisotropic Plates With Unrestricted
Coupling and Degeneracy, Part 1: The Infinite Plate,’’ Composite Struct., in
press.

@17# Yin, W.-L., 2005, ‘‘Green’s Function of Anisotropic Plates With Unrestricted
Coupling and Degeneracy, Part 2: Other Domains and Special Laminates,
Composite Struct., in press.

@18# Ting, T. C. T., 1992, ‘‘Anatomy of Green’s Functions for Line Forces and
Dislocations in Anisotropic Media and Degenerate Materials,’’The Jens Lothe
Symposium Volume, Phys. Scr., T,T44, pp. 137–144.

@19# Yin, W.-L., 2004, ‘‘Degeneracy, Derivative Rule, and Green’s Function of
Anisotropic Elasticity,’’ ASME J. Appl. Mech.,71, pp. 273–282.

@20# Yin, W.-L., 2003, ‘‘Anisotropic Elasticity and Multi-Material Singularities,’’ J.
Elast.,71, pp. 263–292.

@21# Yin, W.-L., 2005, ‘‘Green’s Function of Bimaterials Comprising all Cases of
Material Degeneracy,’’ Int. J. Solids Struct.,42, pp. 1–19.

@22# Muskhelishvili, N. I., 1953,Some Basic Problems of the Mathematical Theory
of Elasticity, Noordhoof, Leyden.
MAY 2005, Vol. 72 Õ 431



Michael Krommer
Institute for Technical Mechanics,
Johannes Kepler University Linz,

Altenbergerstr. 69,
A-4040 Linz, Austria

e-mail: krommer@mechatronik.uni-linz.ac.at

Vasundara V. Varadan
George & Boyce Billingsley Endowed Chair

and Distinguished Professor of Electrical
Engineering,

University of Arkansas,
3217 Bell Engineering Center,

Fayetteville, AR 72701
e-mail: vvvesm@engr.uark.edu

Control of Bending Vibrations
Within Subdomains of Thin
Plates—Part I: Theory and Exact
Solution
Control of the surface profile or shape of structures that deform under externally applied
dynamical loads is important in many applications where no control can be exercised on
the applied loads. The only recourse is to make the structure adaptive by the action of
smart actuators that can null or nearly null the resulting deformation. The class of
problems, to which shape control may be applied, is huge and in this paper a theoretical
approach is presented for a special subset of such problems, wherein, suitable actuation
can be applied in order to keep a subdomain of the structure in its nondeformed state
under the action of external dynamical loads. A suitable actuation to achieve this goal is
the complement of the self-stress. An appropriate distribution of the self-stress should
result in an elimination of the motion of the subdomain of the structure. Moreover, we seek
a solution of the problem, which only requires the application of the self-stress in the
subdomains or in a slightly larger domain. This is also a practical approach to such
problems where it would be prohibitively expensive to design and power actuators to
control the entire domain. We choose a linear, thin elastic plate to present the basics of
our methodology. The main part of the paper is devoted to the theoretical foundation of
the method; however, to show its validity, we also present exact results for the simple case
of a circular plate in axisymmetric bending.@DOI: 10.1115/1.1839185#
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1 Introduction
Shape control of structures is concerned with methods that

result in a desired shape by applying a suitable actuation. A
sired shape may be a prescribed new shape or may be the
deformed shape for a structure that is under the influence of
ternal disturbances. No matter what the actual desired shape i
problem formulation will always result in the question: Given
external disturbance, how does a suitable distribution of the
tuation result in the structure assuming the desired shape.

In a fundamental contribution Haftka and Adelman@1# were the
first to introduce the notion of shape control into the journal
erature. They noted that disturbances that affect the shape o
structure could be subdivided into two types; one type is trans
whereas the other type is associated with fixed deformation
those that vary slowly in time. The first refers to dynamic sha
control while the latter refers to static shape control. Haftka
Adelman addressed the problem of static shape control of a l
spacecraft structure by applying temperature as an actua
mechanism. Irschik and Pichler@2# reported on results for dy
namic shape control of solids and structures by applied ther
expansion strains. Irschik@3# gave a detailed discussion and r
view of both static and dynamic shape control using piezoelec
eigenstrains as the actuation mechanism. In addition to the
expansion strains and piezoelectric strains, other actuation m
ods may be used. However, all of these actuation methods be
to the general class of what is usually referred to as eigens
actuation or self-stress actuation methods. Early reports on

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, June 11, 20
final revision, July 16, 2004. Editor: R. M. McMeeking. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be acc
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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stresses were given by Reissner@4# and Nemenyi@5#. Presently,
self-stresses are discussed in connection with micromechanics
solids ~Mura @6#! and, more recently, in connection with shap
control and active~noise! control of structures~Rao and Sunar@7#,
Gopinathan et al.@8#, Irschik @3#!. Hence, a unified approach can
be used for all members of the general class of self-stress act
tion methods.

In the present Part~Part I! of this paper we present the theoret
ical basics of a new method to control the bending vibrations of
subdomain of a thin plate; suitably distributed sources of se
stress are only applied in the subdomain itself. We calculate ex
solutions in the framework of thin circular plates, which bend int
an axisymmetric surface, and we consider control of arbitra
subdomains; however, we do not pay any attention to the proble
of how to practically achieve the required distributed control. W
only assume the control agency to be any possible type of sour
of self-stress. In the forthcoming part~Part II, Krommer and
Varadan@9#! of this paper we will especially focus on this latter
practical aspect of the problem.

We begin the first part of this paper by discussing a spec
problem of dynamic shape control. Our goal is to eliminate th
motion of a subdomain of a linear elastic plate by applying contr
by means of self-stress actuation. We apply the actuation only
the subdomain we want to control, or in a slightly larger domai
Dynamic shape control of plates has been studied intensively
the literature; however, elimination of the total motion of the plat
was the desired goal. Nader et al.@10# and Irschik et al.@11# pub-
lished results for circular plates and rectangular plates with h
mogenous kinematic boundary conditions. In order to be app
cable to dynamic shape control of subdomains, we have to exte
the method developed by Nader et al.@10# and Irschik et al.@11#
to the case of nonhomogenous kinematic boundary conditions i
first step. Our method for the dynamic shape control of the su
domain is based on the free-body diagram of the subdomain;
leasing the subdomain from the rest of the plate requires that
account for the influence of the rest of the plate by nonhomo

04;
per
lied
rsity
epted
005 by ASME Transactions of the ASME



enous boundary conditions. These have to be chosen such th
solution for the statically admissible stress in the released sub
main exists. Therefore, nonhomogenous kinematic boundary c
ditions enter the formulation in this step. To eliminate the nonh
mogenous kinematic boundary conditions, we introduce
additive decomposition of the motion into two parts; one accou
for the nonhomogenous kinematic boundary conditions, the ot
for the external force loading. In order to eliminate both parts
the bending motion in the subdomain, we have to release
slightly larger domain of the plate; then we are able to elimina
the influence of the nonhomogenous kinematic boundary con
tions within the additional, so-called transition domain, such th
the motion within the subdomain is exactly eliminated or co
trolled to result in the desired shape of the subdomain. Theref
our solution is optimal. Finally, we demonstrate the validity of th
method for the axisymmetric bending motion of a thin, circul
plate, for which we are able to calculate exact analytic solutio

The motivation for starting to work on this problem was th
problem of controlling the shape of an antenna that is conform
to a deformable structure. For the performance of such antenn
is important to keep the domain of a structure, where the ante
is situated, in its nondeformed state. Preliminary results for
antenna problem can be found in Krommer and Varadan@12# in
which we have not provided the theoretical foundation. Extend
results will be presented in the second part of this paper~Krom-
mer and Varadan@9#!. Other applications belong to the field o
noise reduction in structures; see, for instance, Gopinathan e
@8#. In these applications it is often not necessary to control
whole structure, but a significant noise reduction can be achie
by focusing on critical parts of the structure. An example wou
be the funnel of a magnetic resonance imaging~MRI! unit, which
is responsible for the highly annoying noise experienced by
tients ~Nader et al.@13#!.

2 Mathematical Formulation
The equations that govern the small bending motion of a t

plate ~or possibly only a subdomain of a thin plate! are

A: div~div M !1pz5r~0!ẅ0 ,

C: @div M "n1¹~Mn "s!•s2q̄#dw050, ~Mn "n2m̄!~¹dw0•n!

50, (1)

P: @~Mn "s!dw0#P1
P2

50,

together with initial conditions forw0 andẇ0. A is the area of the
plate, which is bounded by the curveC; n and s are the unit
normal vector and the unit tangential vector ofC, and P is any
point of C. Figure 1 shows the geometry of the plate. Further,M
is the second-order moment tensor,pz is the transverse force load

Fig. 1 Geometry of the plate
Journal of Applied Mechanics
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ing, r (0) denotes linear inertiaw0 denotes the deflection of the
plate, andm̄ and q̄ stand for the prescribed moment and the pre-
scribed transverse force at the boundary. Details of the notation
used in Eq.~1! can be found in Krommer@14#. The constitutive
relation for the moment tensorM is

M5D:k2M* , (2)

where k52@¹¹w01(¹¹w0)T#/2 is the curvature tensor. The
second order self-stress tensorM* denotes a source of self-stress
acting in the elastic background plate. Sources of self-stresses
may be of different nature, like thermal stresses or piezoelectric
stresses; however, self-stresses are not restricted to these latter two
sources; see Mura@6#. D is the fourth order bending stiffness
tensor. Equation~1! can be cast into a convolution integral

E
A
p̂z

dŵ0dA2E
Cc

~M̂dn"n!cC dC1E
Cw

@div M̂d"n

1¹~M̂dn"s!•s#wC 0dC

5E
A
pC zŵ0

ddA1E
A
M̂* :k̂ddA2E

Cm

mC ~¹ŵ0
d
•n!dC

1E
Cq

qC ŵ0
ddC1(

i
@M̂dn"sŵ0#

P
wi
1

Pwi
2

, (3)

see the Appendix for the derivation. Equation~3! is formulated in
the Laplace domain, characterized by a hat. The superscriptd
denotes a state of the plate due to an arbitrary loadingpz

d and with
homogenous initial and boundary conditions as well as with
M* d50. We refer to this problem as the ‘‘dummy problem.’’pC z

5 p̂z1r (0)(sw0(t50)1ẇ0(t50)) accounts for nonhomogenous
initial conditions of the original problem;s is the Laplace vari-
able. The last term represents the work done by the corner forces
of the dummy problem with respect to the deflection of the origi-
nal problem in those corners, where the deflection is prescribed.
The boundary has been split into four parts corresponding to dif-
ferent types of boundary conditions.w̄0 and c̄ are prescribed
functions for displacement and normal slope at the boundary in
the original problem. Equation~3! represents an extension of the
principle of virtual forces and Maysel’s formula to dynamic prob-
lems involving nonhomogenous initial conditions and nonhomog-
enous boundary conditions. For reference see Ziegler@15# and
Ziegler and Irschik@16#. The problem with nonhomogenous kine-
matic boundary conditions can be transformed into a problem
with homogenous kinematic boundary conditions by splitting the
total deflection into two partsw05w̃01w̆0 , wherew̆0 accounts
for the nonhomogenous kinematic boundary conditions by means
of

Cw : w̆05w̄0 and Cc : ¹w̆0•n5c̄. (4)

In additionw̆0 has to be an admissible plate deflection. An integral
representation for the bending motionw̃0 is

E
A
p̂z

dŵ̃0dA5E
A
p̂̃zŵ0

ddA1E
A
M̂* :k̂ddA2E

Cm

m̂̃~¹ŵ0
d
•n!dC

1E
Cq

q̂̃ŵ0
ddC, (5)

see the Appendix for the derivation. In Eq.~5! a transformed force
p̃z , a transformed momentm̃, and a transformed transverse force
q̃ have been introduced. Definitions are

A: p̂̃z5 p̂z1r~0!~sw0~ t50!1ẇ0~ t50!!2r~0!s2ŵ̆0

1div~div M̂̆ !,
(6)
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Cm : m̂̃5mC 2M̂̆n"n, Cq : q̂̃5qC2div M̂̆ "n2¹~ M̂̆n"s!•s.

M̆ is a second-order moment tensor, which is calculated from
deflectionw̆0 as

M̆5D:k̆, k̆52
1

2
@¹¹w̆01~¹¹w̆0!T#. (7)

Finally, we define the problem of a statically admissible mome
tensorM p as

A: div~div M p!1 p̃z50,

Cq : div M p"n1¹~M pn"s!•s5q̃, Cm : M pn"n5m̃, (8)

P̄i : @M pn"s#
P̄

i
1

P̄i̇
2

50

The last term has to be satisfied for all corner pointsP̄i , where the
deflection is not prescribed. The integral representation of Eq.~5!
can be reformulated by taking care of Eq.~8!. The relations for
p̃z , q̃, andm̃, as stated in Eq.~8!, are inserted into Eq.~5! and the
Gauss theorem is applied twice. The result is

E
A
p̂z

dŵ̃dA5E
A
@M̂ p1M̂* #:k̂ddA. (9)

Due to the arbitrariness ofpz
d the deflectionw̃05w02w̆0 vanishes

identically, if M̂ p1M̂* 50 is satisfied. Therefore, applying contro
by means of self-stress actuation can be used to eliminate
bending motionw̃0 of the plate that is induced by transvers
forces. The motionw̆0 , which we like to account to the non-
homogenous kinematic boundary conditions, is not eliminat
The required distribution of the self-stress actuation is calcula
from Eq. ~8!. This is a simple task, because without any loss
generality the tensorM p can be taken as spherical,M p5mpI .
Hence,M pn"s5mpIn "s50 and Eq.~8! changes to

A: Dmp1 p̃z50,
(10)

Cq : ¹mp
•n5q̃, Cm : mp5m̃.

Depending on the boundary conditions, the solution to Eq.~10! is
either unique, not unique, or it does not exist. The nonuniquen
is not a problem, but the nonexistence is.

A crucial point for realizing control of a subdomain of the pla
is the choice ofw̆0 , which, besides being an admissible pla
deflection, only has to satisfy the nonhomogenous kinema
boundary conditions. The deflection of the controlled plate w
exactly coincide with this latter deflectionw̆0 . We therefore con-
sider the following procedure. We chose a subdomainAsub of the
plate, bounded byCsub; see Fig. 2. WithinAsub we take the de-
flection w̆0 to be zero.w̆0 at least has to satisfy

Fig. 2 Plate with subdomain
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Asub: w̆050,
(11)

Cw : w̆05w̄0 , Cc : ¹w̆0•n5c̄,

Csub: w̆050 and ¹w̆0•nsub50.

Any deflection satisfying the relations of Eq.~11! is a proper
choice forw̆0 , resulting inw̆050 insideAsub; however, it has to
be an admissible plate deflection. The required distribution of the
control by means of self-stress actuation then is obtained from Eq.
~10!, where the transformed forcep̃z , the transformed momentm̃,
and the transformed transverse forceq̃ are

Asub: p̂̃z5 p̂z1r~0!~sw0~ t50!1ẇ0~ t50!!,

A2Asub: p̂̃z5 p̂z1r~0!~sw0~ t50!1ẇ0~ t50!!2r~0!s2ŵ̆0

1div~div M̂̆ !, (12)

Cm : m̂̃5mC 2M̂̆n"n, Cq : q̂̃5qC2div M̂̆ "n2¹~ M̂̆n"s!•s.

Then, the bending motion of the controlled plate isw̆0 . If the
kinematic boundary conditions are homogenous, the problem sim-
plifies dramatically; Nader et al.@10# and Irschik et al.@11# pub-
lished results for circular plates and rectangular plates with ho-
mogenous kinematic boundary conditions.

3 Subdomain Control
We study a plate within the domainAtotal and with a boundary

defined byCtotal ; the kinematic boundary conditions are homog-
enous. Our scope is to control the bending motion within a
subdomainA of Atotal ; moreover, we apply control only in the
subdomainA. We release the subdomain from the rest of the plate
and we account for the effect of the rest of the plate, that is
Atotal2A, by applying, yet unknown, boundary conditions at the
interfacing curveC. Then we apply the method we have just de-
veloped in the preceding section. But, the boundary conditions
have to ensure a solution of Eq.~10!. Three possible types of
boundary conditions that are proper are

Fig. 3 Plate with subdomain to be controlled

Fig. 4 Clamped circular plate
Transactions of the ASME



Fig. 5 Deflection of the clamped plate; vÄ2p100 sÀ1
C: H w05w̄0 , Mn "n5m̄

div M "n1¹~Mn "s!•s5q̄, ¹w0•n5c̄

w05w̄0 , ¹w0•n5c̄
(13)

As one can see, each of the three types of boundary conditions
at least one nonhomogenous kinematic boundary condition th
has to be satisfied. Therefore, we have to apply the methodolo
that we have developed in the preceding section. We introduce
additive separation of the deflectionw05w̃01w̆0 within A. Then
the statically admissible moment tensorM p5mpI has to satisfy
Journal of Applied Mechanics
has
at
gy
the

A: Dmp1 p̃z50,
(14)

C: H mp5m̃
¹mp

•n5q̃
no boundary conditions to be satisfied,

where p̃z and m̃, q̃ have already been defined in Eq.~6!. If M p

1M* 50 is satisfied withinA, the deflectionw̃05w02w̆0 van-
ishes. Again the crucial point is the choice ofw̆0 . For that sake we
Fig. 6 Self-moment of the clamped plate; vÄ2p100 sÀ1
MAY 2005, Vol. 72 Õ 435
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Fig. 7 „a… Deflection and „b… self-moment of the clamped plate; vÄ2p500 sÀ1
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use a subdomainAsub of the subdomainA; within Asub we con-
sider w̆050. Figure 3 shows a sketch of the plate. Therefore,w̆0
has to satisfy

Asub: w̆050,

C: H w̆05w̄0

¹w̆0•n5c̄

w̆05w̄0 , ¹w̆0•n5c̄
(15)

Csub: w̆050, ¹w̆0•nsub50.

However, note thatw̄0 , c̄, m̄, andq̄ are not known, but accoun
6 Õ Vol. 72, MAY 2005
for the influence of the remaining~uncontrolled! portion of the
plate. To calculate these latter unknowns, the whole dynamic
problem has to be solved. In the next section we present solution
for the case of axisymmetric bending of clamped circular plates; a
case for which we are able to calculate exact analytical solutions

4 Illustrative Example

4.1 Clamped Circular Plate in Axisymmetric Bending.
We study a clamped circular plate with radiusRtot ; the initial
conditions are homogenous and the material parameters are iso
Transactions of the ASME



Jo
Fig. 8 „a… Deflection and „b… self-moment of the clamped plate; vÄ2p1000 sÀ1
tropic. A space-wise constant forcepz(r ,w,t)5p0(t) is applied.
Indeed, this is not the general case; we should apply a single
load at an arbitrary location, for instancepz(r ,w,t)5d(r
2j)p0(t), and calculate the Green’s function. However, in th
paper we are interested in presenting a theoretical foundation
the method, and to show the validity in a simple example pro
lem. The domain to be controlled has radiusRsub. We apply con-
trol only within r<R, with Rsub<R<Rtot . Figure 4 shows the
circular plate. Atr 5R we considerw05w̄0 and]w0 /]r 5c̄. w̆0
is calculated from
urnal of Applied Mechanics
ring

is
of

b-

r<Rsub: w̆050,

Rsub<r<R: w̆05C11C2r 21C3r 41C4r 61C5r 81C6r 10, (16)

r 5Rsub: w̆050,
]w̆0

]r
50, r 5R: w̆05w̄0 ,

]w̆0

]r
5c̄.

After adjusting the series of Eq.~16! to the boundary conditions,
two unknowns remain to be calculated. We shall use these to
ensure the deflection be admissible. The next step is to calculate
the statically admissible moment tensor forr<R from Eq. ~14!.
MAY 2005, Vol. 72 Õ 437
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r<R:
1

r

]mp

]r
1

]2mp

]r 2
1 p̃050 (17)

No boundary condition has to be satisfied by the solution of
~17!; therefore, the solution is not unique. One constant shall
main in the solution formp. The transformed force loading i
obtained from the definitions of Eq.~12!.

r<Rsub: p̃05p0 ,
(18)

Rsub<r<R: p̃05p02r~0!ẅ02DDDw̆0 .

The solution to Eq.~17! can be calculated in the two domain
separately; the continuity of the solution and its directional deri
tive are required to be satisfied. If the self-stress moment ten
M* is taken as

M* 52M p52mpI , (19)

then the motion forr<Rsub vanishes,w̆050; for Rsub<r<R the
motion is w̆0 , as it has been specified in the series of Eq.~16!.
However, the solution form* 52mp contains five unknowns;w̄0

and c̄, two constants from the power series of Eq.~16!, and one
constant, because the solution of Eq.~17! is not unique. We elimi-
nate the two constants in the power series by ensuring that
deflection we want the controlled plate to perform is an admiss
plate deflection. To calculatew̄0 and c̄ we solve the dynamic
problem for the whole plate. The remaining constant we keep
parameter to tailor the deflection of the controlled plate. The
namic problem to be solved is

Fig. 9 Alternative domains to be controlled; „a… RÏRsub
ÏRtot , „b… R1ÏRsub 1ÏRsub 2ÏR2
438 Õ Vol. 72, MAY 2005
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as a
dy-

0<r<Rtot :

DF ]4w0~r ,t !

]r 4
1

2

r

]3w0~r ,t !

]r 3
1

1

r 2

]2w0~r ,t !

]r 2
1

1

r 3

]w0~r ,t !

]r G
1r~0!ẅ0~r ,t !

5p0~ t !2
1

r

]m* ~r ,t !

]r
2

]2m* ~r ,t !

]r 2
,

(20)

r 5Rtot : w050,
]w0

]t
50.

The time variation of the force loadingp0(t) may be considered
general. However, by considering the force loading is harmonic,
we may find the solution for an arbitrary time variation by means
of the Fourier integral; this argumentation is taken from Graff
@17#. Therefore, we proceed with studying harmonic loading
p0(t)5P0eivt; v is the driving frequency. The response may be
written asw0(r ,t)5W(r )eivt and w̆0(r ,t)5W̆0(r )eivt. Inserting
Eq. ~17! into Eq. ~20! results in the following boundary value
problem in the frequency range.

DF ]4W~r !

]r 4
1

2

r

]3W~r !

]r 3
1

1

r 2

]2W~r !

]r 2
1

1

r 3

]W~r !

]r G
2r~0!Pv2W~r !0<r<Rsub: 50,

Rsub<r<R: 52r~0!Pv2W̆01DF ]4W̆0~r !

]r 4
1

2

r

]3W̆0~r !

]r 3

1
1

r 2

]2W̆0~r !

]r 2
1

1

r 3

]W̆0~r !

]r G ,

(21)
R<r<Rtot : 5P0 ,

r 5Rtot : W50,
]W

]r
50

Thereby, we have taken care of Eqs.~18! and ~19!. Solving Eq.
~21! separately in the three domains adds ten additional un-
knowns. These can be eliminated by adjusting the solution to the
eight continuity conditions and to the two boundary conditions.
Three unknowns still have to be calculated. The solution of Eq.
~21!, when evaluated atr 5R, is exactly the unknown deflection
at this location. Also, the directional derivative of the solution at
r 5R is the unknown slope. Hence,

W~r 5R!eivt5w̄05W̄0eivt,
]W

]r
~r 5R!eivt5c̄5C̄eivt.

(22)

The remaining unknown reflects the non-uniqueness of the stati
cally admissible moment. We use this latter unknown to tailor the
deflection of the controlled plate in a desired manner.

4.2 Numerical Results. For a numerical simulation we con-
sider a typical plate, with the following stiffness parameters, iner-
tia parameter, geometry, and loading:

D5162.45 N m, r~0!58.1 kg m22, P05100 N m22,
(23)

Rtot50.2 m, R50.04 m, Rsub50.03 m.

The first three natural frequencies of this plate aref 15182.0 Hz,
f 25708.7 Hz, andf 351588 Hz. We consider different driving
frequenciesv52p f 52p(100,500,1000) s21. The deflection of
the plateW(r ) for 2p100 s21 is presented in Fig. 5. The uncon-
trolled deflection is presented together with three types of con-
trolled deflection. In the first case~‘‘Controlled’’ ! the remaining
constant was set to zero. For ‘‘Controlled; tailored deflection’’ we
Transactions of the ASME
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Fig. 10 „a… Deflection and „b… self-moment of the clamped plate; vÄ2p100 sÀ1
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used the constant to make the deflection atr 5R zero and for
‘‘Controlled; tailored self-moment’’ we made the self-moment
have a horizontal tangent atr 5R. Figure 6 shows the distribution
of the self-moment that has to be applied to obtain the deflec
of Fig. 5. It is obvious that the self-moment for ‘‘Controlled
tailored self-moment’’ requires the least effort to achieve the
sired goal of eliminating the deflection in the domainr<Rsub.
The idea of enforcing the deflection atr 5R to be zero does not
seem to be such a good idea and taking the remaining consta
be zero is not preferable to the case of the tailored self-mom
nal of Applied Mechanics
to

ion
;
e-

nt to
ent.

Whether this is also true for different driving frequencies remains
to be studied. For that reason we consider driving frequencie
v52p500 s21 andv52p1000 s21 next. Figures 7 and 8 show the
results. With respect to the deflection the three methods are mor
or less identical. However, if we take a look at both the deflection
and the self-moment distribution, we may conclude that the
method of the tailored self-moment is the most suitable one; the
deflection is nearly identical for the three methods and the re
quired control effort is least for the method of the tailored self-
moment. Our solution is exact; therefore, our solution is optimal
MAY 2005, Vol. 72 Õ 439



Fig. 11 „a… Deflection and „b… self-moment of the clamped plate; vÄ2p500 sÀ1
with respect to the proposed goal of eliminating the deflection
the subdomain. However, the deflection of the uncontrolled d
main is significantly different to the deflection in the case of n
control applied. Ideas to overcome this possibly undesirable
havior have been developed in Krommer and Varadan@12# and
will also be discussed in Part II of this paper~Krommer and
Varadan@9#!.

4.2.1 Control of Alternative Subdomains.Finally, our inter-
est is to control different domains of the circular plate. Those a
440 Õ Vol. 72, MAY 2005
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either within Rsub<r<Rtot or Rsub1<r<Rsub2; see Fig. 9. The
domains where we apply control areR<Rsub<Rtot or R1<Rsub1
<Rsub2<R2 . The dimensions of the plate are

Rtot50.2 m, R50.16 m, Rsub50.17 m,
(24)

R150.075 m, Rsub150.085 m, Rsub250.115 m,

R250.125 m.
Transactions of the ASME



Fig. 12 „a… Deflection and „b… self-moment of the clamped plate; vÄ2p1000 sÀ1
Without going into detail, we would like to mention that th
method we used in the first example is applied in a straight
ward manner. For the domain we want to control, we setw̆050,
and for the transition domain, where we apply control, but wh
we do not control, we assumew̆0 in the form of a series similar to
the one of Eq.~16!. Furthermore, we shall only use that metho
for which the self-moment has a horizontal tangent at those lo
tions, where we release the part we apply control to from the
of the plate. In Fig. 10 the results forv52p100 s21 are presented
Journal of Applied Mechanics
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Results for the three different domains we are controlling are
shown. ‘‘Domain 1’’ refers to the previous example, ‘‘Domain 2’’
is the domain next to the clamped boundary of the plate, and
‘‘Domain 3’’ is the interior domain. Figure 10~a! shows the de-
flection and the Fig. 10~b! shows the self-moment that has to be
applied to achieve the corresponding deflection. Again, our
method results in an exact elimination of the deflection; the solu-
tion is optimal. Finally, Figs. 11 and 12 show the results for
v52p500 s21 andv52p1000 s21.
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5 Conclusions
In the present paper we have presented a solution for the

namic shape control of subdomains of linear elastic plates by
plying self-stresses, which act in the linear elastic backgrou
plate. The solution is exact; hence, it represents an optimal so
tion to the following problem: How do we distribute a source o
self-stress in the subdomain in order to eliminate the motion of t
subdomain? It was our intention to present the theoretical foun
tion of the method in the present paper. For that reason
avoided a longer discussion of its possible practical applicatio
however, there is a number of applications we have in mind. W
have mentioned a few in the introduction section and we w
discuss them in more detail in the second part of the paper.
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Appendix
The constitutive relations~in the Laplace domain! for the two

loading cases~original and dummy! are

M̂5D:k̂2M̂* , M̂d5D:k̂d. (A1)

We contract the first relation with the curvature tensor of th
dummy loading case and we contract the second relation with
curvature tensor of the original loading case. The results are s
tracted and integrated with respect to the plate area.

E
A
@M̂ :k̂d2M̂d:k̂#dA52E

A
M̂* :k̂ddA (A2)

The moment tensor is symmetric and the curvature tensor rep
sents the symmetric part of the non-symmetric tensor2¹¹w0 .
Hence, we have

E
A
@M̂ :k̂d2M̂d:k̂#dA52E

A
@M̂ :¹¹ŵ0

d2M̂d:¹¹ŵ0#dA.

(A3)

We reformulate Eq.~A3! by using the Gauss theorem twice.

2E
A
@M̂ :¹¹ŵ0

d2M̂d:¹¹ŵ0#dA

5E
A
@div M̂•¹ŵ0

d2div M̂d
•¹ŵ0#dA

2E
C
@M̂n•¹ŵ0

d2M̂dn•¹ŵ0#dC

52E
A
@div~div M̂ !ŵ0

d2div~div M̂d!ŵ0#dA

1E
C
@div M̂ "nŵ0

d2div M̂d"nŵ0#dC

2E
C
@M̂n•~¹ŵ0

d
•n!n2M̂dn•~¹ŵ0•n!n#dC

2E
C
@M̂n•~¹ŵ0

d
•s!s2M̂dn•~¹ŵ0•s!s#dC (A4)

Note the decomposition of the displacement gradient into the n
mal and tangential direction. This step has been performed
order to proceed with
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2E
C
@M̂n•~¹ŵ0

d
•s!s2M̂dn•~¹ŵ0•s!s#dC

5E
C
@¹~M̂n"s!•sŵ0

d2¹~M̂dn"s!•sŵ0#dC

2(
i

@M̂n"sŵ0
d2M̂dn"sŵ0#

P
i
1

Pi
2

. (A5)

The last term accounts for all pointsPi of C that are located at a
corner. We use the partial differential equation, which governs the
bending motion, to reformulate the term2*A@div(div M̂ )ŵ0

d

2div(div M̂d)ŵ0#dA. For the two loading cases we have
div(div M̂ )1 p̂z5r (0)(s2ŵ02sw0(0)2ẇ0(0)) and div(div M̂d)
1 p̂z

d5r (0)s2ŵ0
d , because the initial conditions in the dummy case

are homogenous. The result is

(A6)

We insert Eqs.~A3!, ~A4!, ~A5!, and~A6! into Eq. ~A2!.

E
A
@~ p̂z1r~0!~sw0~0!1ẇ0~0!!!ŵ0

d2 p̂z
dŵ0#dA1E

C
@~div M̂ "n

1¹~M̂n"s!•s!ŵ0
d2~div M̂d"n1¹~M̂dn"s!•s!ŵ0#dC

5E
C
@M̂n•~¹ŵ0

d
•n!n2M̂dn•~¹ŵ0•n!n#dC1(

i
@M̂n"sŵ0

d

2M̂dn"sŵ0#
P

i
1

Pi
2

2E
A
M̂* :k̂ddA (A7)

Next, we introduce the transformed transverse forcepC z5 p̂z

1r (0)(sw0(t50)1ẇ0(t50)), which has already been intro-
duced in the main part of the paper. Furthermore, by taking into
account the boundary conditions in the original problem and that
the boundary conditions in the dummy loading case are homog
enous, we can reformulate the boundary integrals in Eq.~A7! as

E
C
@~div M̂ "n1¹~M̂n"s!•s!ŵ0

d2~div M̂d"n

1¹~M̂dn"s!•s)ŵ0]dC

5E
Cq

qC ŵ0
ddC2E

Cw

~div M̂d"n1¹~M̂dn"s!•s!ŵ̄0dC,

E
C
@M̂n•~¹ŵ0

d
•n!n2M̂dn•~¹ŵ0•n!n#dC

5E
Cm

mC ~¹ŵ0
d
•n!dC2E

Cc

~M̂dn"ncC dC,

3(
i

@M̂n"sŵ0
d2M̂dn"sŵ0#

P
i
1

Pi
2

52(
i

@M̂dn"sŵ0#
P

wi
1

Pwi
2

. (A8)
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The last term takes into account that, if the deflection at a corn

is not prescribed, then the corner forces@M̂n"s#
P

i
1

Pi
2

and@M̂dn"s#
P

i
1

Pi
2

have to vanish. If the deflection is prescribed at the corner, th
ŵ0

d50, butŵ0 may be nontrivial; such points are denoted asPwi .
We insert the relations of Eq.~A8! into Eq. ~A7!, such that we
finally end up with the integral representation that has been sta
in Eq. ~3!.

E
A
@pC zŵ0

d2 p̂z
dŵ0#dA1E

Cq

qC ŵ0
ddC

2E
Cw

~div M̂d"n1¹~M̂dn"s!•s!ŵ̄0dC

5E
Cm

mC ~¹ŵ0
d
•n!dC2E

Cc

M̂dn"ncC dC

2E
A
M̂* :k̂ddAcC cC dC2E

A
M̂* :k̂ddA

2(
i

@M̂dn"sŵ0#
P

wi
1

Pwi
2

(A9)

In order the derive the integral representation of Eq.~5!, we utilize
the decomposition of the transverse displacement,w05w̃01w̆0 ,
as well as the governing partial differential equation for the mo
tion in the dummy loading case, div(divM̂d)1 p̂z

d5r (0)s2ŵ0
d . We

find

E
A
p̂z

dŵ0dA5E
A
p̂z

dŵ̃0dA1E
A
p̂z

dŵ̆0dA

5E
A
p̂z

dŵ̃0dA1E
A
r~0!s2ŵ0

dŵ̆0dA

2E
A

div~div M̂d!ŵ̆0dA. (A10)

If we apply the Gauss theorem twice to the last term on the rig
hand side of Eq.~A10!, then we end up with

2E
A

div~div M̂d!ŵ̆0dA5E
A
M̂d: k̆̂dA2E

C
~div M̂d"n

1¹~M̂dn"s!•s!ŵ̆0dC1E
C
~M̂dn"n!

3~¹ ŵ̆0•n!dC1(
i

@M̂dn"sŵ̆0#
P

i
1

Pi
2

.

(A11)

Note that we considered the definition of the curvature tensor a
that we decomposed the gradient of the transverse displacem
into its normal and tangential direction. The last term in Eq.~A11!

becomes( i@M̂dn"sŵ̆0#
P

wi
1

Pwi
2

~see the argumentation above! and the

boundary integrals simplify if we account for the boundary con
ditions. In the dummy loading case the dynamic ones are homo
enous and in the original loading case we haveCw : ŵ̆05wC 0 and
C :¹ ŵ̆ •n5cC . Hence,
c 0
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E
A
p̂z

dŵ0dA5E
A
p̂z

dŵ̃0dA1E
A
r~0!s2ŵ0

dŵ̆0dA1E
A
M̂d: k̆̂dAz

1(
i

@M̂dn"sŵ̆0#
P

wi
1

Pwi
2

2E
Cw

~div M̂d"n1¹~M̂dn"s!•s!wC 0dC

1E
Cc

~M̂dn"n!cC dC. (A12)

Due to symmetry, the relation*AM̂d: k̆̂dA5*AM̂̆ :k̂ddA, in which
M̆5D:k̆ has been introduced, holds. It remains to reformulate t

term *AM̂̆ :k̂ddA. For that sake we insert the definition of the
dummy curvature tensor, apply the Gauss theorem twice, and k
in mind that kinematic boundary conditions in the dummy loadin
case are homogenous

E
A
M̂̆ :k̂ddA52E

A
M̂̆ :F1

2
¹¹ŵ0

d1~¹¹ŵ0
d!TGdA

52E
A
M̂̆ :¹¹ŵ0

ddA

52E
A

div~div M̂̆ !ŵ0
ddA2E

Cm

M̂̆n"n~¹ŵ0
d
•n!dC

1E
Cq

~div M̂̆ "n1¹~ M̂̆n"s!•s!ŵ0
ddC

2(
i

@~ M̂̆n"s!ŵ0
d#

P
i
1

Pi
2

. (A13)

To obtain the integral representation of Eq.~5! and the definitions
of Eq. ~6! we insert Eq.~A13! into Eq. ~A12! and we insert the
result into Eq.~A9!.

(A14)

The last but one term vanishes, because in every corner where
deflection is prescribed the relationŵ̆05ŵ05wC 0 must be satis-
fied. The last term vanishes, ifŵ̆0 is an admissible plate deflec-
tion. By admissible we mean that we are able to find an associa
bending problem for the plate, which satisfies th
non-homogenous kinematical boundary conditions of the origin

problem and for whichŵ̆0 is a solution. If so, (M̂̆n"s)d ŵ̆0]
P

i
1

Pi
2
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50. In every corner pointPi , in which the deflection is not pre-

scribed (M̂̆n"s)]
P

i
1

Pi
2

50 is satisfied; for corner points with the de

flection prescribedŵ0
d50 is satisfied. Hence, the last term in Eq

~A14! vanishes. Then Eq.~A14! is identical to Eq.~5!.
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Analysis of Doubly Clamped
Nanotube Devices in the Finite
Deformation Regime
In this paper, a nonlinear theory applicable to the design of nanotube based dev
presented. The role of finite kinematics for a doubly clamped nanotube device is
gated. In particular, we analyze the continuous deformation and instability (pull in
clamped-clamped nanotube suspended over an electrode from which a potentia
ential is imposed. The transformation of an applied voltage into a nanomechanic
formation indeed represents a key step toward the design of innovative nanod
Likewise, accurate prediction of pull-in/pull-out voltages is highly needed. We sho
an energy-based method can be conveniently used to predict the structural behav
instability corresponding to the ON/OFF states of the device at the so-called p
voltage. The analysis reveals that finite kinematics effects can result in a sign
increase of the pull-in voltage. This increase results from a ropelike behavior o
nanotube as a consequence of the stretching imposed by the actuation.
fDOI: 10.1115/1.1875452g
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1 Introduction
Nanoelectromechanical systemssNEMSd are attracting muc

interest in the scientific community, since the discovery of n
tubesf1g. The first really true carbon-nanotube-based NEMS
vice, fully integrating electronic control and mechanical respo
was developed only some months agof2g. The authors reporte
the construction and successful operation of a fully synth
nanoscale electromechanical actuator incorporating a ro
metal plate, with a multi-walled carbon nanotube serving as
key motion-enabling element. Rueckes et al.f3g investigated
carbon nanotube-based nonvolatile random access memory
veloping an innovative bistable nanoswitch based on electro
and van der Waals forces. The authors emphasized the ex
high integration level of the nanoswitches, approaching 1012 ele-
ments per square centimeter, and an element operation freq
in excess of 100 GHz. The viability of the concept was dem
strated by the experimental realization of a reversible bis
nanotube-based bit. Inf4g the development of nanotweezers w
reported. The mechanical capabilities of the nanotweezers
demonstrated by grapping and manipulating submicron clu
and nanowires.

In this context, the characterization of mechanical and
tronic properties of nanotubes has been the subject of inten
search. Their small size, low density, high stiffness, flexibility,
strength, as well as excellent electronic properties, sugges
nanotubes and nanowires are the most promising nanoscop
ments in the implementation of NEMS. For a recent review on
mechanics of carbon nanotubes the reader should refer to th
per by Qian et al.f5g, and references therein. The strength
carbon nanotubesf6g, was found to be of the order of 10–1
GPa. Furthermore, nanotubessas well as nanoropes—compos
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2To whom correspondence should be addressed.
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of several nanotubes—and nanowires—having differenltly sh
cross sectionsd possess an extremely high stiffnesssYoung’s
modulus of the order of 1 TPaf7,8gd and flexibility sstrain a
tensile failure of the order of 30%f9gd. As a consequence of th
large flexibility, the effect of the large displacements, usually
glected in analytical calculations, has to be considered in
analysis of NEMS.

In spite of the described fast acceleration in developing NE
structures, key formulas needed in their design are still abse
the literature. The first extensive investigation of the behavio
nanotube-based devices has been recently reportedf10g. In that
paper, the differential equation of the elastic line of a nano
suspended over an electrode and from which a differential in
tential is imposed, was numerically solved according to
tinuum mechanics, assuming small displacements. The c
sponding pull-in voltages, at the structural instability, w
evaluated for different case studies. In addition, the first attem
obtain an analytical formula for the pull-in voltage of the na
tube was also proposed, assuming for the nanotube aplatelike
undeformed shape, connected via a lamped stiffness to the g
electrode. As emphasized by the same authors, the propose
mula was not able to reproduce accuratetly all their nume
results.

In this paper we present a nonlinear energy-based theory f
prediction of the pull-in voltage of doubly clamped nanotu
under stretching. The equilibrium condition as well as the in
bility of the nanotube is obtained, respectively, by setting to
the first and the second derivatives of the free energy of the
tem. A comparison between analytically predicted pull-in volta
and those obtained by numerically solving the corresponding
erning equations is also provided.

2 Elastic Line Equation of the Nanotube Under Finite
Kinematics

In this section we derive, in the finite deformation regime,
elastic line equation for a nanotube. We focus the attention
doubly clamped nanotube suspended over an electrode at
tancer =H from which a differenceV in the electrostatic potenti
is imposedsnanoswitchd which is schematically shown in Fig.
Note that this is equivalent to the problem of two identical do
clamped nanotubes placed at distance 2r =2H under a differenc

,

.
ek-
al
6-
lf

in voltage 2V, as imposed by the symmetry.
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1. We
The electrostatic and van der Waals energies per unit lengt
be evaluated by the following relationshipsf10g:

dEelec

dz
=

p«0V
2

cosh−1S1 +
r

R
D ,

dEvdW

dz
= o

R=Rint

Rext

o
r=r int

r int+sNG−1dd
p2C6n

2d2Rsr + Rdf3R2 + 2sr + Rd2g
2fsr + Rd2 − R2g7/2 ,

s1d

wherez is the axial coordinate of the cantilever nanotube,Rint and
R;Rext are the inner and outer radius of a multiwalled nanot
NG is the number of layers in the substratesgraphened, d is the
interlayer distancesfor graphite d=0.335 nmd. In addition, r
; r int is the gap between the nanotubesexternal walld and the
surface layer of the substrate, wheren is the atomic density, th
for graphite is equal ton=1.1431029 m−3, and «0=8.85
310−12 C2 N−1 m−2 is the vacuum permittivity.

The corresponding forces per unit lengthqelec andqvdW can be
evaluated, according to Eq.s1d as

qelec= −
dsdEelec/dzd

dr
, qvdW = −

dsdEvdW/dzd
dr

. s2d

Based on continuum mechanics, the quasistatic structura
havior of the nanotube, can be obtained solving the elastic
equation, namely,

EI
d4w

dz4 = qvdW + qelec, I =
psRext

4 − Rint
4 d

4
, s3d

wherewszd=H−rszd is the nanotube deflection,H is the nomina
gap between nanotube and electrode, andE is the Young’s modu
lus of the nanotube, with moment of inertiaI.

It is important to underline that Eq.s3d assumes small displac
ments. On the other hand, due to the large flexibility of the n
tube, the role of the finite kinematicsslarge displacementsd could
become relevant. According to these considerations, we ha
consider the complete expression for the elastic curvature. I
dition, it is important to note that large deformations could im
for doubly clamped nanotubes, also the stretching of the ele
Finally, under large deformations, the electrostatic forces
thogonal to the surface of the nanotube, have to be consi
with respect to the deformed configurationswe neglect the effec
of the finite kinematics on the Lennard-Jones forces per

Fig. 1 Schematics of doubly clamped nanotube based
nanoswitches and nanotweezers
length, i.e., van der Waals and Pauli forces, which become signi
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an
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cant only for very small gaps, i.e., few nanometersd. In the dy-
namic regime, the damping and inertia forces must be also a
se.g., to consider variable applied voltages, thermal vibrat
free vibrations, and so ond. According to these considerations,
complete expression of the elastic line equation for a nano
device is

EI
]2

]z21
]2w

]z2

F1 +S ]w

]z
D2G3/22 −

EA

2LE0

L S ]w

]z
D2

dz

]2w

]z2

F1 +S ]w

]z
D2G3/2

= qvdW + qP + Sqelec− g
]w

]t
− m

]2w

]t2
DF1 +S ]w

]z
D2G1/2

, s4d

wherem andg represent the mass and the damping per unit le
of the nanotube andt is the time. The Pauli force per unit leng
qP is obtained from the repulsive part of the Lennard-Jones p
tial f10g. From theQ-factor of the nanotubesbetween 170–50
f11gd, g=mv0/Q, wherev0 is its fundamental rotating frequen
The termf1+s]w/]zd2g3/2 represents the correction for the cur
ture, that must be considered under large displacements. Th
cosq=s1+s]w/]zd2d−1/2 has to be introduced to consider
changing in the positions of the loads that remain pependicu
the nanotube axis, as a consequence of the large displace
involving not necessarily small rotations of the cross-sectio
an angleq. For a clamped-clamped nanotube the axial forc
equal toNswd=EA/2Le0

Ls]w/]zd2dz.
Some interesting results were obtainedf10g by solving numeri

cally Eq. s3d. The more general Eq.s4d was also solved nume
cally f12,13g. On the other hand, here we prefer obtaining
analytical solution under simplified hypotheses for the pu
voltage, corresponding to the quasistatic collapse of the nano
i.e., assumingg=m=0. Instead of solving Eq.s4d in an approxi
mate way, we will obtain the equilibrium and the instability of
nanosystem by minimizing the free energy and its first deriva

3 Small Deformation
We consider a clamped-clamped nanotube of lengthL. For the

small deflection case of a clamped-clamped nanotube loade
constant force per unit length, we assume a functionwszd satisfy-
ing the boundary conditionswsz=0,Ld=w8sz=0,Ld=0, namely,

wszd < 16FS z

L
D2

− 2S z

L
D3

+ S z

L
D4Gc, s5d

wherewsz=L /2d=c is here an unknown constant that repres
the displacement of the central point.

As a consequence, the elastic energy, assuming small dis
ments, as well as the electrostatic and van der Waals en
stored in the nanotube can be obtained by integration as

Eelastscd =
EI

2 E
0

L Sd2w

dz2 D2

dz, s6ad

Eelecscd < E
0

L
dEelec,vdW,Phrfwszdgj

dz
dz. s6bd

We investigate the validity of the form of Eq.s5d by evaluating
the associated fundamental frequency and by comparing it
the well-known value for a clamped-clamped nanotube. Equ
the maximum values of the elastic strain energy of Eq.s6ad and of
the kinetic energyKstd=1/2e0

Lsdw/dtd2mdz, with m mass per un
length of the nanotube, during its free-vibration withwsz,td
<wszdsinv0t, one finds the estimation of the fundamental
quencyv0 of the nanotube. The ratio between the estimated
damental frequency and the real one is found to be close to

fi-conclude that the form of Eq.s5d is good for our scope.
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The free-energysor total potential energyd of the system can b
written as

Wscd = Eelastscd − Eelecscd − EvdWscd − EPscd. s7ad
Equilibrium and stability are obtained from

dWscd
dc

= 0, s7bd

d2Wscd
dc2 = 0. s7cd

The equilibrium condition is reached when the free-en
reaches a minimum valuesEq. s7bdd. On the other hand, the stru
tural instability occurs at the so-called pull-in voltage, when
second order of the free-energy becomes zerosEq. s7cdd. Accord-
ing to f10g, the effects of the van der Walls and Pauli forces
these boundary conditions is negligible, even for small g
hence, we takeEvdW,P<0.

The electrostatic energy per unit length can be approximat

dEelec

dz
<

p«0V
2

lnS2sR+ H − wd
R

D =
p«0V

2

lnS2sH + Rd
R

D
331 +o

i=1

`

1 1

lnS2sH + Rd
R

Doj=1

`
1

i
S w

sH + RdD
j2

i

4 . s8d

Employing Eq. s6bd, the total electrostatic energy can be
pressed as

Eelecscd =
p«0V

2L

lnS2sH + Rd
R

D
331 +o

i=1

`

1 1

FlnS2sH + Rd
R

DG i o
j=i

`

aijS c

sH + RdD
j24 ,

s9d

wherehaij j are constants. LetSscd=oi=1
` s 1

flns2sH+Rd
R dgi

o j=i
` aijs c

sH+Rd d jd.
From Eqs.s5d and s6ad, the total elastic energy of the nanotu
can be obtained as

Eelast=
512

5

EI

L3c2. s10d

From Eqs.s7ad and s7bd, the equilibrium condition provides

Vscd =
H + R

L2 lnS2sH + Rd
R

DÎ 1024EI

5p«0S8scdS c

H + R
D . s11d

The central displacement of the nanotube at pull-incPI can be
obtained from

dVscd
dc

= 0, s12d

which means the pull-in corresponds to a maximum inV. Hence
the pull-in voltage can be written as

VPI = k
H + R

L2 lnS2sH + Rd
R

DÎEI

«0
, s13d

wherek=Î 1024
5pS8scPId

s cPI

H+R
d.

4 Finite Kinematics
To take into account the nonlinear effect arising from fi
kinematics, we have to evaluate the energy stored in the beam
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only due to bending but also due to stretching. This represen
predominant effect of the finite kinematics for the doubly clam
nanotube.

The strain due to bending is

«b = − y
d2w

dz2 , s14d

wherey has the origin in the centroid of the cross section, an
parallel to the direction of the loads. In addition, the mean v
of stretching due to the displacementw, noting that ds2=dz2

+dw2, is f14g

«s =
ds− dz

ds
<

1

2LE0

L Sdw

dz
D2

dz. s15d

As a consequence, the elastic energy stored in the nanotub

Eelast=
E

2E
A
E

0

L

s«s + «bd2dAdz, s16d

whereA=psRext
2 −Rint

2 d is the cross-section area of the nanotu
Considering Eq.s5d, the result is

Eelast=
512

5

EI

L3c2S1 +
128

3003

c2

r2D , s17d

where the radius of inertiar is defined asI =Ar2. The first term
corresponds to the bending, whereas the second nonlinea
represents the elastic strain energy stored in the beam due
stretching of the nanotube. Note that the forcesderivative of the
energyd due to bending is linear, while the one due to stretchin
cubic.

Considering the energy as the fundamental quantity to der
nonlinear correction for the stretching, we have to conside
increase in beam stiffness as

EI → S1 +
128

3003

c2

r2DEI. s18d

Therefore, the equilibrium condition gives

Fig. 2 Comparison between analytical predictions and nu-
merical results. Plot of applied voltage versus gap for both
small deformation and finite kinematics. The gap is measured
between the axis of the nanotube and the electrode in the

notmiddle of the span.
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VFKscd = VscdÎS1 +
128

3003
S c

r
D2D =

H + R

L2 lnS2sH + Rd
R

D

3
Î1024EIF1 +

128

3003
S c

r
D2GS c

H + R
D

5p«0S8scd
. s19d

Stationary condition, Eq.s12d, applied toVFK sFK refers to finite
kinematicsd, provides the value ofc at pull in. The pull-in voltage
can then be expressed as

VPI
FK = kFKH + R

L2 lnS2sH + Rd
R

DÎEI

«0
, s20d

wherekFK=Î 1024
5pS8scPId

s cPI

H+R
df1+ 128

3003
scPI

r
d2g.

5 Comparison Between Analytical Prediction and Nu
merical Simulations

An assessment of the derived analytical formulas is perfo
by comparing the results obtained solving numerically the c
sponding elastic line equations, for both small deformationsonly
bendingd and finite kinematicssbending+stretchingd. The nano
tube properties and dimensions used here are Young’s mo
E=1.0 TPa,Rext=20 nm,Rint=0 nm, andL=3000 nm. The ini
tial gap H=100 nm is also employed. Note that the theory d
not involve a best fit parameter. The detailed comparison i
ported in Fig. 2. In this figure, the applied voltage versus the
in the middle of the span between the nanotube and the elec
is theoretically evaluated and plotted for both the small defo
tion model Eq.s11d and the finite kinematics model Eq.s19d.
These plots are compared in the same figure with the small d
mation and finite kinematics numerical results obtained by so
Eq. s3d using a finite difference scheme. When evaluating
analytical solution,i =1 to 4 andj =1 to 10 are employed in th
series of Eq.s8d. The corresponding constantshaij j in Eq. s9d are
obtained using Mathematica®. From Fig. 2, it is clear that
finite kinematics effect is indistinguishable when the deforma
is small and it gradually becomes significant with the increas
deformation. It is noted that the theoretical prediction curve
be divided into two parts with the separation point atV=VPI and
c=cPI. The part that corresponds tocøcPI follows the numerica
results and can be experimentally implemented. The part tha
responds toc.cPI could be experimentally captured only by
displacement-control device. On the other hand, if the NEM
voltage controlled, it will follow the unstable pathsat V=VPId until
reaching the contact. The difference between the two pat
related to the kinetic energy released by the structure after p
when the device is actuated under voltage control. From Fig
can be concluded that the analytical results are in excellent a
ment with the numerical results.

The effects of the geometry of the nanotubeL and R and the
step heightH on the pull-in voltage of the NEMS device have a
been examined both analyticall and numerically. The result
reported in Table 1. Columns five and six in Table 1 com

Table 1 Comparison between pull-in voltages evaluated numerica
nanotube devices, respectively. E=1.0 TPa, Rint =0. SD refers to

Case Hfnmg Lfnmg R=Rextfnmg VPIfVg stheo-S

1 100 4000 10 3.20
2 100 3000 10 5.69
3 100 2000 10 12.81
4 150 3000 10 9.45
5 200 3000 10 13.53
6 100 3000 20 19.21
7 100 3000 30 38.57
analytical and numerical pull-in voltage predictions under the a
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sumption of small deformations. Columns seven and eig
Table 1 compare analytical and numerical pull-in voltage pre
tions under the assumption of finite kinematics. The agree
between the analytical predictions and numerical results is
factory swith a maximum discrepancy of 5%d.

Note that an oversimplified model, e.g., assuming a capaci
of two parallel plates and a concentrated stiffnessf10g, can resul
in significant errors in the evaluation of the pull-in voltage.
importance of a more accurate model, that is the aim of this p
has been recently emphasized inf4g where, by assuming a paral
plate capacitance, a pull-in voltage of 9.4 V was predicte
contrast to the experimental measurement of 8.5 V.

6 Closure
We have presented a theory to analyze nanotube struc

which is particularly suited to the design of NEMS and nano
sors. Comparison with numerical results shows good agree
The formulas here reported could represent a considerable
forward in the understanding and development of nanosenso
NEMS. Note that the analysis is also applicable to microele
mechanical systemssMEMSd.

With improvements in nanomanipulation and manufacturin
nanodevices we hope experimental measurements will be
available, which will confirm or identify limitations of the the
retical predictions here reported.
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In problems involving the relative sliding to two bodies, the f
tional force is taken to oppose the direction of the local rela
slip velocity. For a rigid flat punch sliding over a half-plane
any speed, it is shown that the velocities of the half-plane part
near the edges of the punch seem to grow without limit in
same direction as the punch motion. Thus the local relative
velocity changes sign. This phenomenon leads to a parad
friction, in the sense that the assumed direction of sliding use
Coulomb friction is opposite that of the resulting slip velocity
the region sufficiently close to each of the edges of the punch
paradox is not restricted to the case of a rigid punch, as it is
to the deformations in the half-plane over which the pressu
moving. It would therefore occur for any punch shape and el
constants (including an elastic wedge) for which the applied p
sure, moving along the free surface of the half-plane, is sing
The paradox is resolved by using a finite strain analysis of
kinematics for the rigid punch problem and it is expected
finite strain theory would resolve the paradox for a more gen
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contact problem.fDOI: 10.1115/1.1867992g

Formulation
Consider a rigid flat punch, indenting an elastic half-plan

shown in Fig. 1. From the classical equations of plane-strain
ticity ssee, e.g., Barberf1g, p. 154d the displacementsū, v̄ on the
surface of the half-plane are given by

dū

dx̄
sx̄,0d = −

1 − n

pm
E

S

q̄sjddj̄

x̄ − j̄
−

1 − 2n

2m
p̄sx̄d, s1d

dv̄

dx̄
sx̄,0d =

1 − n

pm
E

S

p̄sj̄ddj̄

x̄ − j̄
−

1 − 2n

2m
q̄sx̄d, s2d

wherep̄,q̄ are the pressure and shear, respectively, transmit
the interfacesp̄ is positive in compressiond, n is the Poisson
ratio, andm is the shear modulus.

We initially consider a frictionless punchsq̄=0d that is moving
with a velocityU0 which is much less than any of the wave spe
of the elastic body. Hence inertia effects can be neglected an
steady solution is given in terms of a moving coordinate sy
sx,yd where

x = x̄ − U0t, y = ȳ, usx,yd = ūsx̄,ȳ,td, vsx,yd = v̄sx̄,ȳ,td
s3d

The velocity of particles in the elastic material is denoted bU,
where

U ;
dū

dt
=

du

dx
·

dx

dt
⇒ U = − U0

du

dx
sx,0d s4d

Under frictionless sliding conditions, Eqs.s1d and s4d yield

U = 0 uxu . a,

=U0
1 − 2n

2m
psxd → + ` uxu → a− s5d

wherea is the half-width of the indenter.
Thus the effect of elastic deformation is to produce a velo

under the punch which is a function of positionx and is in averag
very small if the mean pressure is, as we generally expect,
less than the elastic modulus. However, as the pressure be
singular at the edges,the speed U near the corners becom
greater than U0 and, therefore, the local relative slip velocity is
the opposite direction to that of the punch motion. Hence materia
points on the half-plane which enter under the leading edge o
punch are forced to move forward of the punch. Similarly mat
points near the trailing edge have a velocity greater than th
the punch and so, it would seem, never leave from unde
punch.

This behavior itself is paradoxical, but is of particular conc

as it persists when sliding is accompanied by Coulomb friction.g.

by ASME Transactions of the ASME
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One of the fundamental laws of friction is that the friction fo
opposes the relative slip velocity. Normally, this direction is
ferred a priori, so that if Coulomb’s friction law is assumed
hold, we anticipate

qsxd = fpsxd, s6d

wheref is the coefficient of friction and Eqs.s1d ands2d reduce to

du

dx
sx,0d = −

s1 − ndf

pm
E

−a

a
psjddj

x − j
−

s1 − 2nd
2m

psxd, s7d

dv
dx

sx,0d =
s1 − nd

pm
E

−a

a
psjddj

x − j
−

s1 − 2nd
2m

fpsxd. s8d

Since the punch is flat, we have

dv
dx

sx,0d = 0, x P s− a,ad s9d

and hence

E
−a

a
psjddj

x − j
=

s1 − 2ndp
2s1 − nd

fpsxd, x P s− a,ad. s10d

Using this result to eliminate the integral ins7d, we obtain

du

dx
sx,0d = −

s1 − 2nds1 + f2d
2m

psxd, x P s− a,ad s11d

The contact pressurepsxd must be positive andnø0.5, so we
conclude thatdu/dx is always negative under the punchsexcep
for an incompressible material, in which case it vanishesd, giving
a positive value of the particle velocityU in Eq. s4d which be-
comes unbounded in a region near the punch cornerssthus U
.U0d and hence where the local relative sliding motion is
posed to that of the punch motion.

The paradox would continue to occur in the case of two el
materials, for those combinations of punch wedge angles an
terial constants for which the pressure induced is singularsDun-
durs and Lee,f2g; Gdoutos and Theocaris,f3gd. Note that the
elastic displacement in an elastic punch is constant in the fram
reference moving with it, and accordingly would not affect
relative sliding velocity.

Finite Strain Kinematics Analysis
Consider nowX,Y as material coordinates in the refere

state, andx,y the spatial coordinates of the same points in
deformed state. A deformation state can be represented ax=x
sX,Y,td, whereas displacements can be written asu=x−X andv

Fig. 1 A flat rigid punch indenting an elastic half-plane
=y−Y. Hence, thestretch ratiol sratio of length in the deformed
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state to the length in the reference stated of a material filamen
sdX,0d can be given as

l =ÎS dx

dX
D2

+ S dy

dX
D2

s12d

We observe thatl.0.
Consider the flat rigid indenter as maintained on the play

=y0 s,0d moving at speedU0 in the +X direction. The material t
be indented and also any apparatus which supports it along
plane Y=y1 s.y0d is to be considered translationally invari
relative to theX coordinate. Then, if a steady state solution ex
to the problem, the displacementu must have the form

u = usX − U0t,Yd s13d

and hence the velocity in the +X direction of material points o
the surface of the body is

du

dt
= − U0

du

dX
= − U0S dx

dX
− 1D s14d

When there is contact with the flat face of the indentor,y=y0
=constand, therefore,dy/dX=0. Hence, the stretch ratio defin
by s12d reduces to

l =
dx

dX
s15d

and thus the velocity of material points along the contact with
indentor is

du

dt
= − U0sl − 1d s16d

This in turn gives the slip velocitys as

s; U0 −
du

dt
= lU0 . 0 s17d

and a negative value fors can never occur since the stretch r
cannot be negative. The paradox happens in regions whe
infinitesimal strain solution predicts compressive strains so
that l is predictedsimpossiblyd to be negative. Had we evalua
it, we would have done so by using

«xx =
du

dX
= l − 1 s18d

along the contact zone under the indentor. That means th
strain «xx can be no more negative than −1ssince l has to be
positived, whereas we fail this test when we approach the si
larity at the corner of the indenter.

Discussion
This paradox would occur also in elastodynamics. In fact b

the Rayleigh wave speedscRd the solution to any contact proble
is the same as the corresponding quasi-static problem with
duced modulusswhich goes to zero atcRd, f4g. The elastodynam
solution for a normal point force moving at constant speed
the surface of an half-plane becomes resonant at the Ra
wave speedscRd and above that speed a downward force prod
an upward displacement.1 Hence, for elastodynamic problems
volving, for example, a rigid punch sliding over an elastodyna
half-plane, the solution behaves as the static indentation
elastic half-plane of reduced modulusswhich approaches zero
the Rayleigh wave speedd. However, it is still true that a compre
sive strain of magnitude greater than unity is needed to pro
the paradoxsalthough the required normal pressure is reducd.

1This phenomenon leads to a paradoxical behavior of its own, i.e., the Cr

Roberts paradoxf5,6g.
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Therefore, the paradox considered in this paper is even
likely to occur, as strains can be arbitrarily large with any p
sure, provided we are close enough tocR.

The finite strain kinematics analysis shows that the par
disappears when the correct kinematics is used. In this case
reasonable engineering solution to use the infinitesimal th
with the assumption that slip is always in the original directio
sliding, because the paradox occurs only in very small regio
which the infinitesimal theory is unrealistic.

There is, however, a class of problems where we see
doubt as to the proper formulation using infinitesimal theory.
the moving punch, we propose to use the direction of the p
motion to determine the relative slip velocity, i.e., we ignore
velocity reversal due to the singularity. Now suppose that
punch is stationary and is subjected to an incoming wave.
direction of the particle motion beneath the punch governs the
direction and the singularity does not produce a slip reversal
to s4d, becauseU0=0. However, the imposed motion itself may
sufficient to give slip reversal in some regions. Now conside
case in which the punch is given a small velocity. According tos4d
any finite sno matter how smalld velocity will produce slip, nea
the moving singularities, in the opposite direction as that du
the punch motion alone. In this case it is unclear as to wheth
452 / Vol. 72, MAY 2005
re
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to

ignore the effect of the velocity reversal, as we did for the mo
punch without the incoming wave, or to include its effect as
suggest when the punch is perfectly stationary.
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The paper by Horton, Tupholme, and Goverf1g analyzes th
deformation behavior of rubber using the isotropic, infinitesi
strain theory of elasticty for an incompressible material. Acc
ingly, the Poisson’s ration=1/2 and Young’s modulus is thre
times the shear modulussE=3md. In this setting, the stressessi j

determine thesinfinitesimald strainsei j , but the strains only dete
mine the stresses up to a hydrostatic pressure. Hence, the
determine the shear stresses and also determine the norma
differences. The strains follow from the displacementsui in the
usual fashionei j =sui,j +uj ,id /2. In their analysis of a rectangu
block with Cartesian coordinatessx,y,zd and associated displac
ment componentssu,v ,wd the authors in their analytic develo
ment arrive at a displacement fieldsEqs.s14d, s12d, s24dd

u = − x
dw

dz
,

v = 0,

Journal of Applied Mechanics Copyright © 200
l
-

ains
ress

w =
3F

4EA5z−

2 sinh
az

2
coshFa

2
sh − zdG

a cosh
ah

2
6 ,

where a=4Î3/b and F, E, A, b, h are constants with units
force, stress, area, length, length, respectively. On the basis
stress equation of equilibrium associated with thex direction, and
in conjunction with the stress-strain-displacement relations
viewed above, they also obtainfEq. s17dg

szz=
E

3
F4

dw

dz
−

1

2
Sb2

4
− x2Dd3w

dz3 G −
F

A
.

These fields are central to the ensuing development, in part
to the calculation of percentage errors associated with pre
treatmentsse.g., Table 1d.

It is indeed the case that the above fields follow from a de
opment based uponu=usx,zd, v=0, w=wszd, and the selecte
equilibrium equation. The above fields now permit the determ
tion of all the components of stressssee, e.g.,s15dd. On this basi
one verifies that the stress equations of equilibrium are sat
with respect to thex and y directions. However, with respect
the z direction, one obtains that

]sxz

]x
+

]syz

]y
+

]szz

]z

= −
3Î3F

Ab3 sb2 − 8x2dsechS2Î3h

b
DsinhS2Î3sh − 2zd

b
D .

In view of the fact that the full set of equilibrium equations are
satisfied, there would seem to be grounds for concern rega
the validity of the improved expressions put forward in this pa
Similar concerns would naturally arise with respect to other t
ments that use a similar methodology.
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Closure to “Discussion of ‘Axial
Loading of Bonded Rubber Blocks’ ”
(2005, ASME J. Appl. Mech.,
72, p. 453)

J. M. Horton
Reflecting Roadstuds Ltd., Boothtown, Halifax,
HX3 6TR, UK

G. E. Tupholme
School of Computing and Mathematics,
University of Bradford, Bradford, BD7 1DP, UK
e-mail: g.e.tupholme@bradford.ac.uk

Our immediate reaction to the comments of Pence was o
amazement that such a supposedly prestigious journal would
sider it appropriate to devote valuable space to what, we
should be obvious to a reasonably well-informed reader who
delved into the related literature.

In his first paragraph, Pence appears to review a few ran
elements of the very well-known basics of classical elast
theory seven to the extent of giving the absolutely fundame
relationships between the displacement and strain compond.
Several of these were, in fact, willingly deleted from our orig
manuscript, upon receiving the observation of a reviewer tha
is not necessary to remind readers ofJournal of Applied Mechan
ics … for a linear elastic model.”

He then, seemingly unnecessarily, simply reproduces a fe
our expressions, before making the observation that the eq
rium equation in thez direction is not satisfied. Actually th
would clearly not be expected with the basic objectives and
sumptions of the analyses presented. However, he naively ap
to regard this as a hugely serious flaw that casts doubt o
worth of the realistic approximate expressions derived for the
parent Young’s modulus, offering improvements on those p
ously available.

The approximations developed by Gent and Lindleyf1g and
Gent f2g have been widely quoted and used in the enginee
industry for assessing axial stiffness. As we hoped was cl
explained in our introduction in Sec. 1, they were derived on
basis of two fundamental assumptions:sid that planes initially nor
mal to the direction of loading remain normal after loading,
sii d that the deformed shapes of the free lateral surfaces are
bolic. Subsequently, as we pointed out in Secs. 1 and 5.2
validity of the assumptionsii d has been questioned by seve
authors in interpreting their experimental results—with comm
including “the assumption of a parabolic profile is erroneous”
that the next step “would be an improved method of estima
the ‘bulgeability.’ ” It was our aim therefore to provide such e
mates with this assumption of parabolic profiles removed, w
maintaining the more reasonable first assumption.
454 / Vol. 72, MAY 2005 Copyright © 2005
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However, it is a natural consequence of this simplifying
sumptionsid that, for an incompressible material, it becomes
realistic to satisfy exactly the equilibrium equation in thez direc-
tion sexcept on the central plane,z=h/2d on an infinitesima
volume. Further, this same assumption leads to the predicti
the existence of a shear stress on the unloaded boundary wh
observed in the paper, cannot actually physically exist.

If Pence were to refer to the already cited references of
and Lindleyf1g and Gentf2g, he would deduce that the theor
therein lead to solutions for the stress components that also d
satisfy the equilibrium equation in the direction of loading, no
the expressions derived in the later considerations of, for exa
Constantinuo, Kartoum, and Kellyf3g, Chalhoub and Kellyf4g,
and Tsai and Leef5g.

Additionally, it should perhaps be pointed out that all the ab
papers, and others, have assumed the rubber block to have a
thickness and have either predicted or assumed parabol
formed profiles. In contrast, our analysis applies to a block o
thickness, and predicts that, especially for blocks of small s
factor, the profile is noticeably not parabolic. This is reassuri
in agreement with the experimental findings of Mott and Ro
f6g and others.

In conclusion, we would suggest that, contrary to Pence’s
cerns in his final sentence, methodologies similar to that ad
in our paper have proved invaluable and extremely useful i
lated analyses. Particularly worthy of note are the expression
Horton, Gover, and Tupholmef7,8g presented for the radial sti
ness and tilting stiffness of a rubber bush mounting of fi
length. Not only were there no useful estimates available p
ously, but moreover they yield numerical values that agree
with the available experimental data.

We are grateful to the Editor of theJournal of Applied Mechan
ics for giving us this opportunity to respond. We hope that
comments will enhance the appreciation of the potential im
tance and value of our results, for those readers who hav
worked directly in this area of rubber technology and are ther
less familiar with the relevant literature.
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